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P R E F A C EP R E F A C E

This is a textbook for the standard introductory differential equations course
taken by science and engineering students. Its updated content reflects the

wide availability of technical computing environments like Maple, Mathematica,
and MATLAB that now are used extensively by practicing engineers and scientists.
The traditional manual and symbolic methods are augmented with coverage also
of qualitative and computer-based methods that employ numerical computation and
graphical visualization to develop greater conceptual understanding. A bonus of
this more comprehensive approach is accessibility to a wider range of more realistic
applications of differential equations.

Principal Features of This Revision

This 5th edition is a comprehensive and wide-ranging revision.
In addition to fine-tuning the exposition (both text and graphics) in numerous

sections throughout the book, new applications have been inserted (including bio-
logical), and we have exploited throughout the new interactive computer technology
that is now available to students on devices ranging from desktop and laptop com-
puters to smart phones and graphing calculators. It also utilizes computer algebra
systems such as Mathematica, Maple, and MATLAB as well as online web sites
such as WolframjAlpha.

However, with a single exception of a new section inserted in Chapter 5 (noted
below), the classtested table of contents of the book remains unchanged. Therefore,
instructors’ notes and syllabi will not require revision to continue teaching with this
new edition.

A conspicuous feature of this edition is the insertion of about 80 new computer-
generated figures, many of them illustrating how interactive computer applications
with slider bars or touchpad controls can be used to change initial values or param-
eters in a differential equation, allowing the user to immediately see in real time the
resulting changes in the structure of its solutions.

Some illustrations of the various types of revision and updating exhibited in
this edition:

New Interactive Technology and Graphics New figures inserted through-
out illustrate the facility offered by modern computing technology platforms
for the user to interactively vary initial conditions and other parameters in
real time. Thus, using a mouse or touchpad, the initial point for an initial
value problem can be dragged to a new location, and the corresponding solu-
tion curve is automatically redrawn and dragged along with its initial point.
For instance, see the Sections 1.3 (page 28) application module and 3.1 (page
148). Using slider bars in an interactive graphic, the coefficients or other pa-
rameters in a linear system can be varied, and the corresponding changes in its
direction field and phase plane portrait are automatically shown; for instance,

vii



viii Preface

see the application module for Section 5.3 (page 319). The number of terms
used from an infinite series solution of a differential equation can be varied,
and the resulting graphical change in the corresponding approximate solution
is shown immediately; see the Section 8.2 application module (page 516).

New Exposition In a number of sections, new text and graphics have been
inserted to enhance student understanding of the subject matter. For instance,
see the treatments of separable equations in Section 1.4 (page 30), linear equa-
tions in Section 1.5 (page 45), isolated critical points in Sections 6.1 (page
372) and 6.2 (page 383), and the new example in Section 9.6 (page 618)
showing a vibrating string with a momentary “flat spot.” Examples and ac-
companying graphics have been updated in Sections 2.4–2.6, 4.2, and 4.3 to
illustrate new graphing calculators.

New Content The single entirely new section for this edition is Section
5.3, which is devoted to the construction of a “gallery” of phase plane por-
traits illustrating all the possible geometric behaviors of solutions of the 2-
dimensional linear system x0 D Ax. In motivation and preparation for the
detailed study of eigenvalue-eigenvector methods in subsequent sections of
Chapter 5 (which then follow in the same order as in the previous edi-
tion), Section 5.3 shows how the particular arrangements of eigenvalues and
eigenvectors of the coefficient matrix A correspond to identifiable patterns—
“fingerprints,” so to speak—in the phase plane portrait of the system x0 D Ax.
The resulting gallery is shown in the two pages of phase plane portraits that
comprise Figure 5.3.16 (pages 315-316) at the end of the section. The new 5.3
application module (on dynamic phase plane portraits, page 319) shows how
students can use interactive computer systems to “bring to life” this gallery, by
allowing initial conditions, eigenvalues, and even eigenvectors to vary in real
time. This dynamic approach is then illustrated with several new graphics in-
serted in the remainder of Chapter 5. Finally, for a new biological application,
see the application module for Section 6.4, which now includes a substan-
tial investigation (page 423) of the nonlinear FitzHugh-Nagumo equations in
neuroscience, which were introduced to model the behavior of neurons in the
nervous system.

Computing Features

The following features highlight the computing technology that distinguishes much
of our exposition.

� Over 750 computer-generated figures show students vivid pictures of direction
fields, solution curves, and phase plane portraits that bring symbolic solutions
of differential equations to life.

� About 45 application modules follow key sections throughout the text. Most
of these applications outline “technology neutral” investigations illustrating
the use of technical computing systems and seek to actively engage students
in the application of new technology.

� A fresh numerical emphasis that is afforded by the early introduction of nu-
merical solution techniques in Chapter 2 (on mathematical models and nu-
merical methods). Here and in Chapter 4, where numerical techniques for
systems are treated, a concrete and tangible flavor is achieved by the inclu-
sion of numerical algorithms presented in parallel fashion for systems ranging
from graphing calculators to MATLAB.
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Modeling Features

Mathematical modeling is a goal and constant motivation for the study of differen-
tial equations. To sample the range of applications in this text, take a look at the
following questions:

� What explains the commonly observed time lag between indoor and outdoor
daily temperature oscillations? (Section 1.5)

� What makes the difference between doomsday and extinction in alligator pop-
ulations? (Section 2.1)

� How do a unicycle and a twoaxle car react differently to road bumps? (Sec-
tions 3.7 and 5.4)

� How can you predict the time of next perihelion passage of a newly observed
comet? (Section 4.3)

� Why might an earthquake demolish one building and leave standing the one
next door? (Section 5.4)

� What determines whether two species will live harmoniously together, or
whether competition will result in the extinction of one of them and the sur-
vival of the other? (Section 6.3)

� Why and when does non-linearity lead to chaos in biological and mechanical
systems? (Section 6.5)

� If a mass on a spring is periodically struck with a hammer, how does the
behavior of the mass depend on the frequency of the hammer blows? (Section
7.6)

� Why are flagpoles hollow instead of solid? (Section 8.6)

� What explains the difference in the sounds of a guitar, a xylophone, and drum?
(Sections 9.6, 10.2, and 10.4)

Organization and Content

We have reshaped the usual approach and sequence of topics to accommodate new
technology and new perspectives. For instance:

� After a precis of first-order equations in Chapter 1 (though with the cover-
age of certain traditional symbolic methods streamlined a bit), Chapter 2 of-
fers an early introduction to mathematical modeling, stability and qualitative
properties of differential equations, and numerical methods—a combination
of topics that frequently are dispersed later in an introductory course. Chapter
3 includes the standard methods of solution of linear differential equations of
higher order, particularly those with constant coefficients, and provides an es-
pecially wide range of applications involving simple mechanical systems and
electrical circuits; the chapter ends with an elementary treatment of endpoint
problems and eigenvalues.

� Chapters 4 and 5 provide a flexible treatment of linear systems. Motivated
by current trends in science and engineering education and practice, Chap-
ter 4 offers an early, intuitive introduction to first-order systems, models, and
numerical approximation techniques. Chapter 5 begins with a self-contained
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treatment of the linear algebra that is needed, and then presents the eigenvalue
approach to linear systems. It includes a wide range of applications (ranging
from railway cars to earthquakes) of all the various cases of the eigenvalue
method. Section 5.5 includes a fairly extensive treatment of matrix exponen-
tials, which are exploited in Section 5.6 on nonhomogeneous linear systems.

� Chapter 6 on nonlinear systems and phenomena ranges from phase plane anal-
ysis to ecological and mechanical systems to a concluding section on chaos
and bifurcation in dynamical systems. Section 6.5 presents an elementary in-
troduction to such contemporary topics as period-doubling in biological and
mechanical systems, the pitchfork diagram, and the Lorenz strange attractor
(all illustrated with vivid computer graphics).

� Laplace transform methods (Chapter 7) and power series methods (Chapter 8)
follow the material on linear and nonlinear systems, but can be covered at any
earlier point (after Chapter 3) the instructor desires.

� Chapters 9 and 10 treat the applications of Fourier series, separation of vari-
ables, and Sturm-Liouville theory to partial differential equations and bound-
ary value problems. After the introduction of Fourier series, the three clas-
sical equations—the wave and heat equations and Laplace’s equation—are
discussed in the last three sections of Chapter 9. The eigenvalue methods of
Chapter 10 are developed sufficiently to include some rather significant and
realistic applications.

This book includes enough material appropriately arranged for different courses
varying in length from one quarter to two semesters. The briefer version Differen-
tial Equations: Computing and Modeling (0-321-81625-0) ends with Chapter 7 on
Laplace transform methods (and thus omits the material on power series methods,
Fourier series, separation of variables and partial differential equations).

Student and Instructor Resources

The answer section has been expanded considerably to increase its value as a learn-
ing aid. It now includes the answers to most odd-numbered problems plus a good
many even-numbered ones. The Instructor’s Solutions Manual (0-321-79701-
9) available at www.pearsonhighered.com/irc provides worked-out solutions
for most of the problems in the book, and the Student Solutions Manual (0-321-
79700-0) contains solutions for most of the odd-numbered problems. These manu-
als have been reworked extensively for this edition with improved explanations and
more details inserted in the solutions of many problems.

The approximately 45 application modules in the text contain additional prob-
lem and project material designed largely to engage students in the exploration
and application of computational technology. These investigations are expanded
considerably in the Applications Manual (0-321-79704-3) that accompanies the
text and supplements it with additional and sometimes more challenging investi-
gations. Each section in this manual has parallel subsections Using Maple, Using
Mathematica, and Using MATLAB that detail the applicable methods and tech-
niques of each system, and will afford student users an opportunity to compare the
merits and styles of different computational systems. These materials—as well as
the text of the Applications Manual itself—are freely available at the web site
www.pearsonhighered.com/mathstatsresources.

http://www.pearsonhighered.com/irc
http://www.pearsonhighered.com/mathstatsresources
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11 First-Order
Differential Equations

1.1 Differential Equations and Mathematical Models

The laws of the universe are written in the language of mathematics. Algebra
is sufficient to solve many static problems, but the most interesting natural

phenomena involve change and are described by equations that relate changing
quantities.

Because the derivative dx=dt D f 0.t/ of the function f is the rate at which
the quantity x D f .t/ is changing with respect to the independent variable t , it
is natural that equations involving derivatives are frequently used to describe the
changing universe. An equation relating an unknown function and one or more of
its derivatives is called a differential equation.

Example 1 The differential equation
dx

dt
D x2 C t2

involves both the unknown function x.t/ and its first derivative x0.t/D dx=dt . The differential
equation

d2y

dx2
C 3 dy

dx
C 7y D 0

involves the unknown function y of the independent variable x and the first two derivatives
y0 and y00 of y.

The study of differential equations has three principal goals:

1. To discover the differential equation that describes a specified physical
situation.

2. To find—either exactly or approximately—the appropriate solution of that
equation.

3. To interpret the solution that is found.

In algebra, we typically seek the unknown numbers that satisfy an equation
such as x3C 7x2 � 11xC 41D 0. By contrast, in solving a differential equation, we

1



2 Chapter 1 First-Order Differential Equations

are challenged to find the unknown functions y D y.x/ for which an identity such
as y0.x/ D 2xy.x/—that is, the differential equation

dy

dx
D 2xy

—holds on some interval of real numbers. Ordinarily, we will want to find all
solutions of the differential equation, if possible.

Example 2 If C is a constant and

y.x/ D Cex2

; (1)

then
dy

dx
D C

�
2xex2

�
D .2x/

�
Cex2

�
D 2xy:

Thus every function y.x/ of the form in Eq. (1) satisfies—and thus is a solution of—the
differential equation

dy

dx
D 2xy (2)

for all x. In particular, Eq. (1) defines an infinite family of different solutions of this differen-
tial equation, one for each choice of the arbitrary constant C . By the method of separation of
variables (Section 1.4) it can be shown that every solution of the differential equation in (2)
is of the form in Eq. (1).

Differential Equations and Mathematical Models
The following three examples illustrate the process of translating scientific laws and
principles into differential equations. In each of these examples the independent
variable is time t , but we will see numerous examples in which some quantity other
than time is the independent variable.

Example 3 Newton’s law of cooling may be stated in this way: The time rate of change (the rate of
change with respect to time t) of the temperature T .t/ of a body is proportional to the differ-
ence between T and the temperature A of the surrounding medium (Fig. 1.1.1). That is,

dT

dt
D �k.T � A/; (3)

where k is a positive constant. Observe that if T > A, then dT=dt < 0, so the temperature is
a decreasing function of t and the body is cooling. But if T < A, then dT=dt > 0, so that T
is increasing.

Thus the physical law is translated into a differential equation. If we are given the
values of k and A, we should be able to find an explicit formula for T .t/, and then—with the
aid of this formula—we can predict the future temperature of the body.

Temperature T

Temperature A

FIGURE 1.1.1. Newton’s law of
cooling, Eq. (3), describes the cooling
of a hot rock in water.

Example 4 Torricelli’s law implies that the time rate of change of the volume V of water in a draining
tank (Fig. 1.1.2) is proportional to the square root of the depth y of water in the tank:

dV

dt
D �kpy; (4)

where k is a constant. If the tank is a cylinder with vertical sides and cross-sectional area A,
then V D Ay, so dV=dt D A � .dy=dt/. In this case Eq. (4) takes the form

dy

dt
D �hpy; (5)

where h D k=A is a constant.
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Example 5 The time rate of change of a population P.t/ with constant birth and death rates is, in many
simple cases, proportional to the size of the population. That is,

dP
dt
D kP; (6)

where k is the constant of proportionality.

Let us discuss Example 5 further. Note first that each function of the form

P.t/ D Cekt (7)

is a solution of the differential equation

dP
dt
D kP

in (6). We verify this assertion as follows:

yVolume V

FIGURE 1.1.2. Newton’s law of
cooling, Eq. (3), describes the cooling
of a hot rock in water.

P 0.t/ D Ckekt D k
�
Cekt

�
D kP.t/

for all real numbers t . Because substitution of each function of the form given in
(7) into Eq. (6) produces an identity, all such functions are solutions of Eq. (6).

Thus, even if the value of the constant k is known, the differential equation
dP=dt D kP has infinitely many different solutions of the form P.t/D Cekt , one for
each choice of the “arbitrary” constant C . This is typical of differential equations.
It is also fortunate, because it may allow us to use additional information to select
from among all these solutions a particular one that fits the situation under study.

Example 6 Suppose that P.t/ D Cekt is the population of a colony of bacteria at time t , that the pop-
ulation at time t D 0 (hours, h) was 1000, and that the population doubled after 1 h. This
additional information about P.t/ yields the following equations:

1000 D P.0/ D Ce0 D C;
2000 D P.1/ D Cek :

It follows that C D 1000 and that ek D 2, so k D ln 2 � 0:693147. With this value of k the
differential equation in (6) is

dP
dt
D .ln 2/P � .0:693147/P:

Substitution of k D ln 2 and C D 1000 in Eq. (7) yields the particular solution

P.t/ D 1000e.ln 2/t D 1000.eln 2/t D 1000 � 2t (because eln 2 D 2)
that satisfies the given conditions. We can use this particular solution to predict future popu-
lations of the bacteria colony. For instance, the predicted number of bacteria in the population
after one and a half hours (when t D 1:5) is

P.1:5/ D 1000 � 23=2 � 2828:

The condition P.0/D 1000 in Example 6 is called an initial condition because
we frequently write differential equations for which t D 0 is the “starting time.”
Figure 1.1.3 shows several different graphs of the form P.t/ D Cekt with k D ln 2.
The graphs of all the infinitely many solutions of dP=dt D kP in fact fill the entire
two-dimensional plane, and no two intersect. Moreover, the selection of any one
point P0 on the P -axis amounts to a determination of P.0/. Because exactly one
solution passes through each such point, we see in this case that an initial condition
P.0/ D P0 determines a unique solution agreeing with the given data.

0 1 2 3

t

0P

–2

–1

–4

–2

–6

–8

2

4

6

8
C = 12 C = 6 C = 3

C = –6

C = 1
2

C = – 1
2

C = 1

C = –1

C = –3C = –12

FIGURE 1.1.3. Graphs of
P.t/ D Cekt with k D ln 2.



4 Chapter 1 First-Order Differential Equations

Mathematical Models
Our brief discussion of population growth in Examples 5 and 6 illustrates the crucial
process of mathematical modeling (Fig. 1.1.4), which involves the following:

1. The formulation of a real-world problem in mathematical terms; that is, the
construction of a mathematical model.

2. The analysis or solution of the resulting mathematical problem.
3. The interpretation of the mathematical results in the context of the original

real-world situation—for example, answering the question originally posed.

Real-world
situation

Mathematical
model

Mathematical
results

Mathematical
analysis

Formulation Interpretation

FIGURE 1.1.4. The process of mathematical modeling.

In the population example, the real-world problem is that of determining the
population at some future time. A mathematical model consists of a list of vari-
ables (P and t) that describe the given situation, together with one or more equations
relating these variables (dP=dt D kP , P.0/ D P0) that are known or are assumed to
hold. The mathematical analysis consists of solving these equations (here, for P as
a function of t). Finally, we apply these mathematical results to attempt to answer
the original real-world question.

As an example of this process, think of first formulating the mathematical
model consisting of the equations dP=dt D kP , P.0/ D 1000, describing the bac-
teria population of Example 6. Then our mathematical analysis there consisted of
solving for the solution function P.t/ D 1000e.ln 2/t D 1000 � 2t as our mathemat-
ical result. For an interpretation in terms of our real-world situation—the actual
bacteria population—we substituted t D 1:5 to obtain the predicted population of
P.1:5/ � 2828 bacteria after 1.5 hours. If, for instance, the bacteria population is
growing under ideal conditions of unlimited space and food supply, our prediction
may be quite accurate, in which case we conclude that the mathematical model is
adequate for studying this particular population.

On the other hand, it may turn out that no solution of the selected differential
equation accurately fits the actual population we’re studying. For instance, for no
choice of the constants C and k does the solution P.t/D Cekt in Eq. (7) accurately
describe the actual growth of the human population of the world over the past few
centuries. We must conclude that the differential equation dP=dt D kP is inadequate
for modeling the world population—which in recent decades has “leveled off” as
compared with the steeply climbing graphs in the upper half (P > 0) of Fig. 1.1.3.
With sufficient insight, we might formulate a new mathematical model including
a perhaps more complicated differential equation, one that takes into account such
factors as a limited food supply and the effect of increased population on birth and
death rates. With the formulation of this new mathematical model, we may attempt
to traverse once again the diagram of Fig. 1.1.4 in a counterclockwise manner. If
we can solve the new differential equation, we get new solution functions to com-



1.1 Differential Equations and Mathematical Models 5

pare with the real-world population. Indeed, a successful population analysis may
require refining the mathematical model still further as it is repeatedly measured
against real-world experience.

But in Example 6 we simply ignored any complicating factors that might af-
fect our bacteria population. This made the mathematical analysis quite simple,
perhaps unrealistically so. A satisfactory mathematical model is subject to two con-
tradictory requirements: It must be sufficiently detailed to represent the real-world
situation with relative accuracy, yet it must be sufficiently simple to make the math-
ematical analysis practical. If the model is so detailed that it fully represents the
physical situation, then the mathematical analysis may be too difficult to carry out.
If the model is too simple, the results may be so inaccurate as to be useless. Thus
there is an inevitable tradeoff between what is physically realistic and what is math-
ematically possible. The construction of a model that adequately bridges this gap
between realism and feasibility is therefore the most crucial and delicate step in
the process. Ways must be found to simplify the model mathematically without
sacrificing essential features of the real-world situation.

Mathematical models are discussed throughout this book. The remainder of
this introductory section is devoted to simple examples and to standard terminology
used in discussing differential equations and their solutions.

Examples and Terminology

Example 7 If C is a constant and y.x/ D 1=.C � x/, then

dy

dx
D 1

.C � x/2 D y
2

if x 6D C . Thus

y.x/ D 1

C � x (8)

defines a solution of the differential equation

dy

dx
D y2 (9)

on any interval of real numbers not containing the point x D C . Actually, Eq. (8) defines a
one-parameter family of solutions of dy=dx D y2, one for each value of the arbitrary constant
or “parameter” C . With C D 1 we get the particular solution

y.x/ D 1

1 � x
that satisfies the initial condition y.0/ D 1. As indicated in Fig. 1.1.5, this solution is contin-
uous on the interval .�1; 1/ but has a vertical asymptote at x D 1.

Example 8 Verify that the function y.x/ D 2x1=2 � x1=2 ln x satisfies the differential equation

4x2y00 C y D 0 (10)

for all x > 0.
Solution First we compute the derivatives

y0.x/ D �1
2x

�1=2 ln x and y00.x/ D 1
4x

�3=2 ln x � 1
2x

�3=2:

Then substitution into Eq. (10) yields

4x2y00 C y D 4x2
�

1
4x

�3=2 ln x � 1
2x

�3=2
�
C 2x1=2 � x1=2 ln x D 0

if x is positive, so the differential equation is satisfied for all x > 0.
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The fact that we can write a differential equation is not enough to guarantee
that it has a solution. For example, it is clear that the differential equation

.y0/2 C y2 D �1 (11)

has no (real-valued) solution, because the sum of nonnegative numbers cannot be
negative. For a variation on this theme, note that the equation

.y0/2 C y2 D 0 (12)

obviously has only the (real-valued) solution y.x/ � 0. In our previous examples
any differential equation having at least one solution indeed had infinitely many.

The order of a differential equation is the order of the highest derivative that
appears in it. The differential equation of Example 8 is of second order, those in
Examples 2 through 7 are first-order equations, and

y.4/ C x2y.3/ C x5y D sin x

is a fourth-order equation. The most general form of an nth-order differential
equation with independent variable x and unknown function or dependent variable
y D y.x/ is

F
�
x; y; y0; y00; : : : ; y.n/

�
D 0; (13)

where F is a specific real-valued function of nC 2 variables.
Our use of the word solution has been until now somewhat informal. To be

precise, we say that the continuous function uD u.x/ is a solution of the differential
equation in (13) on the interval I provided that the derivatives u0, u00, : : : , u.n/ exist
on I and

F
�
x; u; u0; u00; : : : ; u.n/

�
D 0

for all x in I . For the sake of brevity, we may say that u D u.x/ satisfies the
differential equation in (13) on I .
Remark Recall from elementary calculus that a differentiable function on an open interval
is necessarily continuous there. This is why only a continuous function can qualify as a
(differentiable) solution of a differential equation on an interval.

0 5

0

5

(0, 1)

x

y

–5
–5

y = 1/(1 – x)

x = 1

FIGURE 1.1.5. The solution of
y0 D y2 defined by y.x/ D 1=.1 � x/.

Continued

Example 7 Figure 1.1.5 shows the two “connected” branches of the graph y D 1=.1 � x/. The left-hand
branch is the graph of a (continuous) solution of the differential equation y0 D y2 that is
defined on the interval .�1; 1/. The right-hand branch is the graph of a different solution of
the differential equation that is defined (and continuous) on the different interval .1;1/. So
the single formula y.x/ D 1=.1 � x/ actually defines two different solutions (with different
domains of definition) of the same differential equation y0 D y2.

Example 9 If A and B are constants and

y.x/ D A cos 3x C B sin 3x; (14)

then two successive differentiations yield

y0.x/ D �3A sin 3x C 3B cos 3x;

y00.x/ D �9A cos 3x � 9B sin 3x D �9y.x/
for all x. Consequently, Eq. (14) defines what it is natural to call a two-parameter family of
solutions of the second-order differential equation

y00 C 9y D 0 (15)

on the whole real number line. Figure 1.1.6 shows the graphs of several such solutions.
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Although the differential equations in (11) and (12) are exceptions to the gen-
eral rule, we will see that an nth-order differential equation ordinarily has an n-
parameter family of solutions—one involving n different arbitrary constants or pa-

0 3

0

5

x

y

–5
–3

y1

y2

y3

FIGURE 1.1.6. The three solutions
y1.x/ D 3 cos 3x, y2.x/ D 2 sin 3x,
and y3.x/ D �3 cos 3x C 2 sin 3x of
the differential equation y00 C 9y D 0.

rameters.
In both Eqs. (11) and (12), the appearance of y0 as an implicitly defined func-

tion causes complications. For this reason, we will ordinarily assume that any dif-
ferential equation under study can be solved explicitly for the highest derivative that
appears; that is, that the equation can be written in the so-called normal form

y.n/ D G
�
x; y; y0; y00; : : : ; y.n�1/

�
; (16)

where G is a real-valued function of nC 1 variables. In addition, we will always
seek only real-valued solutions unless we warn the reader otherwise.

All the differential equations we have mentioned so far are ordinary differ-
ential equations, meaning that the unknown function (dependent variable) depends
on only a single independent variable. If the dependent variable is a function of
two or more independent variables, then partial derivatives are likely to be involved;
if they are, the equation is called a partial differential equation. For example, the
temperature u D u.x; t/ of a long thin uniform rod at the point x at time t satisfies
(under appropriate simple conditions) the partial differential equation

@u

@t
D k @

2u

@x2
;

where k is a constant (called the thermal diffusivity of the rod). In Chapters 1
through 8 we will be concerned only with ordinary differential equations and will
refer to them simply as differential equations.

In this chapter we concentrate on first-order differential equations of the form

dy

dx
D f .x; y/: (17)

We also will sample the wide range of applications of such equations. A typical
mathematical model of an applied situation will be an initial value problem, con-
sisting of a differential equation of the form in (17) together with an initial condi-
tion y.x0/ D y0. Note that we call y.x0/ D y0 an initial condition whether or not
x0 D 0. To solve the initial value problem

dy

dx
D f .x; y/; y.x0/ D y0 (18)

means to find a differentiable function y D y.x/ that satisfies both conditions in
Eq. (18) on some interval containing x0.

Example 10 Given the solution y.x/ D 1=.C � x/ of the differential equation dy=dx D y2 discussed in
Example 7, solve the initial value problem

dy

dx
D y2; y.1/ D 2:

Solution We need only find a value of C so that the solution y.x/ D 1=.C � x/ satisfies the initial
condition y.1/ D 2. Substitution of the values x D 1 and y D 2 in the given solution yields

2 D y.1/ D 1

C � 1 ;
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so 2C � 2 D 1, and hence C D 3
2 . With this value of C we obtain the desired solution

(1, 2)

(2, –2)

0 5

0

5

x

y

–5
–5

y = 2/(3 – 2x)

x = 3/2

FIGURE 1.1.7. The solutions of
y0 D y2 defined by
y.x/ D 2=.3 � 2x/.

y.x/ D 1
3
2 � x

D 2

3 � 2x :

Figure 1.1.7 shows the two branches of the graph y D 2=.3 � 2x/. The left-hand branch is
the graph on .�1; 3

2 / of the solution of the given initial value problem y0 D y2, y.1/ D 2.
The right-hand branch passes through the point .2;�2/ and is therefore the graph on .3

2 ;1/
of the solution of the different initial value problem y0 D y2, y.2/ D �2.

The central question of greatest immediate interest to us is this: If we are given
a differential equation known to have a solution satisfying a given initial condition,
how do we actually find or compute that solution? And, once found, what can we do
with it? We will see that a relatively few simple techniques—separation of variables
(Section 1.4), solution of linear equations (Section 1.5), elementary substitution
methods (Section 1.6)—are enough to enable us to solve a variety of first-order
equations having impressive applications.

1.1 Problems
In Problems 1 through 12, verify by substitution that each
given function is a solution of the given differential equation.
Throughout these problems, primes denote derivatives with re-
spect to x.

1. y0 D 3x2; y D x3 C 7
2. y0 C 2y D 0; y D 3e�2x

3. y00 C 4y D 0; y1 D cos 2x, y2 D sin 2x
4. y00 D 9y; y1 D e3x , y2 D e�3x

5. y0 D y C 2e�x ; y D ex � e�x

6. y00 C 4y0 C 4y D 0; y1 D e�2x , y2 D xe�2x

7. y00 � 2y0 C 2y D 0; y1 D ex cos x, y2 D ex sin x
8. y00CyD 3 cos 2x, y1D cos x�cos 2x, y2D sin x�cos 2x

9. y0 C 2xy2 D 0; y D 1

1C x2

10. x2y00 C xy0 � y D ln x; y1 D x � ln x, y2 D
1

x
� ln x

11. x2y00 C 5xy0 C 4y D 0; y1 D
1

x2
, y2 D

ln x
x2

12. x2y00 � xy0 C 2y D 0; y1 D x cos.ln x/, y2 D x sin.ln x/

In Problems 13 through 16, substitute y D erx into the given
differential equation to determine all values of the constant r
for which y D erx is a solution of the equation.

13. 3y0 D 2y 14. 4y00 D y
15. y00 C y0 � 2y D 0 16. 3y00 C 3y0 � 4y D 0

In Problems 17 through 26, first verify that y.x/ satisfies the
given differential equation. Then determine a value of the con-
stant C so that y.x/ satisfies the given initial condition. Use a
computer or graphing calculator (if desired) to sketch several
typical solutions of the given differential equation, and high-
light the one that satisfies the given initial condition.

17. y0 C y D 0; y.x/ D Ce�x , y.0/ D 2
18. y0 D 2y; y.x/ D Ce2x , y.0/ D 3
19. y0 D y C 1; y.x/ D Cex � 1, y.0/ D 5

20. y0 D x � y; y.x/ D Ce�x C x � 1, y.0/ D 10
21. y0 C 3x2y D 0; y.x/ D Ce�x3

, y.0/ D 7
22. eyy0 D 1; y.x/ D ln.x C C/, y.0/ D 0
23. x

dy

dx
C 3y D 2x5; y.x/ D 1

4x
5 C Cx�3, y.2/ D 1

24. xy0 � 3y D x3; y.x/ D x3.C C ln x/, y.1/ D 17
25. y0 D 3x2.y2 C 1/; y.x/ D tan.x3 C C/, y.0/ D 1
26. y0 C y tan x D cos x; y.x/ D .x C C/ cos x, y.�/ D 0

In Problems 27 through 31, a function y D g.x/ is described
by some geometric property of its graph. Write a differential
equation of the form dy=dx D f .x; y/ having the function g as
its solution (or as one of its solutions).

27. The slope of the graph of g at the point .x; y/ is the sum
of x and y.

28. The line tangent to the graph of g at the point .x; y/ inter-
sects the x-axis at the point .x=2; 0/.

29. Every straight line normal to the graph of g passes through
the point .0; 1/. Can you guess what the graph of such a
function g might look like?

30. The graph of g is normal to every curve of the form
y D x2 C k (k is a constant) where they meet.

31. The line tangent to the graph of g at .x; y/ passes through
the point .�y; x/.

In Problems 32 through 36, write—in the manner of Eqs. (3)
through (6) of this section—a differential equation that is a
mathematical model of the situation described.

32. The time rate of change of a population P is proportional
to the square root of P .

33. The time rate of change of the velocity v of a coasting
motorboat is proportional to the square of v.

34. The acceleration dv=dt of a Lamborghini is proportional
to the difference between 250 km/h and the velocity of the
car.



1.1 Differential Equations and Mathematical Models 9

35. In a city having a fixed population of P persons, the time
rate of change of the numberN of those persons who have
heard a certain rumor is proportional to the number of
those who have not yet heard the rumor.

36. In a city with a fixed population of P persons, the time rate
of change of the number N of those persons infected with
a certain contagious disease is proportional to the product
of the number who have the disease and the number who
do not.

In Problems 37 through 42, determine by inspection at least
one solution of the given differential equation. That is, use
your knowledge of derivatives to make an intelligent guess.
Then test your hypothesis.

37. y00 D 0 38. y0 D y
39. xy0 C y D 3x2 40. .y0/2 C y2 D 1
41. y0 C y D ex 42. y00 C y D 0

Problems 43 through 46 concern the differential equation

dx

dt
D kx2;

where k is a constant.

43. (a) If k is a constant, show that a general (one-parameter)
solution of the differential equation is given by x.t/D
1=.C � kt/, where C is an arbitrary constant.

(b) Determine by inspection a solution of the initial value
problem x0 D kx2, x.0/ D 0.

44. (a) Assume that k is positive, and then sketch graphs of
solutions of x0 D kx2 with several typical positive
values of x.0/.

(b) How would these solutions differ if the constant k
were negative?

45. Suppose a population P of rodents satisfies the differen-
tial equation dP=dt D kP 2. Initially, there are P.0/ D 2

rodents, and their number is increasing at the rate of
dP=dt D 1 rodent per month when there are P D 10 ro-
dents. Based on the result of Problem 43, how long will it
take for this population to grow to a hundred rodents? To
a thousand? What’s happening here?

46. Suppose the velocity v of a motorboat coasting in water
satisfies the differential equation dv=dt D kv2. The ini-
tial speed of the motorboat is v.0/ D 10 meters per sec-
ond (m/s), and v is decreasing at the rate of 1 m/s2 when
v D 5 m/s. Based on the result of Problem 43, long does
it take for the velocity of the boat to decrease to 1 m/s? To
1

10 m/s? When does the boat come to a stop?
47. In Example 7 we saw that y.x/ D 1=.C � x/ defines a

one-parameter family of solutions of the differential equa-
tion dy=dx D y2. (a) Determine a value of C so that
y.10/ D 10. (b) Is there a value of C such that y.0/ D 0?
Can you nevertheless find by inspection a solution of
dy=dx D y2 such that y.0/ D 0? (c) Figure 1.1.8 shows
typical graphs of solutions of the form y.x/ D 1=.C � x/.
Does it appear that these solution curves fill the entire xy-
plane? Can you conclude that, given any point .a; b/ in
the plane, the differential equation dy=dx D y2 has ex-
actly one solution y.x/ satisfying the condition y.a/ D b?

48. (a) Show that y.x/ D Cx4 defines a one-parameter fam-
ily of differentiable solutions of the differential equation
xy0 D 4y (Fig. 1.1.9). (b) Show that

y.x/ D
(
�x4 if x < 0,

x4 if x = 0

defines a differentiable solution of xy0D 4y for all x, but is
not of the form y.x/ D Cx4. (c) Given any two real num-
bers a and b, explain why—in contrast to the situation in
part (c) of Problem 47—there exist infinitely many differ-
entiable solutions of xy0 D 4y that all satisfy the condition
y.a/ D b.

0 2 31

x

0y

–1

–2 –1

–2

–3
–3

1

2

3
C = –2 C = 0 C = 1 C = 3

C = 4

C = –4

C = 2

C = 2C = –3 C = –2 C = –1 C = 0 C = 1

C = –1

FIGURE 1.1.8. Graphs of solutions of the
equation dy=dx D y2.
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–100
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FIGURE 1.1.9. The graph y D Cx4 for
various values of C .
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1.2 Integrals as General and Particular Solutions
The first-order equation dy=dx D f .x; y/ takes an especially simple form if the
right-hand-side function f does not actually involve the dependent variable y, so

dy

dx
D f .x/: (1)

In this special case we need only integrate both sides of Eq. (1) to obtain

y.x/ D
Z
f .x/ dx C C: (2)

This is a general solution of Eq. (1), meaning that it involves an arbitrary constant
C , and for every choice of C it is a solution of the differential equation in (1). If
G.x/ is a particular antiderivative of f—that is, if G0.x/ � f .x/—then

y.x/ D G.x/C C: (3)

The graphs of any two such solutions y1.x/DG.x/CC1 and y2.x/DG.x/C

0 2 431
x

y

–2 –1–4 –3

4

3

2

1

0

–1

–2

–3

–4

C = –1

C = –2

C = 3

C = 2

C = 1

C = 0

C = –3

FIGURE 1.2.1. Graphs of
y D 1

4
x2 C C for various values of C .

C2 on the same interval I are “parallel” in the sense illustrated by Figs. 1.2.1 and
1.2.2. There we see that the constant C is geometrically the vertical distance be-
tween the two curves y.x/ D G.x/ and y.x/ D G.x/C C .

x
0 4 62

0y

–2

–4 –2

–4

–6
–6

2

4

6

C = –4

C = –2

C = 0

C = 2
C = 4

FIGURE 1.2.2. Graphs of
y D sin x C C for various values of C .

To satisfy an initial condition y.x0/ D y0, we need only substitute x D x0 and
y D y0 into Eq. (3) to obtain y0 D G.x0/C C , so that C D y0 � G.x0/. With this
choice of C , we obtain the particular solution of Eq. (1) satisfying the initial value
problem

dy

dx
D f .x/; y.x0/ D y0:

We will see that this is the typical pattern for solutions of first-order differential
equations. Ordinarily, we will first find a general solution involving an arbitrary
constant C . We can then attempt to obtain, by appropriate choice of C , a particular
solution satisfying a given initial condition y.x0/ D y0.
Remark As the term is used in the previous paragraph, a general solution of a first-order
differential equation is simply a one-parameter family of solutions. A natural question is
whether a given general solution contains every particular solution of the differential equa-
tion. When this is known to be true, we call it the general solution of the differential equation.
For example, because any two antiderivatives of the same function f .x/ can differ only by a
constant, it follows that every solution of Eq. (1) is of the form in (2). Thus Eq. (2) serves to
define the general solution of (1).

Example 1 Solve the initial value problem

dy

dx
D 2x C 3; y.1/ D 2:

Solution Integration of both sides of the differential equation as in Eq. (2) immediately yields the
general solution

y.x/ D
Z
.2x C 3/ dx D x2 C 3x C C:

Figure 1.2.3 shows the graph yD x2C3xCC for various values of C . The particular solution
we seek corresponds to the curve that passes through the point .1; 2/, thereby satisfying the
initial condition

y.1/ D .1/2 C 3 � .1/C C D 2:
It follows that C D �2, so the desired particular solution is

y.x/ D x2 C 3x � 2:
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Second-order equations. The observation that the special first-order equation

–2 0 2 4
x

y

–2

–10
–4

–4

–6

–6

–8

4

2

0

C = –6

C = –4

C = –2

C = 0

C = 2

FIGURE 1.2.3. Solution curves for
the differential equation in Example 1.

dy=dx D f .x/ is readily solvable (provided that an antiderivative of f can be found)
extends to second-order differential equations of the special form

d2y

dx2
D g.x/; (4)

in which the function g on the right-hand side involves neither the dependent vari-
able y nor its derivative dy=dx. We simply integrate once to obtain

dy

dx
D
Z
y00.x/ dx D

Z
g.x/ dx D G.x/C C1;

where G is an antiderivative of g and C1 is an arbitrary constant. Then another
integration yields

y.x/ D
Z
y0.x/ dx D

Z
ŒG.x/C C1� dx D

Z
G.x/ dx C C1x C C2;

where C2 is a second arbitrary constant. In effect, the second-order differential
equation in (4) is one that can be solved by solving successively the first-order
equations

dv

dx
D g.x/ and

dy

dx
D v.x/:

Velocity and Acceleration
Direct integration is sufficient to allow us to solve a number of important problems
concerning the motion of a particle (or mass point) in terms of the forces acting
on it. The motion of a particle along a straight line (the x-axis) is described by its
position function

x D f .t/ (5)

giving its x-coordinate at time t . The velocity of the particle is defined to be

v.t/ D f 0.t/I that is, v D dx

dt
: (6)

Its acceleration a.t/ is a.t/ D v0.t/ D x00.t/; in Leibniz notation,

a D dv

dt
D d2x

dt2
: (7)

Equation (6) is sometimes applied either in the indefinite integral form x.t/DR
v.t/ dt or in the definite integral form

x.t/ D x.t0/C
Z t

t0

v.s/ ds;

which you should recognize as a statement of the fundamental theorem of calculus
(precisely because dx=dt D v).

Newton’s second law of motion says that if a force F.t/ acts on the particle
and is directed along its line of motion, then

ma.t/ D F.t/I that is, F D ma; (8)
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where m is the mass of the particle. If the force F is known, then the equation
x00.t/ D F.t/=m can be integrated twice to find the position function x.t/ in terms
of two constants of integration. These two arbitrary constants are frequently deter-
mined by the initial position x0 D x.0/ and the initial velocity v0 D v.0/ of the
particle.

Constant acceleration. For instance, suppose that the force F , and therefore the
acceleration a D F=m, are constant. Then we begin with the equation

dv

dt
D a (a is a constant) (9)

and integrate both sides to obtain

v.t/ D
Z
a dt D at C C1:

We know that v D v0 when t D 0, and substitution of this information into the
preceding equation yields the fact that C1 D v0. So

v.t/ D dx

dt
D at C v0: (10)

A second integration gives

x.t/ D
Z
v.t/ dt D

Z
.at C v0/ dt D 1

2
at2 C v0t C C2;

and the substitution t D 0, x D x0 gives C2 D x0. Therefore,

x.t/ D 1
2
at2 C v0t C x0: (11)

Thus, with Eq. (10) we can find the velocity, and with Eq. (11) the position, of
the particle at any time t in terms of its constant acceleration a, its initial velocity
v0, and its initial position x0.

Example 2 A lunar lander is falling freely toward the surface of the moon at a speed of 450 meters per
second (m=s). Its retrorockets, when fired, provide a constant deceleration of 2.5 meters per
second per second (m=s2) (the gravitational acceleration produced by the moon is assumed
to be included in the given deceleration). At what height above the lunar surface should the
retrorockets be activated to ensure a “soft touchdown” (v D 0 at impact)?

Solution We denote by x.t/ the height of the lunar lander above the surface, as indicated in Fig. 1.2.4.
We let t D 0 denote the time at which the retrorockets should be fired. Then v0 D �450

Lunar surface

a υ

FIGURE 1.2.4. The lunar lander of
Example 2.

(m=s, negative because the height x.t/ is decreasing), and a D C2:5, because an upward
thrust increases the velocity v (although it decreases the speed jvj). Then Eqs. (10) and (11)
become

v.t/ D 2:5t � 450 (12)

and
x.t/ D 1:25t2 � 450t C x0; (13)

where x0 is the height of the lander above the lunar surface at the time t D 0 when the
retrorockets should be activated.

From Eq. (12) we see that v D 0 (soft touchdown) occurs when t D 450=2:5 D 180 s
(that is, 3 minutes); then substitution of t D 180, x D 0 into Eq. (13) yields

x0 D 0 � .1:25/.180/2 C 450.180/ D 40;500
meters—that is, x0 D 40.5 km � 251

6 miles. Thus the retrorockets should be activated when
the lunar lander is 40.5 kilometers above the surface of the moon, and it will touch down
softly on the lunar surface after 3 minutes of decelerating descent.



1.2 Integrals as General and Particular Solutions 13

Physical Units
Numerical work requires units for the measurement of physical quantities such as
distance and time. We sometimes use ad hoc units—such as distance in miles or
kilometers and time in hours—in special situations (such as in a problem involving
an auto trip). However, the foot-pound-second (fps) and meter-kilogram-second
(mks) unit systems are used more generally in scientific and engineering problems.
In fact, fps units are commonly used only in the United States (and a few other
countries), while mks units constitute the standard international system of scientific
units.

fps units mks units

Force

Mass

Distance

Time

g

pound (lb)

slug

foot (ft)

second (s)

32 ft/s2

newton (N)

kilogram (kg)

meter (m)

second (s)

9.8 m/s2

The last line of this table gives values for the gravitational acceleration g at
the surface of the earth. Although these approximate values will suffice for most
examples and problems, more precise values are 9:7805 m=s2 and 32:088 ft=s2 (at
sea level at the equator).

Both systems are compatible with Newton’s second law F D ma. Thus 1 N is
(by definition) the force required to impart an acceleration of 1 m=s2 to a mass of 1
kg. Similarly, 1 slug is (by definition) the mass that experiences an acceleration of
1 ft=s2 under a force of 1 lb. (We will use mks units in all problems requiring mass
units and thus will rarely need slugs to measure mass.)

Inches and centimeters (as well as miles and kilometers) also are commonly
used in describing distances. For conversions between fps and mks units it helps to
remember that

1 in. D 2.54 cm (exactly) and 1 lb � 4.448 N:

For instance,

1 ft D 12 in. � 2:54cm
in.
D 30.48 cm;

and it follows that

1 mi D 5280 ft � 30:48cm
ft
D 160934.4 cm � 1.609 km:

Thus a posted U.S. speed limit of 50 mi=h means that—in international terms—the
legal speed limit is about 50 � 1:609 � 80:45 km=h.

Vertical Motion with Gravitational Acceleration
The weight W of a body is the force exerted on the body by gravity. Substitution of
a D g and F D W in Newton’s second law F D ma gives

W D mg (14)



14 Chapter 1 First-Order Differential Equations

for the weightW of the massm at the surface of the earth (where g � 32 ft=s2 � 9:8
m=s2). For instance, a mass ofmD 20 kg has a weight ofW D (20 kg)(9.8 m=s2)D
196 N. Similarly, a mass m weighing 100 pounds has mks weight

W D (100 lb)(4.448 N=lb) D 444.8 N;

so its mass is

m D W

g
D 444.8 N

9.8 m=s2
� 45.4 kg:

To discuss vertical motion it is natural to choose the y-axis as the coordinate
system for position, frequently with y D 0 corresponding to “ground level.” If we
choose the upward direction as the positive direction, then the effect of gravity on a
vertically moving body is to decrease its height and also to decrease its velocity v D
dy=dt . Consequently, if we ignore air resistance, then the acceleration a D dv=dt of
the body is given by

dv

dt
D �g: (15)

This acceleration equation provides a starting point in many problems involving
vertical motion. Successive integrations (as in Eqs. (10) and (11)) yield the velocity
and height formulas

v.t/ D �gt C v0 (16)
and

y.t/ D �1
2
gt2 C v0t C y0: (17)

Here, y0 denotes the initial (t D 0) height of the body and v0 its initial velocity.

Example 3 (a) Suppose that a ball is thrown straight upward from the ground (y0 D 0) with initial
velocity v0 D 96 (ft=s, so we use g D 32 ft=s2 in fps units). Then it reaches its maximum
height when its velocity (Eq. (16)) is zero,

v.t/ D �32t C 96 D 0;
and thus when t D 3 s. Hence the maximum height that the ball attains is

y.3/ D �1
2 � 32 � 32 C 96 � 3C 0 D 144 (ft)

(with the aid of Eq. (17)).
(b) If an arrow is shot straight upward from the ground with initial velocity v0 D 49 (m=s,
so we use g D 9:8 m=s2 in mks units), then it returns to the ground when

y.t/ D �1
2 � .9:8/t2 C 49t D .4:9/t.�t C 10/ D 0;

and thus after 10 s in the air.

A Swimmer’s Problem
Figure 1.2.5 shows a northward-flowing river of width w D 2a. The lines x D ˙a
represent the banks of the river and the y-axis its center. Suppose that the velocity
vR at which the water flows increases as one approaches the center of the river, and
indeed is given in terms of distance x from the center by

vR D v0

�
1 � x

2

a2

�
: (18)

You can use Eq. (18) to verify that the water does flow the fastest at the center,
where vR D v0, and that vR D 0 at each riverbank.

x-axis

y-axis

(a, 0)(–a, 0)

υR

υS

υS

υR

α

FIGURE 1.2.5. A swimmer’s
problem (Example 4).
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Suppose that a swimmer starts at the point .�a; 0/ on the west bank and swims
due east (relative to the water) with constant speed vS . As indicated in Fig. 1.2.5, his
velocity vector (relative to the riverbed) has horizontal component vS and vertical
component vR. Hence the swimmer’s direction angle ˛ is given by

tan˛ D vR

vS

:

Because tan˛ D dy=dx, substitution using (18) gives the differential equation

dy

dx
D v0

vS

�
1 � x

2

a2

�
(19)

for the swimmer’s trajectory y D y.x/ as he crosses the river.

Example 4 Suppose that the river is 1 mile wide and that its midstream velocity is v0 D 9 mi=h. If the
swimmer’s velocity is vS D 3 mi=h, then Eq. (19) takes the form

dy

dx
D 3.1 � 4x2/:

Integration yields

y.x/ D
Z
.3 � 12x2/ dx D 3x � 4x3 C C

for the swimmer’s trajectory. The initial condition y
�
�1

2

�
D 0 yields C D 1, so

y.x/ D 3x � 4x3 C 1:

Then

y
�

1
2

�
D 3

�
1
2

�
� 4

�
1
2

�3
C 1 D 2;

so the swimmer drifts 2 miles downstream while he swims 1 mile across the river.

1.2 Problems
In Problems 1 through 10, find a function y D f .x/ satisfy-
ing the given differential equation and the prescribed initial
condition.

1.
dy

dx
D 2x C 1; y.0/ D 3

2.
dy

dx
D .x � 2/2; y.2/ D 1

3.
dy

dx
D px; y.4/ D 0

4.
dy

dx
D 1

x2
; y.1/ D 5

5.
dy

dx
D 1p

x C 2 ; y.2/ D �1

6.
dy

dx
D x
p
x2 C 9; y.�4/ D 0

7.
dy

dx
D 10

x2 C 1 ; y.0/ D 0 8.
dy

dx
D cos 2x; y.0/ D 1

9.
dy

dx
D 1p

1 � x2
; y.0/ D 0 10.

dy

dx
D xe�x ; y.0/ D 1

In Problems 11 through 18, find the position function x.t/ of a
moving particle with the given acceleration a.t/, initial posi-
tion x0 D x.0/, and initial velocity v0 D v.0/.
11. a.t/ D 50, v0 D 10, x0 D 20
12. a.t/ D �20, v0 D �15, x0 D 5
13. a.t/ D 3t , v0 D 5, x0 D 0
14. a.t/ D 2t C 1, v0 D �7, x0 D 4
15. a.t/ D 4.t C 3/2, v0 D �1, x0 D 1

16. a.t/ D 1p
t C 4 , v0 D �1, x0 D 1

17. a.t/ D 1

.t C 1/3 , v0 D 0, x0 D 0

18. a.t/ D 50 sin 5t , v0 D �10, x0 D 8

In Problems 19 through 22, a particle starts at the origin and
travels along the x-axis with the velocity function v.t/ whose
graph is shown in Figs. 1.2.6 through 1.2.9. Sketch the graph
of the resulting position function x.t/ for 0 5 t 5 10.
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19.
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FIGURE 1.2.6. Graph of the
velocity function v.t/ of Problem 19.
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FIGURE 1.2.7. Graph of the
velocity function v.t/ of Problem 20.
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FIGURE 1.2.8. Graph of the
velocity function v.t/ of Problem 21.
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FIGURE 1.2.9. Graph of the
velocity function v.t/ of Problem 22.

23. What is the maximum height attained by the arrow of part
(b) of Example 3?

24. A ball is dropped from the top of a building 400 ft high.
How long does it take to reach the ground? With what
speed does the ball strike the ground?

25. The brakes of a car are applied when it is moving at 100
km=h and provide a constant deceleration of 10meters per
second per second (m=s2). How far does the car travel be-
fore coming to a stop?

26. A projectile is fired straight upward with an initial veloc-
ity of 100 m=s from the top of a building 20 m high and
falls to the ground at the base of the building. Find (a) its
maximum height above the ground; (b) when it passes the
top of the building; (c) its total time in the air.

27. A ball is thrown straight downward from the top of a tall
building. The initial speed of the ball is 10 m=s. It strikes
the ground with a speed of 60 m=s. How tall is the build-
ing?

28. A baseball is thrown straight downward with an initial
speed of 40 ft=s from the top of the Washington Monu-
ment (555 ft high). How long does it take to reach the
ground, and with what speed does the baseball strike the
ground?

29. A diesel car gradually speeds up so that for the first 10 s
its acceleration is given by

dv

dt
D .0:12/t2 C .0:6/t (ft=s2).

If the car starts from rest (x0D 0, v0D 0), find the distance
it has traveled at the end of the first 10 s and its velocity at
that time.

30. A car traveling at 60 mi=h (88 ft=s) skids 176 ft after its
brakes are suddenly applied. Under the assumption that
the braking system provides constant deceleration, what
is that deceleration? For how long does the skid continue?

31. The skid marks made by an automobile indicated that its
brakes were fully applied for a distance of 75 m before
it came to a stop. The car in question is known to have
a constant deceleration of 20 m=s2 under these condi-
tions. How fast—in km=h—was the car traveling when
the brakes were first applied?

32. Suppose that a car skids 15 m if it is moving at 50 km=h
when the brakes are applied. Assuming that the car has
the same constant deceleration, how far will it skid if it is
moving at 100 km=h when the brakes are applied?

33. On the planet Gzyx, a ball dropped from a height of 20 ft
hits the ground in 2 s. If a ball is dropped from the top of
a 200-ft-tall building on Gzyx, how long will it take to hit
the ground? With what speed will it hit?

34. A person can throw a ball straight upward from the sur-
face of the earth to a maximum height of 144 ft. How
high could this person throw the ball on the planet Gzyx
of Problem 33?

35. A stone is dropped from rest at an initial height h above
the surface of the earth. Show that the speed with which it
strikes the ground is v D

p
2gh.
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36. Suppose a woman has enough “spring” in her legs to jump
(on earth) from the ground to a height of 2.25 feet. If
she jumps straight upward with the same initial velocity
on the moon—where the surface gravitational acceleration
is (approximately) 5.3 ft/s2—how high above the surface
will she rise?

37. At noon a car starts from rest at point A and proceeds at
constant acceleration along a straight road toward point
B . If the car reaches B at 12:50 P.M. with a velocity of
60 mi=h, what is the distance from A to B?

38. At noon a car starts from rest at point A and proceeds with
constant acceleration along a straight road toward point C ,
35 miles away. If the constantly accelerated car arrives at
C with a velocity of 60 mi=h, at what time does it arrive
at C ?

39. If aD 0:5mi and v0 D 9mi=h as in Example 4, what must
the swimmer’s speed vS be in order that he drifts only 1
mile downstream as he crosses the river?

40. Suppose that a D 0:5 mi, v0 D 9 mi=h, and vS D 3 mi=h
as in Example 4, but that the velocity of the river is given
by the fourth-degree function

vR D v0

 
1 � x

4

a4

!

rather than the quadratic function in Eq. (18). Now find
how far downstream the swimmer drifts as he crosses the
river.

41. A bomb is dropped from a helicopter hovering at an alti-
tude of 800 feet above the ground. From the ground di-
rectly beneath the helicopter, a projectile is fired straight
upward toward the bomb, exactly 2 seconds after the bomb
is released. With what initial velocity should the projectile
be fired in order to hit the bomb at an altitude of exactly
400 feet?

42. A spacecraft is in free fall toward the surface of the moon
at a speed of 1000 mph (mi/h). Its retrorockets, when
fired, provide a constant deceleration of 20,000 mi/h2. At
what height above the lunar surface should the astronauts
fire the retrorockets to insure a soft touchdown? (As in
Example 2, ignore the moon’s gravitational field.)

43. Arthur Clarke’s The Wind from the Sun (1963) describes
Diana, a spacecraft propelled by the solar wind. Its alu-
minized sail provides it with a constant acceleration of
0:001g D 0:0098m/s2. Suppose this spacecraft starts from
rest at time t D 0 and simultaneously fires a projectile
(straight ahead in the same direction) that travels at one-
tenth of the speed c D 3� 108 m/s of light. How long will
it take the spacecraft to catch up with the projectile, and
how far will it have traveled by then?

44. A driver involved in an accident claims he was going only
25 mph. When police tested his car, they found that when
its brakes were applied at 25 mph, the car skidded only
45 feet before coming to a stop. But the driver’s skid
marks at the accident scene measured 210 feet. Assum-
ing the same (constant) deceleration, determine the speed
he was actually traveling just prior to the accident.

1.3 Slope Fields and Solution Curves
Consider a differential equation of the form

dy

dx
D f .x; y/ (1)

where the right-hand function f .x; y/ involves both the independent variable x and
the dependent variable y. We might think of integrating both sides in (1) with re-
spect to x, and hence write y.x/ D R

f .x; y.x// dx C C . However, this approach
does not lead to a solution of the differential equation, because the indicated integral
involves the unknown function y.x/ itself, and therefore cannot be evaluated explic-
itly. Actually, there exists no straightforward procedure by which a general differen-
tial equation can be solved explicitly. Indeed, the solutions of such a simple-looking
differential equation as y0 D x2 C y2 cannot be expressed in terms of the ordinary
elementary functions studied in calculus textbooks. Nevertheless, the graphical and
numerical methods of this and later sections can be used to construct approximate
solutions of differential equations that suffice for many practical purposes.

Slope Fields and Graphical Solutions
There is a simple geometric way to think about solutions of a given differential
equation y0 D f .x; y/. At each point .x; y/ of the xy-plane, the value of f .x; y/
determines a slope m D f .x; y/. A solution of the differential equation is simply
a differentiable function whose graph y D y.x/ has this “correct slope” at each
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point .x; y.x// through which it passes—that is, y0.x/ D f .x; y.x//. Thus a so-
lution curve of the differential equation y0 D f .x; y/—the graph of a solution of
the equation—is simply a curve in the xy-plane whose tangent line at each point
.x; y/ has slope m D f .x; y/. For instance, Fig. 1.3.1 shows a solution curve of
the differential equation y0 D x � y together with its tangent lines at three typical
points.

x

y

(x1, y1)

(x2, y2)

(x3, y3)

FIGURE 1.3.1. A solution curve for the differential equation
y0 D x � y together with tangent lines having

� slope m1 D x1 � y1 at the point .x1; y1/;
� slope m2 D x2 � y2 at the point .x2; y2/; and
� slope m3 D x3 � y3 at the point .x3; y3/.

This geometric viewpoint suggests a graphical method for constructing ap-
proximate solutions of the differential equation y0 D f .x; y/. Through each of a
representative collection of points .x; y/ in the plane we draw a short line segment
having the proper slope m D f .x; y/. All these line segments constitute a slope
field (or a direction field) for the equation y0 D f .x; y/.

Example 1 Figures 1.3.2 (a)–(d) show slope fields and solution curves for the differential equation

dy

dx
D ky (2)

with the values k D 2, 0:5, �1, and �3 of the parameter k in Eq. (2). Note that each slope
field yields important qualitative information about the set of all solutions of the differential
equation. For instance, Figs. 1.3.2(a) and (b) suggest that each solution y.x/ approaches˙1
as x ! C1 if k > 0, whereas Figs. 1.3.2(c) and (d) suggest that y.x/ ! 0 as x ! C1
if k < 0. Moreover, although the sign of k determines the direction of increase or decrease
of y.x/, its absolute value jkj appears to determine the rate of change of y.x/. All this is
apparent from slope fields like those in Fig. 1.3.2, even without knowing that the general
solution of Eq. (2) is given explicitly by y.x/ D Cekx .

A slope field suggests visually the general shapes of solution curves of the
differential equation. Through each point a solution curve should proceed in such
a direction that its tangent line is nearly parallel to the nearby line segments of the
slope field. Starting at any initial point .a; b/, we can attempt to sketch freehand an
approximate solution curve that threads its way through the slope field, following
the visible line segments as closely as possible.

Example 2 Construct a slope field for the differential equation y0 D x � y and use it to sketch an approx-
imate solution curve that passes through the point .�4; 4/.

Solution Figure 1.3.3 shows a table of slopes for the given equation. The numerical slope m D x � y
appears at the intersection of the horizontal x-row and the vertical y-column of the table. If
you inspect the pattern of upper-left to lower-right diagonals in this table, you can see that it
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FIGURE 1.3.2(a) Slope field and
solution curves for y0 D 2y.
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FIGURE 1.3.2(b) Slope field and
solution curves for y0 D .0:5/y.
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FIGURE 1.3.2(c) Slope field and
solution curves for y0 D �y.
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FIGURE 1.3.2(d) Slope field
and solution curves for y0 D �3y.

x ny �4 �3 �2 �1 0 1 2 3 4

�4 0 �1 �2 �3 �4 �5 �6 �7 �8
�3 1 0 �1 �2 �3 �4 �5 �6 �7
�2 2 1 0 �1 �2 �3 �4 �5 �6
�1 3 2 1 0 �1 �2 �3 �4 �5
0 4 3 2 1 0 �1 �2 �3 �4
1 5 4 3 2 1 0 �1 �2 �3
2 6 5 4 3 2 1 0 �1 �2
3 7 6 5 4 3 2 1 0 �1
4 8 7 6 5 4 3 2 1 0

FIGURE 1.3.3. Values of the slope y0 D x � y for �4 � x; y � 4.

was easily and quickly constructed. (Of course, a more complicated function f .x; y/ on the
right-hand side of the differential equation would necessitate more complicated calculations.)
Figure 1.3.4 shows the corresponding slope field, and Fig. 1.3.5 shows an approximate so-
lution curve sketched through the point .�4; 4/ so as to follow this slope field as closely as
possible. At each point it appears to proceed in the direction indicated by the nearby line
segments of the slope field.

Although a spreadsheet program (for instance) readily constructs a table of
slopes as in Fig. 1.3.3, it can be quite tedious to plot by hand a sufficient number
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FIGURE 1.3.4. Slope field for y0 D x � y
corresponding to the table of slopes in Fig. 1.3.3.
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FIGURE 1.3.5. The solution curve
through .�4; 4/.
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of slope segments as in Fig. 1.3.4. However, most computer algebra systems in-
clude commands for quick and ready construction of slope fields with as many line
segments as desired; such commands are illustrated in the application material for
this section. The more line segments are constructed, the more accurately solution
curves can be visualized and sketched. Figure 1.3.6 shows a “finer” slope field for
the differential equation y0 D x � y of Example 2, together with typical solution
curves treading through this slope field.

If you look closely at Fig. 1.3.6, you may spot a solution curve that appears
to be a straight line! Indeed, you can verify that the linear function y D x � 1 is
a solution of the equation y0 D x � y, and it appears likely that the other solution
curves approach this straight line as an asymptote as x ! C1. This inference
illustrates the fact that a slope field can suggest tangible information about solutions
that is not at all evident from the differential equation itself. Can you, by tracing the
appropriate solution curve in this figure, infer that y.3/ � 2 for the solution y.x/ of
the initial value problem y0 D x � y, y.�4/ D 4?
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FIGURE 1.3.6. Slope field and
typical solution curves for y0 D x � y.

Applications of Slope Fields
The next two examples illustrate the use of slope fields to glean useful information
in physical situations that are modeled by differential equations. Example 3 is based
on the fact that a baseball moving through the air at a moderate speed v (less than
about 300 ft/s) encounters air resistance that is approximately proportional to v. If
the baseball is thrown straight downward from the top of a tall building or from a
hovering helicopter, then it experiences both the downward acceleration of gravity
and an upward acceleration of air resistance. If the y-axis is directed downward,
then the ball’s velocity v D dy=dt and its gravitational acceleration g D 32 ft/s2 are
both positive, while its acceleration due to air resistance is negative. Hence its total
acceleration is of the form

dv

dt
D g � kv: (3)

A typical value of the air resistance proportionality constant might be k D 0:16.
Example 3 Suppose you throw a baseball straight downward from a helicopter hovering at an altitude of

3000 feet. You wonder whether someone standing on the ground below could conceivably
catch it. In order to estimate the speed with which the ball will land, you can use your laptop’s
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FIGURE 1.3.7. Slope field and
typical solution curves for
v0 D 32 � 0:16v.

computer algebra system to construct a slope field for the differential equation

dv

dt
D 32 � 0:16v: (4)

The result is shown in Fig. 1.3.7, together with a number of solution curves correspond-
ing to different values of the initial velocity v.0/ with which you might throw the baseball
downward. Note that all these solution curves appear to approach the horizontal line v D 200
as an asymptote. This implies that—however you throw it—the baseball should approach the
limiting velocity v D 200 ft/s instead of accelerating indefinitely (as it would in the absence
of any air resistance). The handy fact that 60 mi/h D 88 ft/s yields

v D 200 ft
s
� 60 mi/h

88 ft/s
� 136.36

mi
h
:

Perhaps a catcher accustomed to 100 mi/h fastballs would have some chance of fielding this
speeding ball.

Comment If the ball’s initial velocity is v.0/ D 200, then Eq. (4) gives v0.0/ D 32 �
.0:16/.200/ D 0, so the ball experiences no initial acceleration. Its velocity therefore remains
unchanged, and hence v.t/ � 200 is a constant “equilibrium solution” of the differential
equation. If the initial velocity is greater than 200, then the initial acceleration given by
Eq. (4) is negative, so the ball slows down as it falls. But if the initial velocity is less than
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200, then the initial acceleration given by (4) is positive, so the ball speeds up as it falls. It
therefore seems quite reasonable that, because of air resistance, the baseball will approach a
limiting velocity of 200 ft/s—whatever initial velocity it starts with. You might like to verify
that—in the absence of air resistance—this ball would hit the ground at over 300 mi/h.

In Section 2.1 we will discuss in detail the logistic differential equation

dP
dt
D kP.M � P / (5)

that often is used to model a population P.t/ that inhabits an environment with
carrying capacity M . This means that M is the maximum population that this
environment can sustain on a long-term basis (in terms of the maximum available
food, for instance).

Example 4 If we take k D 0:0004 and M D 150, then the logistic equation in (5) takes the form

dP
dt
D 0:0004P.150 � P / D 0:06P � 0:0004P 2: (6)

The positive term 0:06P on the right in (6) corresponds to natural growth at a 6% annual rate
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FIGURE 1.3.8. Slope field and
typical solution curves for
P 0 D 0:06P � 0:0004P 2.

(with time t measured in years). The negative term �0:0004P 2 represents the inhibition of
growth due to limited resources in the environment.

Figure 1.3.8 shows a slope field for Eq. (6), together with a number of solution curves
corresponding to possible different values of the initial population P.0/. Note that all these
solution curves appear to approach the horizontal line P D 150 as an asymptote. This implies
that—whatever the initial population—the population P.t/ approaches the limiting popula-
tion P D 150 as t !1.

Comment If the initial population is P.0/ D 150, then Eq. (6) gives

P 0.0/ D 0:0004.150/.150 � 150/ D 0;

so the population experiences no initial (instantaneous) change. It therefore remains un-
changed, and hence P.t/ � 150 is a constant “equilibrium solution” of the differential equa-
tion. If the initial population is greater than 150, then the initial rate of change given by (6)
is negative, so the population immediately begins to decrease. But if the initial population is
less than 150, then the initial rate of change given by (6) is positive, so the population imme-
diately begins to increase. It therefore seems quite reasonable to conclude that the population
will approach a limiting value of 150—whatever the (positive) initial population.

Existence and Uniqueness of Solutions
Before one spends much time attempting to solve a given differential equation, it
is wise to know that solutions actually exist. We may also want to know whether
there is only one solution of the equation satisfying a given initial condition—that
is, whether its solutions are unique.

Example 5 (a) [Failure of existence] The initial value problem

y0 D 1

x
; y.0/ D 0 (7)

has no solution, because no solution y.x/D R .1=x/ dxD ln jxjCC of the differential equation
is defined at x D 0. We see this graphically in Fig. 1.3.9, which shows a direction field and
some typical solution curves for the equation y0 D 1=x. It is apparent that the indicated
direction field “forces” all solution curves near the y-axis to plunge downward so that none
can pass through the point .0; 0/.



22 Chapter 1 First-Order Differential Equations
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FIGURE 1.3.9. Direction field and typical
solution curves for the equation y0 D 1=x.
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y1(x) = x2

FIGURE 1.3.10. Direction field and two
different solution curves for the initial value
problem y0 D 2

p
y, y.0/ D 0.

(b) [Failure of uniqueness] On the other hand, you can readily verify that the initial value
problem

y0 D 2py; y.0/ D 0 (8)

has the two different solutions y1.x/ D x2 and y2.x/ � 0 (see Problem 27). Figure 1.3.10
shows a direction field and these two different solution curves for the initial value problem in
(8). We see that the curve y1.x/ D x2 threads its way through the indicated direction field,
whereas the differential equation y0 D 2py specifies slope y0 D 0 along the x-axis y2.x/D 0.

Example 5 illustrates the fact that, before we can speak of “the” solution of
an initial value problem, we need to know that it has one and only one solution.
Questions of existence and uniqueness of solutions also bear on the process of
mathematical modeling. Suppose that we are studying a physical system whose be-
havior is completely determined by certain initial conditions, but that our proposed
mathematical model involves a differential equation not having a unique solution
satisfying those conditions. This raises an immediate question as to whether the
mathematical model adequately represents the physical system.

The theorem stated below implies that the initial value problem y0 D f .x; y/,
y.a/ D b has one and only one solution defined near the point x D a on the x-axis,
provided that both the function f and its partial derivative @f=@y are continuous
near the point .a; b/ in the xy-plane. Methods of proving existence and uniqueness
theorems are discussed in the Appendix.y

b

R

x a
I

y = y(x)

(a, b)

FIGURE 1.3.11. The rectangle R
and x-interval I of Theorem 1, and the
solution curve y D y.x/ through the
point .a; b/.

THEOREM 1 Existence and Uniqueness of Solutions

Suppose that both the function f .x; y/ and its partial derivative Dyf .x; y/ are
continuous on some rectangle R in the xy-plane that contains the point .a; b/
in its interior. Then, for some open interval I containing the point a, the initial
value problem

dy

dx
D f .x; y/; y.a/ D b (9)

has one and only one solution that is defined on the interval I . (As illustrated in
Fig. 1.3.11, the solution interval I may not be as “wide” as the original rectangle
R of continuity; see Remark 3 below.)

Remark 1 In the case of the differential equation dy=dx D �y of Example 1 and
Fig. 1.3.2(c), both the function f .x; y/ D �y and the partial derivative @f=@y D �1 are con-
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tinuous everywhere, so Theorem 1 implies the existence of a unique solution for any initial
data .a; b/. Although the theorem ensures existence only on some open interval containing
x D a, each solution y.x/ D Ce�x actually is defined for all x.

Remark 2 In the case of the differential equation dy=dx D 2
p
y of Example 5(b) and

Eq. (8), the function f .x; y/ D 2py is continuous wherever y > 0, but the partial derivative
@f=@y D 1=

p
y is discontinuous when y D 0, and hence at the point .0; 0/. This is why it is

possible for there to exist two different solutions y1.x/ D x2 and y2.x/ � 0, each of which
satisfies the initial condition y.0/ D 0.
Remark 3 In Example 7 of Section 1.1 we examined the especially simple differential
equation dy=dx D y2. Here we have f .x; y/ D y2 and @f=@y D 2y. Both of these functions
are continuous everywhere in the xy-plane, and in particular on the rectangle �2 < x < 2,
0 < y < 2. Because the point .0; 1/ lies in the interior of this rectangle, Theorem 1 guarantees
a unique solution—necessarily a continuous function—of the initial value problem

dy

dx
D y2; y.0/ D 1 (10)

on some open x-interval containing a D 0. Indeed this is the solution

y.x/ D 1

1 � x
that we discussed in Example 7. But y.x/D 1=.1�x/ is discontinuous at x D 1, so our unique
continuous solution does not exist on the entire interval �2 < x < 2. Thus the solution interval
I of Theorem 1 may not be as wide as the rectangle R where f and @f=@y are continuous.
Geometrically, the reason is that the solution curve provided by the theorem may leave the
rectangle—wherein solutions of the differential equation are guaranteed to exist—before it
reaches the one or both ends of the interval (see Fig. 1.3.12).

0 2 4

0

2

4

6

(0, 1)
R

x

y

–2
–2–4

y = 1/(1 – x)

FIGURE 1.3.12. The solution curve
through the initial point .0; 1/ leaves
the rectangle R before it reaches the
right side of R.

The following example shows that, if the function f .x; y/ and/or its partial
derivative @f=@y fail to satisfy the continuity hypothesis of Theorem 1, then the
initial value problem in (9) may have either no solution or many—even infinitely
many—solutions.

Example 6 Consider the first-order differential equation

x
dy

dx
D 2y: (11)

Applying Theorem 1 with f .x; y/ D 2y=x and @f=@y D 2=x, we conclude that Eq. (11)

0 1 2

0
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4

x

y

(0, b) (0, 0)

−2

−4
−2 −1

FIGURE 1.3.13. There are infinitely
many solution curves through the point
.0; 0/, but no solution curves through
the point .0; b/ if b 6D 0.

must have a unique solution near any point in the xy-plane where x 6D 0. Indeed, we see
immediately by substitution in (11) that

y.x/ D Cx2 (12)

satisfies Eq. (11) for any value of the constant C and for all values of the variable x. In
particular, the initial value problem

x
dy

dx
D 2y; y.0/ D 0 (13)

has infinitely many different solutions, whose solution curves are the parabolas y D Cx2

illustrated in Fig. 1.3.13. (In case C D 0 the “parabola” is actually the x-axis y D 0.)
Observe that all these parabolas pass through the origin .0; 0/, but none of them passes

through any other point on the y-axis. It follows that the initial value problem in (13) has
infinitely many solutions, but the initial value problem

x
dy

dx
D 2y; y.0/ D b (14)

has no solution if b 6D 0.
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Finally, note that through any point off the y-axis there passes only one of the parabolas
y D Cx2. Hence, if a 6D 0, then the initial value problem

x
dy

dx
D 2y; y.a/ D b (15)

has a unique solution on any interval that contains the point x D a but not the origin x D 0.
In summary, the initial value problem in (15) has

� a unique solution near .a; b/ if a 6D 0;
� no solution if a D 0 but b 6D 0;
� infinitely many solutions if a D b D 0.

Still more can be said about the initial value problem in (15). Consider a
typical initial point off the y-axis—for instance the point .�1; 1/ indicated in Fig.
1.3.14. Then for any value of the constant C the function defined by

y.x/ D
(
x2 if x � 0,
Cx2 if x > 0

(16)

is continuous and satisfies the initial value problem

x
dy

dx
D 2y; y.�1/ D 1: (17)

For a particular value of C , the solution curve defined by (16) consists of the left
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(−1, 1)

(0, 0)

FIGURE 1.3.14. There are infinitely
many solution curves through the point
.1; �1/.

half of the parabola y D x2 and the right half of the parabola y D Cx2. Thus the
unique solution curve near .�1; 1/ branches at the origin into the infinitely many
solution curves illustrated in Fig. 1.3.14.

We therefore see that Theorem 1 (if its hypotheses are satisfied) guarantees
uniqueness of the solution near the initial point .a; b/, but a solution curve through
.a; b/ may eventually branch elsewhere so that uniqueness is lost. Thus a solution
may exist on a larger interval than one on which the solution is unique. For instance,
the solution y.x/D x2 of the initial value problem in (17) exists on the whole x-axis,
but this solution is unique only on the negative x-axis �1 < x < 0.

1.3 Problems
In Problems 1 through 10, we have provided the slope field of
the indicated differential equation, together with one or more
solution curves. Sketch likely solution curves through the ad-
ditional points marked in each slope field.

1.
dy

dx
D �y � sin x

0 2 31
x

0y

−1

−2 −1

−2

−3
−3

1

2

3

FIGURE 1.3.15.

2.
dy

dx
D x C y
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3

FIGURE 1.3.16.
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3.
dy

dx
D y � sin x
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FIGURE 1.3.17.

4.
dy

dx
D x � y
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FIGURE 1.3.18.

5.
dy

dx
D y � x C 1
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FIGURE 1.3.19.

6.
dy

dx
D x � y C 1
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FIGURE 1.3.20.
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dx
D sin x C sin y
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FIGURE 1.3.21.

8.
dy

dx
D x2 � y
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FIGURE 1.3.22.
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9.
dy

dx
D x2 � y � 2
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FIGURE 1.3.23.

10.
dy

dx
D �x2 C sin y
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FIGURE 1.3.24.

A more detailed version of Theorem 1 says that, if the function
f .x; y/ is continuous near the point .a; b/, then at least one so-
lution of the differential equation y0 D f .x; y/ exists on some
open interval I containing the point x D a and, moreover, that
if in addition the partial derivative @f=@y is continuous near
.a; b/, then this solution is unique on some (perhaps smaller)
interval J . In Problems 11 through 20, determine whether ex-
istence of at least one solution of the given initial value prob-
lem is thereby guaranteed and, if so, whether uniqueness of
that solution is guaranteed.

11.
dy

dx
D 2x2y2; y.1/ D �1

12.
dy

dx
D x ln y; y.1/ D 1

13.
dy

dx
D 3
p
y; y.0/ D 1

14.
dy

dx
D 3
p
y; y.0/ D 0

15.
dy

dx
D px � y; y.2/ D 2

16.
dy

dx
D px � y; y.2/ D 1

17. y
dy

dx
D x � 1; y.0/ D 1

18. y
dy

dx
D x � 1; y.1/ D 0

19.
dy

dx
D ln.1C y2/; y.0/ D 0

20.
dy

dx
D x2 � y2; y.0/ D 1

In Problems 21 and 22, first use the method of Example 2
to construct a slope field for the given differential equation.
Then sketch the solution curve corresponding to the given ini-
tial condition. Finally, use this solution curve to estimate the
desired value of the solution y.x/.

21. y0 D x C y, y.0/ D 0; y.�4/ D ?
22. y0 D y � x, y.4/ D 0; y.�4/ D ?

Problems 23 and 24 are like Problems 21 and 22, but now
use a computer algebra system to plot and print out a slope
field for the given differential equation. If you wish (and know
how), you can check your manually sketched solution curve by
plotting it with the computer.

23. y0 D x2 C y2 � 1, y.0/ D 0; y.2/ D ?

24. y0 D x C 1

2
y2, y.�2/ D 0; y.2/ D ?

25. You bail out of the helicopter of Example 3 and pull the
ripcord of your parachute. Now k D 1:6 in Eq. (3), so
your downward velocity satisfies the initial value problem

dv

dt
D 32 � 1:6v; v.0/ D 0:

In order to investigate your chances of survival, construct
a slope field for this differential equation and sketch the
appropriate solution curve. What will your limiting veloc-
ity be? Will a strategically located haystack do any good?
How long will it take you to reach 95% of your limiting
velocity?

26. Suppose the deer population P.t/ in a small forest satisfies
the logistic equation

dP
dt
D 0:0225P � 0:0003P 2:

Construct a slope field and appropriate solution curve to
answer the following questions: If there are 25 deer at
time t D 0 and t is measured in months, how long will
it take the number of deer to double? What will be the
limiting deer population?

The next seven problems illustrate the fact that, if the hypothe-
ses of Theorem 1 are not satisfied, then the initial value prob-
lem y0 D f .x; y/, y.a/ D b may have either no solutions,
finitely many solutions, or infinitely many solutions.

27. (a) Verify that if c is a constant, then the function defined
piecewise by

y.x/ D
(
0 for x 5 c,

.x � c/2 for x > c



1.3 Slope Fields and Solution Curves 27

satisfies the differential equation y0 D 2
p
y for all x (in-

cluding the point x D c). Construct a figure illustrating the
fact that the initial value problem y0 D 2py, y.0/ D 0 has
infinitely many different solutions. (b) For what values of
b does the initial value problem y0 D 2py, y.0/ D b have
(i) no solution, (ii) a unique solution that is defined for all
x?

28. Verify that if k is a constant, then the function y.x/ � kx
satisfies the differential equation xy0 D y for all x. Con-
struct a slope field and several of these straight line so-
lution curves. Then determine (in terms of a and b) how
many different solutions the initial value problem xy0D y,
y.a/ D b has—one, none, or infinitely many.

29. Verify that if c is a constant, then the function defined
piecewise by

y.x/ D
(
0 for x 5 c,

.x � c/3 for x > c

satisfies the differential equation y0 D 3y2=3 for all x. Can
you also use the “left half” of the cubic y D .x � c/3 in
piecing together a solution curve of the differential equa-
tion? (See Fig. 1.3.25.) Sketch a variety of such solution
curves. Is there a point .a; b/ of the xy-plane such that
the initial value problem y0 D 3y2=3, y.a/ D b has either
no solution or a unique solution that is defined for all x?
Reconcile your answer with Theorem 1.

x

y

c

y = (x – c)3

y = x3

FIGURE 1.3.25. A suggestion for Problem 29.

30. Verify that if c is a constant, then the function defined
piecewise by

y.x/ D

8̂<̂
:
C1 if x 5 c,

cos.x � c/ if c < x < c C � ,

�1 if x = c C �

satisfies the differential equation y0 D�
p
1 � y2 for all x.

(Perhaps a preliminary sketch with c D 0 will be helpful.)
Sketch a variety of such solution curves. Then determine
(in terms of a and b) how many different solutions the ini-
tial value problem y0 D �

p
1 � y2, y.a/ D b has.

31. Carry out an investigation similar to that in Problem 30,
except with the differential equation y0 D C

p
1 � y2.

Does it suffice simply to replace cos.x� c/with sin.x� c/
in piecing together a solution that is defined for all x?

32. Verify that if c > 0, then the function defined piecewise by

y.x/ D
(
0 if x2 5 c,

.x2 � c/2 if x2 > c

satisfies the differential equation y0 D 4x
p
y for all x.

Sketch a variety of such solution curves for different val-
ues of c. Then determine (in terms of a and b) how many
different solutions the initial value problem y0 D 4x

p
y,

y.a/ D b has.

33. If c 6D 0, verify that the function defined by y.x/ D
x=.cx � 1/ (with the graph illustrated in Fig. 1.3.26) sat-
isfies the differential equation x2y0 C y2 D 0 if x 6D 1=c.
Sketch a variety of such solution curves for different val-
ues of c. Also, note the constant-valued function y.x/� 0
that does not result from any choice of the constant c.
Finally, determine (in terms of a and b) how many dif-
ferent solutions the initial value problem x2y0 C y2 D 0,
y.a/ D b has.

x

y
(1/c, 1/c)

FIGURE 1.3.26. Slope field for x2y0 C y2 D 0 and
graph of a solution y.x/ D x=.cx � 1/.

34. (a) Use the direction field of Problem 5 to estimate the
values at x D 1 of the two solutions of the differ-
ential equation y0 D y � x C 1 with initial values
y.�1/ D �1:2 and y.�1/ D �0:8.

(b) Use a computer algebra system to estimate the val-
ues at x D 3 of the two solutions of this differen-
tial equation with initial values y.�3/ D �3:01 and
y.�3/ D �2:99.

The lesson of this problem is that small changes in initial
conditions can make big differences in results.

35. (a) Use the direction field of Problem 6 to estimate the
values at x D 2 of the two solutions of the differ-
ential equation y0 D x � y C 1 with initial values
y.�3/ D �0:2 and y.�3/ D C0:2.

(b) Use a computer algebra system to estimate the val-
ues at x D 2 of the two solutions of this differen-
tial equation with initial values y.�3/ D �0:5 and
y.�3/ D C0:5.

The lesson of this problem is that big changes in initial
conditions may make only small differences in results.
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1.3 Application Computer-Generated Slope Fields and Solution Curves
Widely available computer algebra systems and technical computing environments

FIGURE 1.3.27. TI-84 PlusTM

graphing calculator and TI-NspireTM

CX CAS handheld. Screenshot from
Texas Instruments Incorporated.
Courtesy of Texas Instruments
Incorporated.

include facilities to automate the construction of slope fields and solution curves, as
do some graphing calculators (see Figs. 1.3.27–29).

The applications manual accompanying this textbook includes discussion of
MapleTM, MathematicaTM, and MATLABTM resources for the investigation of dif-
ferential equations. For instance, the Maple command

with(DEtools):
DEplot(diff(y(x),x)=sin(x--y(x)), y(x), x=--5..5, y=--5..5);

and the Mathematica command

VectorPlot[{1, Sin[x--y]}, {x, --5, 5}, {y, --5, 5}]

produce slope fields similar to the one shown in Fig. 1.3.29. Figure 1.3.29 it-
self was generated with the MATLAB program dfield [John Polking and David
Arnold, Ordinary Differential Equations Using MATLAB, 3rd edition, Upper Sad-
dle River, NJ: Prentice Hall, 2003] that is freely available for educational use
(math.rice.edu/�dfield). This web site also provides a stand-alone Java ver-
sion of dfield that can be used in a web browser. When a differential equation is
entered in the dfield setup menu (Fig. 1.3.30), you can (with mouse button clicks)
plot both a slope field and the solution curve (or curves) through any desired point
(or points). Another freely available and user-friendly MATLAB-based ODE pack-
age with impressive graphical capabilities is Iode (www.math.uiuc.edu/iode).

FIGURE 1.3.28. Slope field and solution curves for the differential
equation

dy

dx
D sin.x � y/

with initial points .0; b/, b D �2:5, �1, 1, 3.5 and window �5 � x; y � 5
on a TI-NspireTM CX CAS handheld.

Modern technology platforms offer even further interactivity by allowing the
user to vary initial conditions and other parameters “in real time.” Mathematica’s
Manipulate command was used to generate Fig. 1.3.31, which shows three par-
ticular solutions of the differential equation dy=dx D sin.x � y/. The solid curve
corresponds to the initial condition y.1/ D 0. As the “locator point” initially at
.1; 0/ is dragged—by mouse or touchpad—to the point .0; 3/ or .2;�2/, the solution
curve immediately follows, resulting in the dashed curves shown. The TI-NspireTM

CX CAS has similar capability; indeed, as Fig. 1.3.28 appears on the Nspire dis-
play, each of the initial points .0; b/ can be dragged to different locations using the

–4
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x
0 5

0y

–5 1–4 2–3 3–2 4–1

y = x –
p
2

FIGURE 1.3.29. Computer-
generated slope field and solution
curves for the differential equation
y0 D sin.x � y/.

Nspire’s touchpad, with the corresponding solution curves being instantly redrawn.

http://www.math.uiuc.edu/iode


1.3 Slope Fields and Solution Curves 29

FIGURE 1.3.30. MATLAB dfield setup to construct slope field and solution curves for
y0 D sin.x � y/.

Use a graphing calculator or computer system in the following investigations.
You might warm up by generating the slope fields and some solution curves for
Problems 1 through 10 in this section.

INVESTIGATION A: Plot a slope field and typical solution curves for the differen-
tial equation dy=dx D sin.x � y/, but with a larger window than that of Fig. 1.3.29.
With �10 5 x 5 10, �10 5 y 5 10, for instance, a number of apparent straight line
solution curves should be visible, especially if your display allows you to drag the

–4 –2 0 2 4

–4

–2

0

2

4

FIGURE 1.3.31. Interactive
Mathematica solution of the
differential equation y0 D sin.x � y/.
The “locator point” corresponding to
the initial condition y.1/ D 0 can be
dragged to any other point in the
display, causing the solution curve to
be automatically redrawn.

initial point interactively from upper left to lower right.

(a) Substitute y D ax C b in the differential equation to determine what the coeffi-
cients a and b must be in order to get a solution. Are the results consistent with
what you see on the display?

(b) A computer algebra system gives the general solution

y.x/ D x � 2 tan�1

�
x � 2 � C
x � C

�
:

Plot this solution with selected values of the constant C to compare the resulting
solution curves with those indicated in Fig. 1.3.28. Can you see that no value of
C yields the linear solution y D x � �=2 corresponding to the initial condition
y.�=2/ D 0? Are there any values of C for which the corresponding solution
curves lie close to this straight line solution curve?

INVESTIGATION B: For your own personal investigation, let n be the smallest
digit in your student ID number that is greater than 1, and consider the differential
equation

dy

dx
D 1

n
cos.x � ny/:

(a) First investigate (as in part (a) of Investigation A) the possibility of straight line
solutions.

(b) Then generate a slope field for this differential equation, with the viewing win-
dow chosen so that you can picture some of these straight lines, plus a sufficient
number of nonlinear solution curves that you can formulate a conjecture about
what happens to y.x/ as x ! C1. State your inference as plainly as you can.
Given the initial value y.0/ D y0, try to predict (perhaps in terms of y0) how
y.x/ behaves as x !C1.
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(c) A computer algebra system gives the general solution

y.x/ D 1

n

�
x C 2 tan�1

�
1

x � C

��
:

Can you make a connection between this symbolic solution and your graphi-
cally generated solution curves (straight lines or otherwise)?

1.4 Separable Equations and Applications
In the preceding sections we saw that if the function f .x; y/ does not involve the
variable y, then solving the first-order differential equation

dy

dx
D f .x; y/ (1)

is a matter of simply finding an antiderivative. For example, the general solution of

dy

dx
D �6x (2)

is given by

y.x/ D
Z
�6x dx D �3x2 C C:

If instead f .x; y/ does involve the dependent variable y, then we can no longer
solve the equation merely by integrating both sides: The differential equation

dy

dx
D �6xy (3a)

differs from Eq. (2) only in the factor y appearing on the right-hand side, but this
is enough to prevent us from using the same approach to solve Eq. (3a) that was
successful with Eq. (2).

And yet, as we will see throughout the remainder of this chapter, differential
equations like (3a) often can, in fact, be solved by methods which are based on the
idea of “integrating both sides.” The idea behind these techniques is to rewrite the
given equation in a form that, while equivalent to the given equation, allows both
sides to be integrated directly, thus leading to the solution of the original differential
equation.

The most basic of these methods, separation of variables, can be applied to
Eq. (3a). First, we note that the right-hand function f .x; y/ D �6xy can be viewed
as the product of two expressions, one involving only the independent variable x,
and the other involving only the dependent variable y:

dy

dx
D .�6x/ � y: (3b)

Next, we informally break up the derivative dy=dx into the “free-floating” differen-
tials dx and dy—a notational convenience that leads to correct results, as we will
see below—and then multiply by dx and divide by y in Eq. (3b), leading to

dy

y
D �6x dx: (3c)
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Equation (3c) is an equivalent version of the original differential equation in (3a),
but with the variables x and y separated (that is, by the equal sign), and this is what
allows us to integrate both sides. The left-hand side is integrated with respect to y
(with no “interference” from the variable x), and vice versa for the right-hand side.
This leads to Z

dy

y
D
Z
�6x dx;

or
ln jyj D �3x2 C C: (4)

This gives the general solution of Eq. (3a) implicitly, and a family of solution curves
is shown in Fig. 1.4.1.

In this particular case we can go on to solve for y to give the explicit general
solution

y.x/ D ˙e�3x2CC D ˙e�3x2

eC D Ae�3x2

; (5)

where A represents the constant ˙eC , which can take on any nonzero value. If we
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FIGURE 1.4.1. Slope field and
solution curves for y0 D �6xy.

impose an initial condition on Eq. (3a), say y.0/ D 7, then in Eq. (5) we find that
A D 7, yielding the particular solution

y.x/ D 7e�3x2

;

which is the upper emphasized solution curve shown in Fig. 1.4.1. In the same way,
the initial condition y.0/ D �4 leads to the particular solution

y.x/ D �4e�3x2

;

which is the lower emphasized solution curve shown in Fig. 1.4.1.
To complete this example, we note that whereas the constant A in Eq. (5) is

nonzero, taking A D 0 in (5) leads to y.x/ � 0, and this is, in fact, a solution of the
given differential equation (3a). Thus Eq. (5) actually provides a solution of (3a)
for all values of the constant A, including AD 0. Why did the method of separation
of variables fail to capture all solutions of Eq. (3a)? The reason is that in the step
in which we actually separated the variables, that is, in passing from Eq. (3b) to
(3c), we divided by y, thus (tacitly) assuming that y 6D 0. As a result, our general
solution (5), with its restriction thatA 6D 0, “missed” the particular solution y.x/� 0
corresponding to A D 0. Such solutions are known as singular solutions, and we
say more about them—together with implicit and general solutions—below.

In general, the first-order differential equation (1) is called separable provided
that f .x; y/ can be written as the product of a function of x and a function of y:

dy

dx
D f .x; y/ D g.x/k.y/ D g.x/

h.y/
;

where h.y/D 1=k.y/. In this case the variables x and y can be separated—isolated
on opposite sides of an equation—by writing informally the equation

h.y/ dy D g.x/ dx;

which we understand to be concise notation for the differential equation

h.y/
dy

dx
D g.x/: (6)
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(In the preceding example, h.y/D 1

y
and g.x/D�6x.) As illustrated above, we can

solve this type of differential equation simply by integrating both sides with respect
to x: Z

h.y.x//
dy

dx
dx D

Z
g.x/ dx C C I

equivalently, Z
h.y/ dy D

Z
g.x/ dx C C: (7)

All that is required is that the antiderivatives

H.y/ D
Z
h.y/ dy and G.x/ D

Z
g.x/ dx

can be found. To see that Eqs. (6) and (7) are equivalent, note the following conse-
quence of the chain rule:

DxŒH.y.x//� D H 0.y.x//y0.x/ D h.y/ dy
dx
D g.x/ D Dx ŒG.x/�;

which in turn is equivalent to

H.y.x// D G.x/C C; (8)

because two functions have the same derivative on an interval if and only if they
differ by a constant on that interval.

Example 1 Solve the differential equation
dy

dx
D 4 � 2x
3y2 � 5 : (9)

Solution Because
4 � 2x
3y2 � 5 D .4 � 2x/ �

1

3y2 � 5 D g.x/k.y/

is the product of a function that depends only on x, and one that depends only on y, Eq. (9)
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FIGURE 1.4.2. Slope field and
solution curves for
y0 D .4 � 2x/=.3y2 � 5/ in
Example 1.

is separable, and thus we can proceed in much the same way as in Eq. (3a). Before doing
so, however, we note an important feature of Eq. (9) not shared by Eq. (3a): The function

k.y/D 1

3y2 � 5 is not defined for all values of y. Indeed, setting 3y2 � 5 equal to zero shows

that k.y/, and thus
dy

dx
itself, becomes infinite as y approaches either of ˙

q
5
3 . Because

an infinite slope corresponds to a vertical line segment, we would therefore expect the line
segments in the slope field for this differential equation to be “standing straight up” along

the two horizontal lines y D ˙
q

5
3 � ˙1:29; as Fig. 1.4.2 shows (where these two lines are

dashed), this is indeed what we find.
What this means for the differential equation (9) is that no solution curve of this equa-

tion can cross either of the horizontal lines y D ˙
q

5
3 , simply because along these lines

dy

dx
is undefined. Effectively, then, these lines divide the plane into three regions—defined by the

conditions y >
q

5
3 , �

q
5
3 < y <

q
5
3 , and y < �

q
5
3 —with all solution curves of Eq. (9)

remaining confined to one of these regions.
With this in mind, the general solution of the differential equation in Eq. (9) is easy to

find, at least in implicit form. Separating variables and integrating both sides leads toZ
3y2 � 5 dy D

Z
4 � 2x dx;
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and thus
y3 � 5y D 4x � x2 C C: (10)

Note that unlike Eq. (4), the general solution in Eq. (10) cannot readily be solved for y; thus
we cannot directly plot the solution curves of Eq. (9) in the form y D y.x/, as we would
like. However, what we can do is rearrange Eq. (10) so that the constant C is isolated on the
right-hand side:

y3 � 5y � .4x � x2/ D C: (11)

This shows that the solution curves of the differential equation in Eq. (9) are contained in the
level curves (also known as contours) of the function

F.x; y/ D y3 � 5y � .4x � x2/: (12)

Because no particular solution curve of Eq. (9) can cross either of the lines y D ˙
q

5
3 —

despite the fact that the level curves of F.x; y/ freely do so—the particular solution curves

of Eq. (9) are those portions of the level curves of F.x; y/ which avoid the lines y D ˙
q

5
3 .

For example, suppose that we wish to solve the initial value problem

dy

dx
D 4 � 2x
3y2 � 5 ; y.1/ D 3: (13)

Substituting x D 1 and y D 3 into our general solution (10) gives C D 9. Therefore our
desired solution curve lies on the level curve

y3 � 5y � .4x � x2/ D 9 (14)

of F.x; y/; Fig. 1.4.2 shows this and other level curves of F.x; y/. However, because the
solution curve of the initial value problem (13) must pass through the point .1; 3/, which lies

above the line y D
q

5
3 in the xy-plane, our desired solution curve is restricted to that portion

of the level curve (14) which satisfies y >
q

5
3 . (In Fig. 1.4.2 the solution curve of the initial

value problem (13) is drawn more heavily than the remainder of the level curve (14).) In the
same way, Figure 1.4.2 also shows the particular solutions of Eq. (9) subject to the initial
conditions y.1/ D 0 and y.1/ D �2. In each of these cases, the curve corresponding to the
desired particular solution is only a piece of a larger level curve of the function F.x; y/. (Note
that in fact, some of the level curves of F themselves consist of two pieces.)

Finally, despite the difficulty of solving Eq. (14) for y by algebraic means, we can
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nonetheless “solve” for y in the sense that, when a specific value of x is substituted in (14),
we can attempt to solve numerically for y. For instance, taking x D 4 yields the equation

f .y/ D y3 � 5y � 9 D 0I

Fig. 1.4.3 shows the graph of f . Using technology we can solve for the single real root
y � 2:8552, thus yielding the value y.4/� 2:8552 for the solution of the initial value problem
(13). By repeating this process for other values of x, we can create a table (like the one
shown below) of corresponding x- and y-values for the solution of (13); such a table serves
effectively as a “numerical solution” of this initial value problem.

x �1 0 1 2 3 4 5 6

y 2.5616 2.8552 3 3.0446 3 2.8552 2.5616 1.8342

Implicit, General, and Singular Solutions
The equation K.x; y/ D 0 is commonly called an implicit solution of a differential
equation if it is satisfied (on some interval) by some solution y D y.x/ of the differ-
ential equation. But note that a particular solution y D y.x/ of K.x; y/ D 0 may or
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may not satisfy a given initial condition. For example, differentiation of x2Cy2D 4
yields

x C y dy
dx
D 0;

so x2 C y2 D 4 is an implicit solution of the differential equation x C yy0 D 0. But
only the first of the two explicit solutions

y.x/ D C
p
4 � x2 and y.x/ D �

p
4 � x2

satisfies the initial condition y.0/ D 2 (Fig. 1.4.4).
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FIGURE 1.4.4. Slope field and
solution curves for y0 D �x=y.

Remark 1 You should not assume that every possible algebraic solution y D y.x/ of
an implicit solution satisfies the same differential equation. For instance, if we multiply the
implicit solution x2Cy2� 4D 0 by the factor .y � 2x/, then we get the new implicit solution

.y � 2x/.x2 C y2 � 4/ D 0

that yields (or “contains”) not only the previously noted explicit solutions y D C
p
4 � x2

and y D �
p
4 � x2 of the differential equation x C yy0 D 0, but also the additional function

y D 2x that does not satisfy this differential equation.

Remark 2 Similarly, solutions of a given differential equation can be either gained or lost
when it is multiplied or divided by an algebraic factor. For instance, consider the differential
equation

.y � 2x/y dy
dx
D �x.y � 2x/ (15)

having the obvious solution y D 2x. But if we divide both sides by the common factor
.y � 2x/, then we get the previously discussed differential equation

y
dy

dx
D �x; or x C y dy

dx
D 0; (16)

of which y D 2x is not a solution. Thus we “lose” the solution y D 2x of Eq. (15) upon its
division by the factor .y � 2x/; alternatively, we “gain” this new solution when we multiply
Eq. (16) by .y � 2x/. Such elementary algebraic operations to simplify a given differential
equation before attempting to solve it are common in practice, but the possibility of loss or
gain of such “extraneous solutions” should be kept in mind.

A solution of a differential equation that contains an “arbitrary constant” (like
the constant C appearing in Eqs. (4) and (10)) is commonly called a general so-
lution of the differential equation; any particular choice of a specific value for C
yields a single particular solution of the equation.

The argument preceding Example 1 actually suffices to show that every partic-
ular solution of the differential equation h.y/y0 D g.x/ in (6) satisfies the equation
H.y.x// D G.x/CC in (8). Consequently, it is appropriate to call (8) not merely a
general solution of (6), but the general solution of (6).

In Section 1.5 we shall see that every particular solution of a linear first-order
differential equation is contained in its general solution. By contrast, it is com-
mon for a nonlinear first-order differential equation to have both a general solu-
tion involving an arbitrary constant C and one or several particular solutions that
cannot be obtained by selecting a value for C . These exceptional solutions are
frequently called singular solutions. In Problem 30 we ask you to show that the
general solution of the differential equation .y0/2 D 4y yields the family of parabo-
las y D .x � C/2 illustrated in Fig. 1.4.5, and to observe that the constant-valued
function y.x/ � 0 is a singular solution that cannot be obtained from the general
solution by any choice of the arbitrary constant C .
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Example 2 Find all solutions of the differential equation

dy

dx
D 6x.y � 1/2=3:

Solution Separation of variables givesZ
1

3.y � 1/2=3
dy D

Z
2x dxI

.y � 1/1=3 D x2 C C I

y.x/ D 1C .x2 C C/3:

Positive values of the arbitrary constant C give the solution curves in Fig. 1.4.6 that lie above
the line y D 1, whereas negative values yield those that dip below it. The value C D 0 gives
the solution y.x/ D 1 C x6, but no value of C gives the singular solution y.x/ � 1 that
was lost when the variables were separated. Note that the two different solutions y.x/ � 1

and y.x/ D 1 C .x2 � 1/3 both satisfy the initial condition y.1/ D 1. Indeed, the whole
singular solution curve y D 1 consists of points where the solution is not unique and where
the function f .x; y/ D 6x.y � 1/2=3 is not differentiable.

Natural Growth and Decay
The differential equation
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dx

dt
D kx (k a constant) (17)

serves as a mathematical model for a remarkably wide range of natural
phenomena—any involving a quantity whose time rate of change is proportional
to its current size. Here are some examples.

POPULATION GROWTH: Suppose that P.t/ is the number of individuals in a
population (of humans, or insects, or bacteria) having constant birth and death rates
ˇ and ı (in births or deaths per individual per unit of time). Then, during a short
time interval �t , approximately ˇP.t/�t births and ıP.t/�t deaths occur, so the
change in P.t/ is given approximately by

�P � .ˇ � ı/P.t/�t;

and therefore
dP
dt
D lim

�t!0

�P

�t
D kP; (18)

where k D ˇ � ı.
COMPOUND INTEREST: Let A.t/ be the number of dollars in a savings account
at time t (in years), and suppose that the interest is compounded continuously at
an annual interest rate r . (Note that 10% annual interest means that r D 0:10.)
Continuous compounding means that during a short time interval �t , the amount of
interest added to the account is approximately �A D rA.t/�t , so that

dA

dt
D lim

�t!0

�A

�t
D rA: (19)
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RADIOACTIVE DECAY: Consider a sample of material that contains N.t/ atoms
of a certain radioactive isotope at time t . It has been observed that a constant fraction
of those radioactive atoms will spontaneously decay (into atoms of another element
or into another isotope of the same element) during each unit of time. Consequently,
the sample behaves exactly like a population with a constant death rate and no births.
To write a model for N.t/, we use Eq. (18) with N in place of P , with k > 0 in place
of ı, and with ˇ D 0. We thus get the differential equation

dN

dt
D �kN: (20)

The value of k depends on the particular radioactive isotope.
The key to the method of radiocarbon dating is that a constant proportion

of the carbon atoms in any living creature is made up of the radioactive isotope
14C of carbon. This proportion remains constant because the fraction of 14C in the
atmosphere remains almost constant, and living matter is continuously taking up
carbon from the air or is consuming other living matter containing the same constant
ratio of 14C atoms to ordinary 12C atoms. This same ratio permeates all life, because
organic processes seem to make no distinction between the two isotopes.

The ratio of 14C to normal carbon remains constant in the atmosphere be-
cause, although 14C is radioactive and slowly decays, the amount is continuously
replenished through the conversion of 14N (ordinary nitrogen) to 14C by cosmic
rays bombarding the upper atmosphere. Over the long history of the planet, this
decay and replenishment process has come into nearly steady state.

Of course, when a living organism dies, it ceases its metabolism of carbon
and the process of radioactive decay begins to deplete its 14C content. There is
no replenishment of this 14C, and consequently the ratio of 14C to normal carbon
begins to drop. By measuring this ratio, the amount of time elapsed since the death
of the organism can be estimated. For such purposes it is necessary to measure the
decay constant k. For 14C, it is known that k � 0:0001216 if t is measured in years.

(Matters are not as simple as we have made them appear. In applying the tech-
nique of radiocarbon dating, extreme care must be taken to avoid contaminating the
sample with organic matter or even with ordinary fresh air. In addition, the cosmic
ray levels apparently have not been constant, so the ratio of 14C in the atmosphere
has varied over the past centuries. By using independent methods of dating sam-
ples, researchers in this area have compiled tables of correction factors to enhance
the accuracy of this process.)

DRUG ELIMINATION: In many cases the amount A.t/ of a certain drug in the
bloodstream, measured by the excess over the natural level of the drug, will decline
at a rate proportional to the current excess amount. That is,

dA

dt
D ��A; (21)

where � > 0. The parameter � is called the elimination constant of the drug.

The Natural Growth Equation
The prototype differential equation dx=dt D kx with x.t/ > 0 and k a con-
stant (either negative or positive) is readily solved by separating the variables and
integrating: Z

1

x
dx D

Z
k dt I

ln x D kt C C:
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Then we solve for x:

eln x D ektCC I x D x.t/ D eC ekt D Aekt :

Because C is a constant, so is A D eC . It is also clear that A D x.0/ D x0, so the
particular solution of Eq. (17) with the initial condition x.0/ D x0 is simply

x.t/ D x0e
kt : (22)

Because of the presence of the natural exponential function in its solution, the
differential equation

dx

dt
D kx (23)

is often called the exponential or natural growth equation. Figure 1.4.7 shows a
typical graph of x.t/ in the case k > 0; the case k < 0 is illustrated in Fig. 1.4.8.
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Example 3 According to data listed at www.census.gov, the world’s total population reached 6 bil-
lion persons in mid-1999, and was then increasing at the rate of about 212 thousand persons
each day. Assuming that natural population growth at this rate continues, we want to answer
these questions:
(a) What is the annual growth rate k?
(b) What will be the world population at the middle of the 21st century?
(c) How long will it take the world population to increase tenfold—thereby reaching the 60
billion that some demographers believe to be the maximum for which the planet can provide
adequate food supplies?

Solution (a) We measure the world population P.t/ in billions and measure time in years. We take
t D 0 to correspond to (mid) 1999, so P0 D 6. The fact that P is increasing by 212,000, or
0.000212 billion, persons per day at time t D 0 means that

P 0.0/ D .0:000212/.365:25/ � 0:07743
billion per year. From the natural growth equation P 0 D kP with t D 0 we now obtain

k D P 0.0/
P.0/

� 0:07743

6
� 0:0129:

Thus the world population was growing at the rate of about 1.29% annually in 1999. This
value of k gives the world population function

P.t/ D 6e0:0129t :

(b) With t D 51 we obtain the prediction

P.51/ D 6e.0:0129/.51/ � 11.58 (billion)

for the world population in mid-2050 (so the population will almost have doubled in the just
over a half-century since 1999).

http://www.census.gov
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(c) The world population should reach 60 billion when

60 D 6e0:0129t I that is, when t D ln 10
0:0129

� 178;

and thus in the year 2177.

Note Actually, the rate of growth of the world population is expected to slow somewhat
during the next half-century, and the best current prediction for the 2050 population is “only”
9.1 billion. A simple mathematical model cannot be expected to mirror precisely the com-
plexity of the real world.

The decay constant of a radioactive isotope is often specified in terms of an-
other empirical constant, the half-life of the isotope, because this parameter is more
convenient. The half-life � of a radioactive isotope is the time required for half of
it to decay. To find the relationship between k and � , we set t D � and N D 1

2
N0 in

the equation N.t/ D N0e
�kt , so that 1

2
N0 D N0e

�k� . When we solve for � , we find
that

� D ln 2
k
: (24)

For example, the half-life of 14C is � � .ln 2/=.0:0001216/, approximately 5700
years.

Example 4 A specimen of charcoal found at Stonehenge turns out to contain 63% as much 14C as a
sample of present-day charcoal of equal mass. What is the age of the sample?

Solution We take t D 0 as the time of the death of the tree from which the Stonehenge charcoal was
made and N0 as the number of 14C atoms that the Stonehenge sample contained then. We are
given that N D .0:63/N0 now, so we solve the equation .0:63/N0 D N0e

�kt with the value
k D 0:0001216. Thus we find that

t D � ln.0:63/
0:0001216

� 3800 (years):

Thus the sample is about 3800 years old. If it has any connection with the builders of Stone-
henge, our computations suggest that this observatory, monument, or temple—whichever it
may be—dates from 1800 B.C. or earlier.

Cooling and Heating
According to Newton’s law of cooling (Eq. (3) of Section 1.1), the time rate of
change of the temperature T .t/ of a body immersed in a medium of constant tem-
perature A is proportional to the difference A � T . That is,

dT

dt
D k.A � T /; (25)

where k is a positive constant. This is an instance of the linear first-order differential
equation with constant coefficients:

dx

dt
D ax C b: (26)

It includes the exponential equation as a special case (b D 0) and is also easy to
solve by separation of variables.

Example 5 A 4-lb roast, initially at 50ıF, is placed in a 375ıF oven at 5:00 P.M. After 75 minutes it is
found that the temperature T .t/ of the roast is 125ıF. When will the roast be 150ıF (medium
rare)?
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Solution We take time t in minutes, with t D 0 corresponding to 5:00 P.M. We also assume (somewhat
unrealistically) that at any instant the temperature T .t/ of the roast is uniform throughout.
We have T .t/ < A D 375, T .0/ D 50, and T .75/ D 125. Hence

dT

dt
D k.375 � T /IZ

1

375 � T dT D
Z
k dt I

� ln.375 � T / D kt C C I

375 � T D Be�kt :

Now T .0/ D 50 implies that B D 325, so T .t/ D 375� 325e�kt . We also know that T D 125
when t D 75. Substitution of these values in the preceding equation yields

k D � 1
75 ln

�
250
325

�
� 0:0035:

Hence we finally solve the equation

150 D 375 � 325e.�0:0035/t

for t D �Œln.225=325/�=.0:0035/ � 105 (min), the total cooking time required. Because the
roast was placed in the oven at 5:00 P.M., it should be removed at about 6:45 P.M.

Torricelli’s Law
Suppose that a water tank has a hole with area a at its bottom, from which water
is leaking. Denote by y.t/ the depth of water in the tank at time t , and by V.t/ the
volume of water in the tank then. It is plausible—and true, under ideal conditions—
that the velocity of water exiting through the hole is

v D
p
2gy; (27)

which is the velocity a drop of water would acquire in falling freely from the surface
of the water to the hole (see Problem 35 of Section 1.2). One can derive this formula
beginning with the assumption that the sum of the kinetic and potential energy of the
system remains constant. Under real conditions, taking into account the constriction
of a water jet from an orifice, v D cp2gy, where c is an empirical constant between
0 and 1 (usually about 0.6 for a small continuous stream of water). For simplicity
we take c D 1 in the following discussion.

As a consequence of Eq. (27), we have

dV

dt
D �av D �a

p
2gyI (28a)

equivalently,
dV

dt
D �kpy where k D a

p
2g: (28b)

This is a statement of Torricelli’s law for a draining tank. Let A.y/ denote the hori-
zontal cross-sectional area of the tank at height y. Then, applied to a thin horizontal
slice of water at height y with area A.y/ and thickness dy, the integral calculus
method of cross sections gives

V.y/ D
Z y

0

A.y/ dy:
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The fundamental theorem of calculus therefore implies that dV=dy D A.y/ and
hence that

dV

dt
D dV

dy
� dy
dt
D A.y/dy

dt
: (29)

From Eqs. (28) and (29) we finally obtain

A.y/
dy

dt
D �a

p
2gy D �kpy; (30)

an alternative form of Torricelli’s law.

Example 6 A hemispherical bowl has top radius 4 ft and at time t D 0 is full of water. At that moment
a circular hole with diameter 1 in. is opened in the bottom of the tank. How long will it take
for all the water to drain from the tank?

Solution From the right triangle in Fig. 1.4.9, we see that

A.y/ D �r2 D �
h
16 � .4 � y/2

i
D �.8y � y2/:

With g D 32 ft=s2, Eq. (30) becomes

�.8y � y2/
dy

dt
D ��

�
1

24

�2p
2 � 32y IZ

.8y1=2 � y3=2/ dy D �
Z

1
72 dt I

16
3 y

3=2 � 2
5y

5=2 D � 1
72 t C C:

Now y.0/ D 4, so
C D 16

3 � 43=2 � 2
5 � 45=2 D 448

15 :

The tank is empty when y D 0, thus when

t D 72 � 448
15 � 2150 (s);

that is, about 35 min 50 s. So it takes slightly less than 36 min for the tank to drain.

Positive y-values

r

44 – y

y

FIGURE 1.4.9. Draining a
hemispherical tank.

1.4 Problems
Find general solutions (implicit if necessary, explicit if conve-
nient) of the differential equations in Problems 1 through 18.
Primes denote derivatives with respect to x.

1.
dy

dx
C 2xy D 0 2.

dy

dx
C 2xy2 D 0

3.
dy

dx
D y sin x 4. .1C x/ dy

dx
D 4y

5. 2
p
x
dy

dx
D
p
1 � y2 6.

dy

dx
D 3pxy

7.
dy

dx
D .64xy/1=3 8.

dy

dx
D 2x sec y

9. .1 � x2/
dy

dx
D 2y 10. .1Cx/2 dy

dx
D .1Cy/2

11. y0 D xy3 12. yy0 D x.y2 C 1/

13. y3 dy

dx
D .y4 C 1/ cos x 14.

dy

dx
D 1Cpx
1Cpy

15.
dy

dx
D .x � 1/y5

x2.2y3 � y/ 16. .x2 C 1/.tan y/y0 D x

17. y0 D 1CxCyCxy (Suggestion: Factor the right-hand
side.)

18. x2y0 D 1 � x2 C y2 � x2y2

Find explicit particular solutions of the initial value problems
in Problems 19 through 28.

19.
dy

dx
D yex , y.0/ D 2e

20.
dy

dx
D 3x2.y2 C 1/, y.0/ D 1

21. 2y
dy

dx
D xp

x2 � 16
, y.5/ D 2

22.
dy

dx
D 4x3y � y, y.1/ D �3

23.
dy

dx
C 1 D 2y, y.1/ D 1

24.
dy

dx
D y cot x, y

�
1
2�
�
D 1

2�
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25. x
dy

dx
� y D 2x2y, y.1/ D 1

26.
dy

dx
D 2xy2 C 3x2y2, y.1/ D �1

27.
dy

dx
D 6e2x�y ; y.0/ D 0

28. 2
p
x
dy

dx
D cos2 y; y.4/ D �=4

29. (a) Find a general solution of the differential equation
dy=dx D y2. (b) Find a singular solution that is not in-
cluded in the general solution. (c) Inspect a sketch of typi-
cal solution curves to determine the points .a; b/ for which
the initial value problem y0 D y2, y.a/ D b has a unique
solution.

30. Solve the differential equation .dy=dx/2 D 4y to verify the
general solution curves and singular solution curve that
are illustrated in Fig. 1.4.5. Then determine the points
.a; b/ in the plane for which the initial value problem
.y0/2 D 4y, y.a/ D b has (a) no solution, (b) infinitely
many solutions that are defined for all x, (c) on some
neighborhood of the point x D a, only finitely many solu-
tions.

31. Discuss the difference between the differential equations
.dy=dx/2 D 4y and dy=dx D 2

p
y. Do they have the

same solution curves? Why or why not? Determine the
points .a; b/ in the plane for which the initial value prob-
lem y0 D 2py, y.a/ D b has (a) no solution, (b) a unique
solution, (c) infinitely many solutions.

32. Find a general solution and any singular solutions of the
differential equation dy=dx D y

p
y2 � 1. Determine the

points .a; b/ in the plane for which the initial value prob-
lem y0 D y

p
y2 � 1, y.a/ D b has (a) no solution, (b) a

unique solution, (c) infinitely many solutions.
33. (Population growth) A certain city had a population of

25,000 in 1960 and a population of 30,000 in 1970. As-
sume that its population will continue to grow exponen-
tially at a constant rate. What population can its city plan-
ners expect in the year 2000?

34. (Population growth) In a certain culture of bacteria, the
number of bacteria increased sixfold in 10 h. How long
did it take for the population to double?

35. (Radiocarbon dating) Carbon extracted from an ancient
skull contained only one-sixth as much 14C as carbon ex-
tracted from present-day bone. How old is the skull?

36. (Radiocarbon dating) Carbon taken from a purported relic
of the time of Christ contained 4:6 � 1010 atoms of 14C
per gram. Carbon extracted from a present-day specimen
of the same substance contained 5:0 � 1010 atoms of 14C
per gram. Compute the approximate age of the relic. What
is your opinion as to its authenticity?

37. (Continuously compounded interest) Upon the birth of
their first child, a couple deposited $5000 in an account
that pays 8% interest compounded continuously. The in-
terest payments are allowed to accumulate. How much
will the account contain on the child’s eighteenth birth-
day?

38. (Continuously compounded interest) Suppose that you
discover in your attic an overdue library book on which
your grandfather owed a fine of 30 cents 100 years ago. If
an overdue fine grows exponentially at a 5% annual rate
compounded continuously, how much would you have to
pay if you returned the book today?

39. (Drug elimination) Suppose that sodium pentobarbital is
used to anesthetize a dog. The dog is anesthetized when
its bloodstream contains at least 45 milligrams (mg) of
sodium pentobarbitol per kilogram of the dog’s body
weight. Suppose also that sodium pentobarbitol is elim-
inated exponentially from the dog’s bloodstream, with a
half-life of 5 h. What single dose should be administered
in order to anesthetize a 50-kg dog for 1 h?

40. The half-life of radioactive cobalt is 5.27 years. Suppose
that a nuclear accident has left the level of cobalt radia-
tion in a certain region at 100 times the level acceptable
for human habitation. How long will it be until the region
is again habitable? (Ignore the probable presence of other
radioactive isotopes.)

41. Suppose that a mineral body formed in an ancient
cataclysm—perhaps the formation of the earth itself—
originally contained the uranium isotope 238U (which has
a half-life of 4:51 � 109 years) but no lead, the end prod-
uct of the radioactive decay of 238U. If today the ratio of
238U atoms to lead atoms in the mineral body is 0.9, when
did the cataclysm occur?

42. A certain moon rock was found to contain equal numbers
of potassium and argon atoms. Assume that all the argon
is the result of radioactive decay of potassium (its half-life
is about 1:28�109 years) and that one of every nine potas-
sium atom disintegrations yields an argon atom. What is
the age of the rock, measured from the time it contained
only potassium?

43. A pitcher of buttermilk initially at 25ıC is to be cooled
by setting it on the front porch, where the temperature is
0ıC. Suppose that the temperature of the buttermilk has
dropped to 15ıC after 20 min. When will it be at 5ıC?

44. When sugar is dissolved in water, the amount A that re-
mains undissolved after t minutes satisfies the differential
equation dA=dt D �kA (k > 0). If 25% of the sugar dis-
solves after 1 min, how long does it take for half of the
sugar to dissolve?

45. The intensity I of light at a depth of x meters below
the surface of a lake satisfies the differential equation
dI=dx D .�1:4/I . (a) At what depth is the intensity half
the intensity I0 at the surface (where x D 0)? (b) What
is the intensity at a depth of 10 m (as a fraction of I0)?
(c) At what depth will the intensity be 1% of that at the
surface?

46. The barometric pressure p (in inches of mercury) at an
altitude x miles above sea level satisfies the initial value
problem dp=dx D .�0:2/p, p.0/ D 29:92. (a) Calculate
the barometric pressure at 10,000 ft and again at 30,000
ft. (b) Without prior conditioning, few people can sur-
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vive when the pressure drops to less than 15 in. of mer-
cury. How high is that?

47. A certain piece of dubious information about phenylethy-
lamine in the drinking water began to spread one day in a
city with a population of 100,000. Within a week, 10,000
people had heard this rumor. Assume that the rate of in-
crease of the number who have heard the rumor is propor-
tional to the number who have not yet heard it. How long
will it be until half the population of the city has heard the
rumor?

48. According to one cosmological theory, there were equal
amounts of the two uranium isotopes 235U and 238U at
the creation of the universe in the “big bang.” At present
there are 137.7 atoms of 238U for each atom of 235U. Us-
ing the half-lives 4:51� 109 years for 238U and 7:10� 108

years for 235U, calculate the age of the universe.
49. A cake is removed from an oven at 210ıF and left to cool

at room temperature, which is 70ıF. After 30 min the
temperature of the cake is 140ıF. When will it be 100ıF?

50. The amount A.t/ of atmospheric pollutants in a certain
mountain valley grows naturally and is tripling every 7.5
years.

(a) If the initial amount is 10 pu (pollutant units), write
a formula for A.t/ giving the amount (in pu) present
after t years.

(b) What will be the amount (in pu) of pollutants present
in the valley atmosphere after 5 years?

(c) If it will be dangerous to stay in the valley when the
amount of pollutants reaches 100 pu, how long will
this take?

51. An accident at a nuclear power plant has left the surround-
ing area polluted with radioactive material that decays nat-
urally. The initial amount of radioactive material present
is 15 su (safe units), and 5 months later it is still 10 su.

(a) Write a formula giving the amount A.t/ of radioactive
material (in su) remaining after t months.

(b) What amount of radioactive material will remain after
8 months?

(c) How long—total number of months or fraction
thereof—will it be until A D 1 su, so it is safe for
people to return to the area?

52. There are now about 3300 different human “language fam-
ilies” in the whole world. Assume that all these are de-
rived from a single original language and that a language
family develops into 1.5 language families every 6 thou-
sand years. About how long ago was the single original
human language spoken?

53. Thousands of years ago ancestors of the Native Americans
crossed the Bering Strait from Asia and entered the west-
ern hemisphere. Since then, they have fanned out across
North and South America. The single language that the
original Native Americans spoke has since split into many
Indian “language families.” Assume (as in Problem 52)
that the number of these language families has been mul-
tiplied by 1.5 every 6000 years. There are now 150 Native

American language families in the western hemisphere.
About when did the ancestors of today’s Native Ameri-
cans arrive?

54. A tank is shaped like a vertical cylinder; it initially con-
tains water to a depth of 9 ft, and a bottom plug is removed
at time t D 0 (hours). After 1 h the depth of the water has
dropped to 4 ft. How long does it take for all the water to
drain from the tank?

55. Suppose that the tank of Problem 54 has a radius of 3 ft
and that its bottom hole is circular with radius 1 in. How
long will it take the water (initially 9 ft deep) to drain com-
pletely?

56. At time t D 0 the bottom plug (at the vertex) of a full con-
ical water tank 16 ft high is removed. After 1 h the water
in the tank is 9 ft deep. When will the tank be empty?

57. Suppose that a cylindrical tank initially containing V0 gal-
lons of water drains (through a bottom hole) in T minutes.
Use Torricelli’s law to show that the volume of water in
the tank after t 5 T minutes is V D V0 Œ1 � .t=T /�2.

58. A water tank has the shape obtained by revolving the curve
y D x4=3 around the y-axis. A plug at the bottom is re-
moved at 12 noon, when the depth of water in the tank is
12 ft. At 1 P.M. the depth of the water is 6 ft. When will
the tank be empty?

59. A water tank has the shape obtained by revolving the
parabola x2 D by around the y-axis. The water depth is
4 ft at 12 noon, when a circular plug in the bottom of the
tank is removed. At 1 P.M. the depth of the water is 1 ft.
(a) Find the depth y.t/ of water remaining after t hours.
(b) When will the tank be empty? (c) If the initial radius
of the top surface of the water is 2 ft, what is the radius of
the circular hole in the bottom?

60. A cylindrical tank with length 5 ft and radius 3 ft is sit-
uated with its axis horizontal. If a circular bottom hole
with a radius of 1 in. is opened and the tank is initially
half full of water, how long will it take for the liquid to
drain completely?

61. A spherical tank of radius 4 ft is full of water when a cir-
cular bottom hole with radius 1 in. is opened. How long
will be required for all the water to drain from the tank?

62. Suppose that an initially full hemispherical water tank of
radius 1 m has its flat side as its bottom. It has a bottom
hole of radius 1 cm. If this bottom hole is opened at 1 P.M.,
when will the tank be empty?

63. Consider the initially full hemispherical water tank of Ex-
ample 8, except that the radius r of its circular bottom hole
is now unknown. At 1 P.M. the bottom hole is opened and
at 1:30 P.M. the depth of water in the tank is 2 ft. (a) Use
Torricelli’s law in the form dV=dt D �.0:6/�r2

p
2gy

(taking constriction into account) to determine when the
tank will be empty. (b) What is the radius of the bottom
hole?

64. (The clepsydra, or water clock) A 12 h water clock is to
be designed with the dimensions shown in Fig. 1.4.10,
shaped like the surface obtained by revolving the curve
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y D f .x/ around the y-axis. What should this curve be,
and what should the radius of the circular bottom hole be,
in order that the water level will fall at the constant rate of
4 inches per hour (in.=h)?

Water flow

4 ft

1 ft

x

y

y = f (x)
or     

x = g (y)

FIGURE 1.4.10. The clepsydra.

65. Just before midday the body of an apparent homicide vic-
tim is found in a room that is kept at a constant tempera-
ture of 70ıF. At 12 noon the temperature of the body is
80ıF and at 1 P.M. it is 75ıF. Assume that the temperature
of the body at the time of death was 98:6ıF and that it has
cooled in accord with Newton’s law. What was the time
of death?

66. Early one morning it began to snow at a constant rate. At
7 A.M. a snowplow set off to clear a road. By 8 A.M. it
had traveled 2 miles, but it took two more hours (until
10 A.M.) for the snowplow to go an additional 2 miles.
(a) Let t D 0 when it began to snow, and let x denote the
distance traveled by the snowplow at time t . Assuming
that the snowplow clears snow from the road at a constant
rate (in cubic feet per hour, say), show that

k
dx

dt
D 1

t

where k is a constant. (b) What time did it start snowing?
(Answer: 6 A.M.)

67. A snowplow sets off at 7 A.M. as in Problem 66. Sup-
pose now that by 8 A.M. it had traveled 4 miles and that by
9 A.M. it had moved an additional 3 miles. What time did
it start snowing? This is a more difficult snowplow prob-
lem because now a transcendental equation must be solved
numerically to find the value of k. (Answer: 4:27 A.M.)

68. Figure 1.4.11 shows a bead sliding down a frictionless
wire from point P to point Q. The brachistochrone prob-
lem asks what shape the wire should be in order to min-
imize the bead’s time of descent from P to Q. In June
of 1696, John Bernoulli proposed this problem as a pub-
lic challenge, with a 6-month deadline (later extended to
Easter 1697 at George Leibniz’s request). Isaac Newton,
then retired from academic life and serving as Warden

of the Mint in London, received Bernoulli’s challenge on
January 29, 1697. The very next day he communicated
his own solution—the curve of minimal descent time is an
arc of an inverted cycloid—to the Royal Society of Lon-
don. For a modern derivation of this result, suppose the
bead starts from rest at the origin P and let y D y.x/ be
the equation of the desired curve in a coordinate system
with the y-axis pointing downward. Then a mechanical
analogue of Snell’s law in optics implies that

sin˛
v
D constant, (i)

where ˛ denotes the angle of deflection (from the verti-
cal) of the tangent line to the curve—so cot˛ D y0.x/
(why?)—and v Dp2gy is the bead’s velocity when it has
descended a distance y vertically (from KE D 1

2mv
2 D

mgy D �PE).

Q

P

FIGURE 1.4.11. A bead sliding down a
wire—the brachistochrone problem.

(a) First derive from Eq. (i) the differential equation

dy

dx
D
s
2a � y
y

; (ii)

where a is an appropriate positive constant.
(b) Substitute y D 2a sin2 t , dy D 4a sin t cos t dt in (ii)

to derive the solution

x D a.2t � sin 2t/; y D a.1 � cos 2t/ (iii)

for which t D y D 0 when x D 0. Finally, the sub-
stitution of � D 2t in (iii) yields the standard para-
metric equations x D a.� � sin �/, y D a.1 � cos �/
of the cycloid that is generated by a point on the rim
of a circular wheel of radius a as it rolls along the x-
axis. [See Example 5 in Section 9.4 of Edwards and
Penney, Calculus: Early Transcendentals, 7th edition
(Upper Saddle River, NJ: Prentice Hall, 2008).]

69. Suppose a uniform flexible cable is suspended between
two points .˙L;H/ at equal heights located symmetri-
cally on either side of the x-axis (Fig. 1.4.12). Principles
of physics can be used to show that the shape y D y.x/ of
the hanging cable satisfies the differential equation

a
d2y

dx2
D
s
1C

�
dy

dx

�2

;

where the constant a D T=� is the ratio of the cable’s ten-
sion T at its lowest point x D 0 (where y0.0/ D 0 ) and
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its (constant) linear density �. If we substitute v D dy=dx,
dv=dx D d2y=dx2 in this second-order differential equa-
tion, we get the first-order equation

a
dv

dx
D
p
1C v2:

Solve this differential equation for y0.x/ D v.x/ D
sinh.x=a/. Then integrate to get the shape function

y.x/ D a cosh
�x
a

�
C C

of the hanging cable. This curve is called a catenary, from
the Latin word for chain.

y0

Sag: H − y0

y

(−L, H) (L, H)

x

FIGURE 1.4.12. The catenary.

1.4 Application The Logistic Equation
As in Eq. (7) of this section, the solution of a separable differential equation reduces
to the evaluation of two indefinite integrals. It is tempting to use a symbolic algebra
system for this purpose. We illustrate this approach using the logistic differential
equation

dx

dt
D ax � bx2 (1)

that models a population x.t/with births (per unit time) proportional to x and deaths
proportional to x2. Here we concentrate on the solution of Eq. (1) and defer discus-
sion of population applications to Section 2.1.

If a D 0:01 and b D 0:0001, for instance, Eq. (1) is

dx

dt
D .0:01/x � .0:0001/x2 D x

10000
.100 � x/: (2)

Separation of variables leads toZ
1

x.100 � x/ dx D
Z

1

10000
dt D t

10000
C C: (3)

We can evaluate the integral on the left by using the Maple command

FIGURE 1.4.13. TI-NspireTM CX
CAS screen showing the integral in
Eq. (3).

int(1/(x�(100 -- x)), x);

the Mathematica command

Integrate[ 1/(x�(100 -- x)), x ]

or the MATLAB command

syms x; int(1/(x�(100 -- x)))

Alternatively, we could use the freely available WolframjAlpha system
(www.wolframalpha.com); the query

integrate 1/(x�(100 -- x))

produces the output shown in Fig. 1.4.14.
Any computer algebra system gives a result of the form

1

100
ln x � 1

100
ln.x � 100/ D t

10000
C C (4)

equivalent to the graphing calculator result shown in 30Fig. 1.4.13.

FIGURE 1.4.14. WolframjAlpha
display showing the integral in Eq. (3).
Screenshot of WolframjAlpha output.
Used by permission of WolframAlpha
LLC.

http://www.wolframalpha.com
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You can now apply the initial condition x.0/ D x0, combine logarithms, and

t

x

0
0

200 400 600 800 1000

20
40
60
80

100
120
140
160
180
200

FIGURE 1.4.15. Slope field and
solution curves for
x0 D .0:01/x � .0:0001/x2.

finally exponentiate to solve Eq. (4) for the particular solution

x.t/ D 100x0e
t=100

100 � x0 C x0et=100
(5)

of Eq. (2). The slope field and solution curves shown in Fig. 1.4.15 suggest that,
whatever is the initial value x0, the solution x.t/ approaches 100 as t ! C1. Can
you use Eq. (5) to verify this conjecture?

INVESTIGATION: For your own personal logistic equation, take a D m=n and
b D 1=n in Eq. (1), with m and n being the largest two distinct digits (in either
order) in your student ID number.

(a) First generate a slope field for your differential equation and include a sufficient
number of solution curves that you can see what happens to the population as
t !C1. State your inference plainly.

(b) Next use a computer algebra system to solve the differential equation symboli-
cally; then use the symbolic solution to find the limit of x.t/ as t ! C1. Was
your graphically-based inference correct?

(c) Finally, state and solve a numerical problem using the symbolic solution. For
instance, how long does it take x to grow from a selected initial value x0 to a
given target value x1?

1.5 Linear First-Order Equations
We turn now to another important method for solving first-order differential equa-
tions that rests upon the idea of “integrating both sides”. In Section 1.4 we saw that
the first step in solving a separable differential equation is to multiply and/or divide
both sides of the equation by whatever is required in order to separate the variables.
For instance, to solve the equation

dy

dx
D 2xy .y > 0/; (1)

we divide both sides by y (and, so to speak, multiply by the differential dx) to get

dy

y
D 2x dx:

Integrating both sides then gives the general solution ln y D x2 C C .
There is another way to approach the differential equation in (1), however,

which—while leading to the same general solution—opens the door not only to the
solution method discussed in this section, but to other methods of solving differen-
tial equations as well. What is common to all these methods is the idea that if a
given equation is difficult to solve, then perhaps multiplying both sides of the equa-
tion by a suitably chosen function of x and/or y may result in an equivalent equation
that can be solved more easily. Thus, in Eq. (1), rather than divide both sides by y,
we could instead multiply both sides by the factor 1=y. (Of course algebraically
these two are the same, but we are highlighting the fact that often the crucial first
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step in solving a differential equation is to multiply both of its sides by the “right”
function.) Applying this to Eq. (1) (while leaving dx in place) gives

1

y
� dy
dx
D 2x: (2)

The significance of Eq. (2) is that, unlike Eq. (1), both sides are recognizable as a
derivative. By the chain rule, the left-hand side of Eq. (2) can be written as

1

y
� dy
dx
D Dx.lny/;

and of course the right hand side of Eq. (2) is Dx.x
2/. Thus each side of Eq. (2) can

be viewed as a derivative with respect to x:

Dx.lny/ D Dx.x
2/:

Integrating both sides with respect to x gives the same general solution ln y D x2C
C that we found before.

We were able to solve the differential equation in Eq. (1), then, by first multi-
plying both of its sides by a factor—known as an integrating factor—chosen so that
both sides of the resulting equation could be recognized as a derivative. Solving the
equation then becomes simply a matter of integrating both sides. More generally,
an integrating factor for a differential equation is a function �.x; y/ such that mul-
tiplication of each side of the differential equation by �.x; y/ yields an equation in
which each side is recognizable as a derivative. In some cases integrating factors
involve both of the variables x and y; however, our second solution of Eq. (1) was
based on the integrating factor �.y/ D 1=y, which depends only on y. Our goal
in this section is to show how integrating factors can be used to solve a broad and
important category of first-order differential equations.

A linear first-order equation is a differential equation of the form

dy

dx
C P.x/y D Q.x/: (3)

We assume that the coefficient functions P.x/ andQ.x/ are continuous on some in-
terval on the x-axis. (Can you see that the differential equation in Eq. (1), in addition
to being separable, is also linear? Is every separable equation also linear?) Assum-
ing that the necessary antiderivatives can be found, the general linear equation in (3)
can always be solved by multiplying by the integrating factor

�.x/ D e
R

P.x/ dx : (4)

The result is

e
R

P.x/ dx dy

dx
C P.x/e

R
P.x/ dxy D Q.x/e

R
P.x/ dx : (5)

Because

Dx

�Z
P.x/ dx

�
D P.x/;

the left-hand side is the derivative of the product y.x/ � e
R

P.x/ dx , so Eq. (5) is equiv-
alent to

Dx

h
y.x/ � e

R
P.x/ dx

i
D Q.x/e

R
P.x/ dx :
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Integration of both sides of this equation gives

y.x/e
R

P.x/ dx D
Z �

Q.x/e
R

P.x/ dx
�
dx C C:

Finally, solving for y, we obtain the general solution of the linear first-order equa-
tion in (3):

y.x/ D e� R
P.x/ dx

�Z �
Q.x/e

R
P.x/ dx

�
dx C C

�
: (6)

This formula should not be memorized. In a specific problem it generally is
simpler to use the method by which we developed the formula. That is, in order
to solve an equation that can be written in the form in Eq. (3) with the coefficient
functions P.x/ and Q.x/ displayed explicitly, you should attempt to carry out the
following steps.

METHOD: SOLUTION OF LINEAR FIRST-ORDER EQUATIONS

1. Begin by calculating the integrating factor �.x/ D e
R

P.x/ dx .
2. Then multiply both sides of the differential equation by �.x/.
3. Next, recognize the left-hand side of the resulting equation as the derivative

of a product:
Dx Œ�.x/y.x/� D �.x/Q.x/:

4. Finally, integrate this equation,

�.x/y.x/ D
Z
�.x/Q.x/ dx C C;

then solve for y to obtain the general solution of the original differential equa-
tion.

Remark 1 Given an initial condition y.x0/ D y0, you can (as usual) substitute x D x0 and
y D y0 into the general solution and solve for the value of C yielding the particular solution
that satisfies this initial condition.

Remark 2 You need not supply explicitly a constant of integration when you find the
integrating factor �.x/. For if we replaceZ

P.x/ dx with
Z
P.x/ dx CK

in Eq. (4), the result is

�.x/ D eKCR P.x/ dx D eKe
R

P.x/ dx :

But the constant factor eK does not affect materially the result of multiplying both sides of
the differential equation in (3) by �.x/, so we might as well take K D 0. You may there-
fore choose for

R
P.x/ dx any convenient antiderivative of P.x/, without bothering to add a

constant of integration.

Example 1 Solve the initial value problem

dy

dx
� y D 11

8 e
�x=3; y.0/ D �1:
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Solution Here we have P.x/ � �1 and Q.x/ D 11
8 e

�x=3, so the integrating factor is

�.x/ D e
R

.�1/ dx D e�x :

Multiplication of both sides of the given equation by e�x yields

e�x dy

dx
� e�xy D 11

8 e
�4x=3; (7)

which we recognize as
d

dx

�
e�xy

	 D 11
8 e

�4x=3:

Hence integration with respect to x gives

e�xy D
Z

11
8 e

�4x=3 dx D �33
32 e

�4x=3 C C;

and multiplication by ex gives the general solution

y.x/ D Cex � 33
32 e

�x=3: (8)

Substitution of x D 0 and y D �1 now gives C D 1
32 , so the desired particular solution is

y.x/ D 1
32e

x � 33
32e

�x=3 D 1
32

�
ex � 33e�x=3

�
:

Remark Figure 1.5.1 shows a slope field and typical solution curves for Eq. (7), including
the one passing through the point .0;�1/. Note that some solutions grow rapidly in the
positive direction as x increases, while others grow rapidly in the negative direction. The
behavior of a given solution curve is determined by its initial condition y.0/ D y0. The two

0 1 2 3 4 5

0

1

2

x

y –1

–2

–3

–4

–1

y = –     exp(–x/3)33
32(0, –1)

FIGURE 1.5.1. Slope field and
solution curves for
y0 D y C 11

8
e�x=3.

types of behavior are separated by the particular solution y.x/D �33
32 e

�x=3 for which C D 0
in Eq. (8), so y0 D �33

32 for the solution curve that is dashed in Fig. 1.5.1. If y0 > �33
32 ,

then C > 0 in Eq. (8), so the term ex eventually dominates the behavior of y.x/, and hence
y.x/! C1 as x ! C1. But if y0 < �33

32 , then C < 0, so both terms in y.x/ are negative
and therefore y.x/ ! �1 as x ! C1. Thus the initial condition y0 D �33

32 is critical
in the sense that solutions that start above �33

32 on the y-axis grow in the positive direction,
while solutions that start lower than �33

32 grow in the negative direction as x ! C1. The
interpretation of a mathematical model often hinges on finding such a critical condition that
separates one kind of behavior of a solution from a different kind of behavior.

Example 2 Find a general solution of

.x2 C 1/ dy
dx
C 3xy D 6x: (9)

Solution After division of both sides of the equation by x2 C 1, we recognize the result

dy

dx
C 3x

x2 C 1y D
6x

x2 C 1

as a first-order linear equation with P.x/ D 3x=.x2 C 1/ and Q.x/ D 6x=.x2 C 1/. Multipli-
cation by

�.x/ D exp
�Z

3x

x2 C 1 dx
�
D exp

�
3
2 ln.x2 C 1/

�
D .x2 C 1/3=2

yields

.x2 C 1/3=2 dy

dx
C 3x.x2 C 1/1=2y D 6x.x2 C 1/1=2;

and thus
Dx

h
.x2 C 1/3=2y

i
D 6x.x2 C 1/1=2:
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Integration then yields

.x2 C 1/3=2y D
Z
6x.x2 C 1/1=2 dx D 2.x2 C 1/3=2 C C:

Multiplication of both sides by .x2 C 1/�3=2 gives the general solution

y.x/ D 2C C.x2 C 1/�3=2: (10)

Remark Figure 1.5.2 shows a slope field and typical solution curves for Eq. (9). Note
that, as x ! C1, all other solution curves approach the constant solution curve y.x/ �
2 that corresponds to C D 0 in Eq. (10). This constant solution can be described as an
equilibrium solution of the differential equation, because y.0/ D 2 implies that y.x/ D 2 for
all x (and thus the value of the solution remains forever where it starts). More generally, the
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FIGURE 1.5.2. Slope field and
solution curves for the differential
equation in Eq. (9).

word “equilibrium” connotes “unchanging,” so by an equilibrium solution of a differential
equation is meant a constant solution y.x/ � c, for which it follows that y0.x/� 0. Note that
substitution of y0 D 0 in the differential equation (9) yields 3xy D 6x, so it follows that y D 2
if x 6D 0. Hence we see that y.x/ � 2 is the only equilibrium solution of this differential
equation, as seems visually obvious in Fig. 1.5.2.

A Closer Look at the Method

The preceding derivation of the solution in Eq. (6) of the linear first-order equation
y0CPy DQ bears closer examination. Suppose that the coefficient functions P.x/
and Q.x/ are continuous on the (possibly unbounded) open interval I . Then the
antiderivatives Z

P.x/ dx and
Z �

Q.x/e
R

P.x/ dx
�
dx

exist on I . Our derivation of Eq. (6) shows that if y D y.x/ is a solution of Eq. (3)
on I , then y.x/ is given by the formula in Eq. (6) for some choice of the constant
C . Conversely, you may verify by direct substitution (Problem 31) that the function
y.x/ given in Eq. (6) satisfies Eq. (3). Finally, given a point x0 of I and any num-
ber y0, there is—as previously noted—a unique value of C such that y.x0/ D y0.
Consequently, we have proved the following existence-uniqueness theorem.

THEOREM 1 The Linear First-Order Equation

If the functions P.x/ and Q.x/ are continuous on the open interval I containing
the point x0, then the initial value problem

dy

dx
C P.x/y D Q.x/; y.x0/ D y0 (11)

has a unique solution y.x/ on I , given by the formula in Eq. (6) with an appro-
priate value of C .

Remark 1 Theorem 1 gives a solution on the entire interval I for a linear differential
equation, in contrast with Theorem 1 of Section 1.3, which guarantees only a solution on a
possibly smaller interval.

Remark 2 Theorem 1 tells us that every solution of Eq. (3) is included in the general solu-
tion given in Eq. (6). Thus a linear first-order differential equation has no singular solutions.
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Remark 3 The appropriate value of the constant C in Eq. (6)—as needed to solve the
initial value problem in Eq. (11)—can be selected “automatically” by writing

�.x/ D exp
�Z x

x0

P.t/ dt

�
;

y.x/ D 1

�.x/

�
y0 C

Z x

x0

�.t/Q.t/ dt

�
:

(12)

The indicated limits x0 and x effect a choice of indefinite integrals in Eq. (6) that guarantees
in advance that �.x0/ D 1 and that y.x0/ D y0 (as you can verify directly by substituting
x D x0 in Eq. (12)).

Example 3 Solve the initial value problem

x2 dy

dx
C xy D sin x; y.1/ D y0: (13)

Solution Division by x2 gives the linear first-order equation

dy

dx
C 1

x
y D sin x

x2

with P.x/ D 1=x and Q.x/ D .sin x/=x2. With x0 D 1 the integrating factor in (12) is

�.x/ D exp
�Z x

1

1

t
dt

�
D exp.ln x/ D x;

so the desired particular solution is given by

y.x/ D 1

x

�
y0 C

Z x

1

sin t
t
dt

�
: (14)

In accord with Theorem 1, this solution is defined on the whole positive x-axis.

Comment In general, an integral such as the one in Eq. (14) would (for given x) need to
be approximated numerically—using Simpson’s rule, for instance—to find the value y.x/ of
the solution at x. In this case, however, we have the sine integral function

Si.x/ D
Z x

0

sin t
t
dt;

which appears with sufficient frequency in applications that its values have been tabulated. A
good set of tables of special functions is Abramowitz and Stegun, Handbook of Mathematical
Functions (New York: Dover, 1965). Then the particular solution in Eq. (14) reduces to

y.x/ D 1

x

"
y0 C

Z x

0

sin t
t
dt �

Z 1

0

sin t
t
dt

#
D 1

x
Œy0 C Si.x/ � Si.1/� : (15)

The sine integral function is available in most scientific computing systems and can be used
to plot typical solution curves defined by Eq. (15). Figure 1.5.3 shows a selection of solution
curves with initial values y.1/ D y0 ranging from y0 D �3 to y0 D 3. It appears that on
each solution curve, y.x/! 0 as x ! C1, and this is in fact true because the sine integral
function is bounded.

3
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(1, 3)

(1, –3)

FIGURE 1.5.3. Typical solution
curves defined by Eq. (15).

In the sequel we will see that it is the exception—rather than the rule—when a
solution of a differential equation can be expressed in terms of elementary functions.
We will study various devices for obtaining good approximations to the values of
the nonelementary functions we encounter. In Chapter 2 we will discuss numerical
integration of differential equations in some detail.
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Mixture Problems
As a first application of linear first-order equations, we consider a tank containing
a solution—a mixture of solute and solvent—such as salt dissolved in water. There
is both inflow and outflow, and we want to compute the amount x.t/ of solute in
the tank at time t , given the amount x.0/ D x0 at time t D 0. Suppose that solution
with a concentration of ci grams of solute per liter of solution flows into the tank
at the constant rate of ri liters per second, and that the solution in the tank—kept
thoroughly mixed by stirring—flows out at the constant rate of ro liters per second.

To set up a differential equation for x.t/, we estimate the change �x in x
during the brief time interval Œt; t C �t�. The amount of solute that flows into the
tank during �t seconds is rici �t grams. To check this, note how the cancellation
of dimensions checks our computations:�

ri
liters

second

��
ci

grams
liter

�
.�t seconds/

yields a quantity measured in grams.
The amount of solute that flows out of the tank during the same time interval

depends on the concentration co.t/ of solute in the solution at time t . But as noted
in Fig. 1.5.4, co.t/D x.t/=V .t/, where V.t/ denotes the volume (not constant unless
ri D ro) of solution in the tank at time t . Then

Output:
ro  L /s,
co  g/L

x
V

Amount x(t)
Volume V(t)
Concentration co(t) =

Input: ri  L/s,  ci g/L

FIGURE 1.5.4. The single-tank
mixture problem.

�x D fgrams inputg � fgrams outputg � rici �t � roco�t:

We now divide by �t :
�x

�t
� rici � roco:

Finally, we take the limit as�t ! 0; if all the functions involved are continuous and
x.t/ is differentiable, then the error in this approximation also approaches zero, and
we obtain the differential equation

dx

dt
D rici � roco; (16)

in which ri , ci , and ro are constants, but co denotes the variable concentration

co.t/ D
x.t/

V .t/
(17)

of solute in the tank at time t . Thus the amount x.t/ of solute in the tank satisfies
the differential equation

dx

dt
D rici �

ro

V
x: (18)

If V0DV.0/, then V.t/D V0C .ri �ro/t , so Eq. (18) is a linear first-order differential
equation for the amount x.t/ of solute in the tank at time t .
Important Equation (18) need not be committed to memory. It is the process we used to
obtain that equation—examination of the behavior of the system over a short time interval
Œt; t C�t�—that you should strive to understand, because it is a very useful tool for obtaining
all sorts of differential equations.

Remark It was convenient for us to use g/L mass/volume units in deriving Eq. (18). But
any other consistent system of units can be used to measure amounts of solute and volumes
of solution. In the following example we measure both in cubic kilometers.
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Example 4 Assume that Lake Erie has a volume of 480 km3 and that its rate of inflow (from Lake Huron)
and outflow (to Lake Ontario) are both 350 km3 per year. Suppose that at the time t D 0

(years), the pollutant concentration of Lake Erie—caused by past industrial pollution that
has now been ordered to cease—is five times that of Lake Huron. If the outflow henceforth
is perfectly mixed lake water, how long will it take to reduce the pollution concentration in
Lake Erie to twice that of Lake Huron?

Solution Here we have

V D 480 (km3);

ri D ro D r D 350 (km3=yr);

ci D c (the pollutant concentration of Lake Huron), and

x0 D x.0/ D 5cV;
and the question is this: When is x.t/ D 2cV ? With this notation, Eq. (18) is the separable
equation

dx

dt
D rc � r

V
x; (19)

which we rewrite in the linear first-order form

dx

dt
C px D q (20)

with constant coefficients p D r=V , q D rc, and integrating factor � D ept . You can either
solve this equation directly or apply the formula in (12). The latter gives

x.t/ D e�pt

�
x0 C

Z t

0
qept dt

�
D e�pt

�
x0 C

q

p

�
ept � 1	�

D e�rt=V

�
5cV C rc

r=V

�
ert=V � 1

��
I

x.t/ D cV C 4cVe�rt=V : (21)

To find when x.t/ D 2cV , we therefore need only solve the equation

cV C 4cVe�rt=V D 2cV for t D V

r
ln 4 D 480

350
ln 4 � 1.901 (years):

Example 5 A 120-gallon (gal) tank initially contains 90 lb of salt dissolved in 90 gal of water. Brine
containing 2 lb=gal of salt flows into the tank at the rate of 4 gal=min, and the well-stirred
mixture flows out of the tank at the rate of 3 gal=min. How much salt does the tank contain
when it is full?

Solution The interesting feature of this example is that, due to the differing rates of inflow and outflow,
the volume of brine in the tank increases steadily with V.t/D 90C t gallons. The change�x
in the amount x of salt in the tank from time t to time t C�t (minutes) is given by

�x � .4/.2/�t � 3
�

x

90C t

�
�t;

so our differential equation is
dx

dt
C 3

90C t x D 8:
An integrating factor is

�.x/ D exp
�Z

3

90C t dt
�
D e3 ln.90Ct/ D .90C t /3;

which gives

Dt

h
.90C t /3x

i
D 8.90C t /3I

.90C t /3x D 2.90C t /4 C C:
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Substitution of x.0/ D 90 gives C D �.90/4, so the amount of salt in the tank at time t is

x.t/ D 2.90C t / � 904

.90C t /3 :

The tank is full after 30 min, and when t D 30, we have

x.30/ D 2.90C 30/ � 904

1203
� 202 (lb)

of salt in the tank.

1.5 Problems
Find general solutions of the differential equations in Prob-
lems 1 through 25. If an initial condition is given, find the
corresponding particular solution. Throughout, primes denote
derivatives with respect to x.

1. y0 C y D 2, y.0/ D 0 2. y0 � 2y D 3e2x , y.0/D 0
3. y0 C 3y D 2xe�3x 4. y0 � 2xy D ex2

5. xy0 C 2y D 3x, y.1/ D 5
6. xy0 C 5y D 7x2, y.2/ D 5
7. 2xy0 C y D 10px 8. 3xy0 C y D 12x
9. xy0 � y D x, y.1/ D 7 10. 2xy0 � 3y D 9x3

11. xy0 C y D 3xy, y.1/ D 0
12. xy0 C 3y D 2x5, y.2/ D 1
13. y0 C y D ex , y.0/ D 1
14. xy0 � 3y D x3, y.1/ D 10
15. y0 C 2xy D x, y.0/ D �2
16. y0 D .1 � y/ cos x, y.�/ D 2
17. .1C x/y0 C y D cos x, y.0/ D 1
18. xy0 D 2y C x3 cos x
19. y0 C y cot x D cos x
20. y0 D 1C x C y C xy, y.0/ D 0
21. xy0 D 3y C x4 cos x, y.2�/ D 0
22. y0 D 2xy C 3x2 exp.x2/, y.0/ D 5
23. xy0 C .2x � 3/y D 4x4

24. .x2 C 4/y0 C 3xy D x, y.0/ D 1
25. .x2 C 1/ dy

dx
C 3x3y D 6x exp

�
�3

2x
2
�

, y.0/ D 1

Solve the differential equations in Problems 26 through 28 by
regarding y as the independent variable rather than x.

26. .1 � 4xy2/
dy

dx
D y3 27. .x C yey/

dy

dx
D 1

28. .1C 2xy/ dy
dx
D 1C y2

29. Express the general solution of dy=dx D 1C 2xy in terms
of the error function

erf.x/ D 2p
�

Z x

0
e�t2

dt:

30. Express the solution of the initial value problem

2x
dy

dx
D y C 2x cos x; y.1/ D 0

as an integral as in Example 3 of this section.

Problems 31 and 32 illustrate—for the special case of first-
order linear equations—techniques that will be important
when we study higher-order linear equations in Chapter 3.

31. (a) Show that

yc.x/ D Ce� R
P.x/ dx

is a general solution of dy=dx C P.x/y D 0. (b) Show
that

yp.x/ D e� R
P.x/ dx

�Z �
Q.x/e

R
P.x/ dx

�
dx

�

is a particular solution of dy=dx C P.x/y D Q.x/.
(c) Suppose that yc.x/ is any general solution of dy=dx C
P.x/y D 0 and that yp.x/ is any particular solution of
dy=dxCP.x/y DQ.x/. Show that y.x/D yc.x/Cyp.x/

is a general solution of dy=dx C P.x/y D Q.x/.
32. (a) Find constants A and B such that yp.x/ D A sin x C

B cos x is a solution of dy=dxC y D 2 sin x. (b) Use the
result of part (a) and the method of Problem 31 to find the
general solution of dy=dx C y D 2 sin x. (c) Solve the
initial value problem dy=dx C y D 2 sin x, y.0/ D 1.

33. A tank contains 1000 liters (L) of a solution consisting of
100 kg of salt dissolved in water. Pure water is pumped
into the tank at the rate of 5 L=s, and the mixture—kept
uniform by stirring— is pumped out at the same rate. How
long will it be until only 10 kg of salt remains in the tank?

34. Consider a reservoir with a volume of 8 billion cubic
feet (ft3) and an initial pollutant concentration of 0.25%.
There is a daily inflow of 500 million ft3 of water with a
pollutant concentration of 0.05% and an equal daily out-
flow of the well-mixed water in the reservoir. How long
will it take to reduce the pollutant concentration in the
reservoir to 0.10%?

35. Rework Example 4 for the case of Lake Ontario, which
empties into the St. Lawrence River and receives inflow
from Lake Erie (via the Niagara River). The only differ-
ences are that this lake has a volume of 1640 km3 and an
inflow-outflow rate of 410 km3=year.
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36. A tank initially contains 60 gal of pure water. Brine
containing 1 lb of salt per gallon enters the tank at
2 gal=min, and the (perfectly mixed) solution leaves the
tank at 3 gal=min; thus the tank is empty after exactly 1 h.
(a) Find the amount of salt in the tank after t minutes.
(b) What is the maximum amount of salt ever in the tank?

37. A 400-gal tank initially contains 100 gal of brine contain-
ing 50 lb of salt. Brine containing 1 lb of salt per gallon
enters the tank at the rate of 5 gal=s, and the well-mixed
brine in the tank flows out at the rate of 3 gal=s. How
much salt will the tank contain when it is full of brine?

38. Consider the cascade of two tanks shown in Fig. 1.5.5,
with V1 D 100 (gal) and V2 D 200 (gal) the volumes of
brine in the two tanks. Each tank also initially contains
50 lb of salt. The three flow rates indicated in the fig-
ure are each 5 gal=min, with pure water flowing into tank
1. (a) Find the amount x.t/ of salt in tank 1 at time t .
(b) Suppose that y.t/ is the amount of salt in tank 2 at
time t . Show first that

dy

dt
D 5x

100
� 5y

200
;

and then solve for y.t/, using the function x.t/ found in
part (a). (c) Finally, find the maximum amount of salt
ever in tank 2.

Tank 1
Volume V1
Amount x

Tank 2
Volume V2
Amount y

FIGURE 1.5.5. A cascade of two tanks.

39. Suppose that in the cascade shown in Fig. 1.5.5, tank 1
initially contains 100 gal of pure ethanol and tank 2 ini-
tially contains 100 gal of pure water. Pure water flows
into tank 1 at 10 gal=min, and the other two flow rates
are also 10 gal=min. (a) Find the amounts x.t/ and y.t/
of ethanol in the two tanks at time t = 0. (b) Find the
maximum amount of ethanol ever in tank 2.

40. A multiple cascade is shown in Fig. 1.5.6. At time t D 0,
tank 0 contains 1 gal of ethanol and 1 gal of water; all the
remaining tanks contain 2 gal of pure water each. Pure
water is pumped into tank 0 at 1 gal=min, and the vary-
ing mixture in each tank is pumped into the one below it
at the same rate. Assume, as usual, that the mixtures are
kept perfectly uniform by stirring. Let xn.t/ denote the
amount of ethanol in tank n at time t .

Tank 2

Tank 1

Tank n

Tank 0

FIGURE 1.5.6. A multiple cascade.

(a) Show that x0.t/ D e�t=2. (b) Show by induction on
n that

xn.t/ D
tne�t=2

nŠ 2n
for n 	 0.

(c) Show that the maximum value of xn.t/ for n > 0 is
Mn D xn.2n/D nne�n=nŠ. (d) Conclude from Stirling’s
approximation nŠ� nne�n

p
2�n that Mn � .2�n/�1=2.

41. A 30-year-old woman accepts an engineering position
with a starting salary of $30,000 per year. Her salary
S.t/ increases exponentially, with S.t/ D 30et=20 thou-
sand dollars after t years. Meanwhile, 12% of her salary
is deposited continuously in a retirement account, which
accumulates interest at a continuous annual rate of 6%.
(a) Estimate �A in terms of �t to derive the differential
equation satisfied by the amount A.t/ in her retirement ac-
count after t years. (b) Compute A.40/, the amount avail-
able for her retirement at age 70.

42. Suppose that a falling hailstone with density ı D 1 starts
from rest with negligible radius r D 0. Thereafter its ra-
dius is r D kt (k is a constant) as it grows by accretion
during its fall. Use Newton’s second law—according to
which the net force F acting on a possibly variable mass
m equals the time rate of change dp=dt of its momentum
p D mv—to set up and solve the initial value problem

d

dt
.mv/ D mg; v.0/ D 0;

where m is the variable mass of the hailstone, v D dy=dt

is its velocity, and the positive y-axis points downward.
Then show that dv=dt D g=4. Thus the hailstone falls as
though it were under one-fourth the influence of gravity.

43. Figure 1.5.7 shows a slope field and typical solution
curves for the equation y0 D x � y. (a) Show that ev-
ery solution curve approaches the straight line y D x � 1
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as x ! C1. (b) For each of the five values y1 D 3:998,
3:999, 4:000, 4:001, and 4.002, determine the initial value
y0 (accurate to four decimal places) such that y.5/ D y1

for the solution satisfying the initial condition y.�5/D y0.

0
x

y 0

–10
–8

–4
–2

–6

2
4

8
10

6

–5 5

FIGURE 1.5.7. Slope field and solution curves
for y0 D x � y.

44. Figure 1.5.8 shows a slope field and typical solution
curves for the equation y0 D x C y. (a) Show that ev-
ery solution curve approaches the straight line y D�x � 1
as x ! �1. (b) For each of the five values y1 D �10,
�5, 0, 5, and 10, determine the initial value y0 (accurate to
five decimal places) such that y.5/ D y1 for the solution
satisfying the initial condition y.�5/ D y0.

0
x

y 0

–10
–8

–4
–2

–6

2
4

8
10

6

–5 5

FIGURE 1.5.8. Slope field and solution curves
for y0 D x C y.

Problems 45 and 46 deal with a shallow reservoir that has
a one-square-kilometer water surface and an average water
depth of 2 meters. Initially it is filled with fresh water, but at
time t D 0 water contaminated with a liquid pollutant begins
flowing into the reservoir at the rate of 200 thousand cubic
meters per month. The well-mixed water in the reservoir flows
out at the same rate. Your first task is to find the amount x.t/ of
pollutant (in millions of liters) in the reservoir after t months.

45. The incoming water has a pollutant concentration of
c.t/ D 10 liters per cubic meter (L/m3). Verify that
the graph of x.t/ resembles the steadily rising curve in
Fig. 1.5.9, which approaches asymptotically the graph of
the equilibrium solution x.t/ � 20 that corresponds to the
reservoir’s long-term pollutant content. How long does it
take the pollutant concentration in the reservoir to reach
10 L/m3?

46. The incoming water has pollutant concentration c.t/ D
10.1C cos t / L/m3 that varies between 0 and 20, with an
average concentration of 10 L/m3 and a period of oscilla-
tion of slightly over 61

4 months. Does it seem predictable
that the lake’s pollutant content should ultimately oscillate
periodically about an average level of 20 million liters?
Verify that the graph of x.t/ does, indeed, resemble the
oscillatory curve shown in Fig. 1.5.9. How long does it
take the pollutant concentration in the reservoir to reach
10 L/m3?
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t

x

x = 20

Problem 46

Problem 45

FIGURE 1.5.9. Graphs of solutions in
Problems 45 and 46.

1.5 Application Indoor Temperature Oscillations
For an interesting applied problem that involves the solution of a linear differen-
tial equation, consider indoor temperature oscillations that are driven by outdoor
temperature oscillations of the form

A.t/ D a0 C a1 cos!t C b1 sin!t: (1)

If ! D �=12, then these oscillations have a period of 24 hours (so that the cycle of
outdoor temperatures repeats itself daily) and Eq. (1) provides a realistic model for
the temperature outside a house on a day when no change in the overall day-to-day
weather pattern is occurring. For instance, for a typical July day in Athens, GA with
a minimum temperature of 70ıF when t D 4 (4 A.M.) and a maximum of 90ıF when
t D 16 (4 P.M.), we would take

A.t/ D 80 � 10 cos!.t � 4/ D 80 � 5 cos!t � 5
p
3 sin!t: (2)
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We derived Eq. (2) by using the identity cos.˛ � ˇ/ D cos˛ cosˇ C sin˛ sinˇ to
get a0 D 80, a1 D �5, and b1 D �5

p
3 in Eq. (1).

If we write Newton’s law of cooling (Eq. (3) of Section 1.1) for the corre-
sponding indoor temperature u.t/ at time t , but with the outside temperature A.t/
given by Eq. (1) instead of a constant ambient temperature A, we get the linear
first-order differential equation

du

dt
D �k.u � A.t//I

that is,
du

dt
C ku D k.a0 C a1 cos!t C b1 sin!t/ (3)

with coefficient functions P.t/� k andQ.t/D kA.t/. Typical values of the propor-
tionality constant k range from 0:2 to 0:5 (although k might be greater than 0:5 for
a poorly insulated building with open windows, or less than 0:2 for a well-insulated
building with tightly sealed windows).

SCENARIO: Suppose that our air conditioner fails at time t0 D 0 one midnight,
and we cannot afford to have it repaired until payday at the end of the month. We
therefore want to investigate the resulting indoor temperatures that we must endure
for the next several days.

Begin your investigation by solving Eq. (3) with the initial condition u.0/ D
u0 (the indoor temperature at the time of the failure of the air conditioner). You
may want to use the integral formulas in 49 and 50 of the endpapers, or possibly a
computer algebra system. You should get the solution

u.t/ D a0 C c0e
�kt C c1 cos!t C d1 sin!t; (4)

where

c0 D u0 � a0 �
k2a1 � k!b1

k2 C !2
;

c1 D
k2a1 � k!b1

k2 C !2
; d1 D

k!a1 C k2b1

k2 C !2

with ! D �=12.
With a0 D 80, a1 D �5, b1 D �5

p
3 (as in Eq. (2)), ! D �=12, and k D 0:2

(for instance), this solution reduces (approximately) to

u.t/ D 80C e�t=5 .u0 � 82:3351/C .2:3351/ cos
�t

12
� .5:6036/ sin

�t

12
: (5)

Observe first that the “damped” exponential term in Eq. (5) approaches zero
as t !C1, leaving the long-term “steady periodic” solution

usp.t/ D 80C .2:3351/ cos
�t

12
� .5:6036/ sin

�t

12
: (6)

Consequently, the long-term indoor temperatures oscillate every 24 hours around
the same average temperature 80ıF as the average outdoor temperature.
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Figure 1.5.10 shows a number of solution curves corresponding to possible
initial temperatures u0 ranging from 65ıF to 95ıF. Observe that—whatever the
initial temperature—the indoor temperature “settles down” within about 18 hours
to a periodic daily oscillation. But the amplitude of temperature variation is less
indoors than outdoors. Indeed, using the trigonometric identity mentioned earlier,
Eq. (6) can be rewritten (verify this!) as

u.t/ D 80 � .6:0707/ cos
�
�t

12
� 1:9656

�
D 80 � .6:0707/ cos

�

12
.t � 7:5082/: (7)

Do you see that this implies that the indoor temperature varies between a minimum
of about 74ıF and a maximum of about 86ıF?
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FIGURE 1.5.10. Solution curves given by
Eq. (5) with u0 D 65; 68; 71; : : : ; 92; 95.
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FIGURE 1.5.11. Comparison of indoor
and outdoor temperature oscillations.

Finally, comparison of Eqs. (2) and (7) indicates that the indoor temperature
lags behind the outdoor temperature by about 7:5082 � 4 � 3:5 hours, as illustrated
in Fig. 1.5.11. Thus the temperature inside the house continues to rise until about
7:30 P.M. each evening, so the hottest part of the day inside is early evening rather
than late afternoon (as outside).

For a personal problem to investigate, carry out a similar analysis using av-
erage July daily maximum=minimum figures for your own locale and a value of k
appropriate to your own home. You might also consider a winter day instead of
a summer day. (What is the winter-summer difference for the indoor temperature
problem?) You may wish to explore the use of available technology both to solve
the differential equation and to graph its solution for the indoor temperature in com-
parison with the outdoor temperature.

1.6 Substitution Methods and Exact Equations
The first-order differential equations we have solved in the previous sections have
all been either separable or linear. But many applications involve differential equa-
tions that are neither separable nor linear. In this section we illustrate (mainly with
examples) substitution methods that sometimes can be used to transform a given
differential equation into one that we already know how to solve.

For instance, the differential equation

dy

dx
D f .x; y/; (1)
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with dependent variable y and independent variable x, may contain a conspicuous
combination

v D ˛.x; y/ (2)

of x and y that suggests itself as a new independent variable v. Thus the differential
equation

dy

dx
D .x C y C 3/2

practically demands the substitution v D x C y C 3 of the form in Eq. (2).
If the substitution relation in Eq. (2) can be solved for

y D ˇ.x; v/; (3)

then application of the chain rule—regarding v as an (unknown) function of x—
yields

dy

dx
D @ˇ

@x

dx

dx
C @ˇ

@v

dv

dx
D ˇx C ˇv

dv

dx
; (4)

where the partial derivatives @ˇ=@x D ˇx.x; v/ and @ˇ=@v D ˇv.x; v/ are known
functions of x and v. If we substitute the right-hand side in (4) for dy=dx in Eq. (1)
and then solve for dv=dx, the result is a new differential equation of the form

dv

dx
D g.x; v/ (5)

with new dependent variable v. If this new equation is either separable or linear,
then we can apply the methods of preceding sections to solve it.

If v D v.x/ is a solution of Eq. (5), then y D ˇ.x; v.x// will be a solution of
the original Eq. (1). The trick is to select a substitution such that the transformed
Eq. (5) is one we can solve. Even when possible, this is not always easy; it may
require a fair amount of ingenuity or trial and error.

Example 1 Solve the differential equation
dy

dx
D .x C y C 3/2:

Solution As indicated earlier, let’s try the substitution

v D x C y C 3I that is, y D v � x � 3:

Then
dy

dx
D dv

dx
� 1;

so the transformed equation is
dv

dx
D 1C v2:

This is a separable equation, and we have no difficulty in obtaining its solution

x D
Z

dv

1C v2
D tan�1 v C C:

So v D tan.x � C/. Because v D x C y C 3, the general solution of the original equation
dy=dx D .x C y C 3/2 is x C y C 3 D tan.x � C/; that is,

y.x/ D tan.x � C/ � x � 3:
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Remark Figure 1.6.1 shows a slope field and typical solution curves for the differential
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FIGURE 1.6.1. Slope field and
solution curves for
y0 D .x C y C 3/2.

equation of Example 1. We see that, although the function f .x; y/ D .x C y C 3/2 is contin-
uously differentiable for all x and y, each solution is continuous only on a bounded interval.
In particular, because the tangent function is continuous on the open interval .��=2; �=2/,
the particular solution with arbitrary constant value C is continuous on the interval where
��=2 < x � C < �=2; that is, C � �=2 < x < C C �=2. This situation is fairly typical of non-
linear differential equations, in contrast with linear differential equations, whose solutions
are continuous wherever the coefficient functions in the equation are continuous.

Example 1 illustrates the fact that any differential equation of the form

dy

dx
D F.ax C by C c/ (6)

can be transformed into a separable equation by use of the substitution v D ax C
by C c (see Problem 55). The paragraphs that follow deal with other classes of
first-order equations for which there are standard substitutions that are known to
succeed.

Homogeneous Equations
A homogeneous first-order differential equation is one that can be written in the
form

dy

dx
D F

�y
x

�
: (7)

If we make the substitutions

v D y

x
; y D vx; dy

dx
D v C x dv

dx
; (8)

then Eq. (7) is transformed into the separable equation

x
dv

dx
D F.v/ � v:

Thus every homogeneous first-order differential equation can be reduced to an inte-
gration problem by means of the substitutions in (8).
Remark A dictionary definition of “homogeneous” is “of a similar kind or nature.” Con-
sider a differential equation of the form

Axmyn dy

dx
D Bxpyq C Cxrys ; .�/

whose polynomial coefficient functions are “homogeneous” in the sense that each of their
terms has the same total degree, mC n D p C q D r C s D K. If we divide each side of .�/
by xK , then the result—because xmyn=xmCn D .y=x/n, and so forth—is the equation

A
�y
x

�n dy

dx
D B

�y
x

�q
C C

�y
x

�s
;

which evidently can be written (by another division) in the form of Eq. (7). More generally,
a differential equation of the form P.x; y/y0 D Q.x; y/ with polynomial coefficients P and
Q is homogeneous if the terms in these polynomials all have the same total degree K. The
differential equation in the following example is of this form with K D 2.

Example 2 Solve the differential equation

2xy
dy

dx
D 4x2 C 3y2:
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Solution This equation is neither separable nor linear, but we recognize it as a homogeneous equation
by writing it in the form

dy

dx
D 4x2 C 3y2

2xy
D 2

�
x

y

�
C 3

2

�y
x

�
:

The substitutions in (8) then take the form

y D vx; dy

dx
D v C x dv

dx
; v D y

x
; and

1

v
D x

y
:

These yield

v C x dv
dx
D 2

v
C 3

2
v;

and hence

x
dv

dx
D 2

v
C v

2
D v2 C 4

2v
IZ

2v

v2 C 4 dv D
Z
1

x
dxI

ln.v2 C 4/ D ln jxj C lnC:

We apply the exponential function to both sides of the last equation to obtain

v2 C 4 D C jxjI

y2

x2
C 4 D C jxjI

y2 C 4x2 D kx3:

Note that the left-hand side of this equation is necessarily nonnegative. It follows that k > 0
in the case of solutions that are defined for x > 0, while k < 0 for solutions where x < 0.
Indeed, the family of solution curves illustrated in Fig. 1.6.2 exhibits symmetry about both
coordinate axes. Actually, there are positive-valued and negative-valued solutions of the
forms y.x/ D ˙

p
kx3 � 4x2 that are defined for x > 4=k if the constant k is positive, and for
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FIGURE 1.6.2. Slope field and
solution curves for
2xyy0 D 4x2 C 3y2.

x < 4=k if k is negative.

Example 3 Solve the initial value problem

x
dy

dx
D y C

q
x2 � y2; y.x0/ D 0;

where x0 > 0.
Solution We divide both sides by x and find that

dy

dx
D y

x
C
r
1 �

�y
x

�2
;

so we make the substitutions in (8); we get

v C x dv
dx
D v C

p
1 � v2 IZ

1p
1 � v2

dv D
Z
1

x
dxI

sin�1 v D ln x C C:
We need not write ln jxj because x > 0 near x D x0 > 0. Now note that v.x0/D y.x0/=x0 D 0,
so C D sin�1 0 � ln x0 D � ln x0. Hence

v D y

x
D sin .ln x � ln x0/ D sin

�
ln
x

x0

�
;
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and therefore

y.x/ D x sin
�

ln
x

x0

�
is the desired particular solution. Figure 1.6.3 shows some typical solution curves. Because
of the radical in the differential equation, these solution curves are confined to the indicated
triangular region x = jyj. You can check that the boundary lines y D x and y D �x (for
x > 0) are singular solution curves that consist of points of tangency with the solution curves
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FIGURE 1.6.3. Solution curves for

xy0 D y C
p

x2 � y2.

found earlier.

Bernoulli Equations
A first-order differential equation of the form

dy

dx
C P.x/y D Q.x/yn (9)

is called a Bernoulli equation. If either n D 0 or n D 1, then Eq. (9) is linear.
Otherwise, as we ask you to show in Problem 56, the substitution

v D y1�n (10)

transforms Eq. (9) into the linear equation

dv

dx
C .1 � n/P.x/v D .1 � n/Q.x/:

Rather than memorizing the form of this transformed equation, it is more efficient
to make the substitution in Eq. (10) explicitly, as in the following examples.

Example 4 If we rewrite the homogeneous equation 2xyy0 D 4x2 C 3y2 of Example 2 in the form

dy

dx
� 3

2x
y D 2x

y
;

we see that it is also a Bernoulli equation with P.x/ D �3=.2x/, Q.x/ D 2x, n D �1, and
1 � n D 2. Hence we substitute

v D y2; y D v1=2; and
dy

dx
D dy

dv

dv

dx
D 1

2
v�1=2 dv

dx
:

This gives
1

2
v�1=2 dv

dx
� 3

2x
v1=2 D 2xv�1=2:

Then multiplication by 2v1=2 produces the linear equation

dv

dx
� 3
x
v D 4x

with integrating factor � D e
R

.�3=x/ dx D x�3. So we obtain

Dx.x
�3v/ D 4

x2
I

x�3v D � 4
x
C C I

x�3y2 D � 4
x
C C I

y2 D �4x2 C Cx3:
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Example 5 The equation

x
dy

dx
C 6y D 3xy4=3

is neither separable nor linear nor homogeneous, but it is a Bernoulli equation with n D 4
3 ,

1 � n D �1
3 . The substitutions

v D y�1=3; y D v�3; and
dy

dx
D dy

dv

dv

dx
D �3v�4 dv

dx

transform it into

�3xv�4 dv

dx
C 6v�3 D 3xv�4:

Division by �3xv�4 yields the linear equation

dv

dx
� 2
x
v D �1

with integrating factor � D e
R

.�2=x/ dx D x�2. This gives

Dx.x
�2v/ D � 1

x2
I x�2v D 1

x
C C I v D x C Cx2I

and finally,

y.x/ D 1

.x C Cx2/3
:

Example 6 The equation

2xe2y dy

dx
D 3x4 C e2y (11)

is neither separable, nor linear, nor homogeneous, nor is it a Bernoulli equation. But we
observe that y appears only in the combinations e2y and Dx.e

2y/ D 2e2yy0. This prompts
the substitution

v D e2y ;
dv

dx
D 2e2y dy

dx

that transforms Eq. (11) into the linear equation xv0.x/ D 3x4 C v.x/; that is,

dv

dx
� 1
x
v D 3x3:

After multiplying by the integrating factor � D 1=x, we find that

1

x
v D

Z
3x2 dx D x3 C C; so e2y D v D x4 C Cx;

and hence
y.x/ D 1

2 ln
ˇ̌̌
x4 C Cx

ˇ̌̌
:

Flight Trajectories
Suppose that an airplane departs from the point .a; 0/ located due east of its intended

x

y

wy = f (x)

(a, 0)

v0

FIGURE 1.6.4. The airplane headed
for the origin.

destination—an airport located at the origin .0; 0/. The plane travels with constant
speed v0 relative to the wind, which is blowing due north with constant speed w.
As indicated in Fig. 1.6.4, we assume that the plane’s pilot maintains its heading
directly toward the origin.

Figure 1.6.5 helps us derive the plane’s velocity components relative to the
ground. They are

dx

dt
D �v0 cos � D � v0xp

x2 C y2
;

dy

dt
D �v0 sin � C w D � v0yp

x2 C y2
C w:
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Hence the trajectory y D f .x/ of the plane satisfies the differential equation

x

w

θ

(x, y)

x2 + y2

y
v0

FIGURE 1.6.5. The components of
the velocity vector of the airplane.

dy

dx
D dy=dt

dx=dt
D 1

v0x

�
v0y � w

p
x2 C y2

�
: (12)

If we set
k D w

v0

; (13)

the ratio of the windspeed to the plane’s airspeed, then Eq. (12) takes the homoge-
neous form

dy

dx
D y

x
� k

�
1C

�y
x

�2
�1=2

: (14)

The substitution y D xv, y0 D v C xv0 then leads routinely to

Z
dvp
1C v2

D �
Z
k

x
dx: (15)

By trigonometric substitution, or by consulting a table for the integral on the left,
we find that

ln
�
v C

p
1C v2

�
D �k ln x C C; (16)

and the initial condition v.a/ D y.a/=a D 0 yields

C D k ln a: (17)

As we ask you to show in Problem 68, the result of substituting (17) in Eq. (16) and
then solving for v is

v D 1

2

��x
a

��k

�
�x
a

�k
�
: (18)

Because y D xv, we finally obtain

y.x/ D a

2

��x
a

�1�k

�
�x
a

�1Ck
�

(19)

for the equation of the plane’s trajectory.
Note that only in the case k < 1 (that is, w < v0) does the curve in Eq. (19)

pass through the origin, so that the plane reaches its destination. If w D v0 (so that
k D 1), then Eq. (19) takes the form y.x/D 1

2
a.1� x2=a2/, so the plane’s trajectory

approaches the point .0; a=2/ rather than .0; 0/. The situation is even worse if w > v0

y

x(0, 0)

(0, a/2)

w < v0

w > v0

w = v0

(a, 0)

FIGURE 1.6.6. The three cases
w < v0 (plane velocity exceeds wind
velocity), w D v0 (equal velocities),
and w > v0 (wind is greater).

(so k > 1)—in this case it follows from Eq. (19) that y !C1 as x ! 0. The three
cases are illustrated in Fig. 1.6.6.

Example 7 If a D 200 mi, v0 D 500 mi=h, and w D 100 mi=h, then k D w=v0 D 1
5 , so the plane will

succeed in reaching the airport at .0; 0/. With these values, Eq. (19) yields

y.x/ D 100
�� x

200

�4=5
�
� x

200

�6=5
�
: (20)

Now suppose that we want to find the maximum amount by which the plane is blown off
course during its trip. That is, what is the maximum value of y.x/ for 0 5 x 5 200?
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Solution Differentiation of the function in Eq. (20) yields

dy

dx
D 1

2

�
4

5

� x

200

��1=5
� 6
5

� x

200

�1=5
�
;

and we readily solve the equation y0.x/ D 0 to obtain .x=200/2=5 D 2
3 . Hence

ymax D 100
"�

2

3

�2

�
�
2

3

�3
#
D 400

27
� 14:81:

Thus the plane is blown almost 15 mi north at one point during its westward journey. (The
graph of the function in Eq. (20) is the one used to construct Fig. 1.6.4. The vertical scale
there is exaggerated by a factor of 4.)

Exact Differential Equations
We have seen that a general solution y.x/ of a first-order differential equation is
often defined implicitly by an equation of the form

F.x; y.x// D C; (21)

where C is a constant. On the other hand, given the identity in (21), we can recover
the original differential equation by differentiating each side with respect to x. Pro-
vided that Eq. (21) implicitly defines y as a differentiable function of x, this gives
the original differential equation in the form

@F

@x
C @F

@y

dy

dx
D 0I

that is,

M.x; y/CN.x; y/ dy
dx
D 0; (22)

where M.x; y/ D Fx.x; y/ and N.x; y/ D Fy.x; y/.
It is sometimes convenient to rewrite Eq. (22) in the more symmetric form

M.x; y/ dx CN.x; y/ dy D 0; (23)

called its differential form. The general first-order differential equation y0 D
f .x; y/ can be written in this form with M D f .x; y/ and N � �1. The preceding
discussion shows that, if there exists a function F.x; y/ such that

@F

@x
DM and

@F

@y
D N;

then the equation
F.x; y/ D C

implicitly defines a general solution of Eq. (23). In this case, Eq. (23) is called an
exact differential equation—the differential

dF D Fx dx C Fy dy

of F.x; y/ is exactly M dx CN dy.
Natural questions are these: How can we determine whether the differential

equation in (23) is exact? And if it is exact, how can we find the function F such
that Fx D M and Fy D N ? To answer the first question, let us recall that if the
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mixed second-order partial derivatives Fxy and Fyx are continuous on an open set
in the xy-plane, then they are equal: Fxy D Fyx . If Eq. (23) is exact and M and N
have continuous partial derivatives, it then follows that

@M

@y
D Fxy D Fyx D

@N

@x
:

Thus the equation
@M

@y
D @N

@x
(24)

is a necessary condition that the differential equation M dx C N dy D 0 be exact.
That is, if My 6D Nx , then the differential equation in question is not exact, so we
need not attempt to find a function F.x; y/ such that Fx D M and Fy D N—there
is no such function.

Example 8 The differential equation
y3 dx C 3xy2 dy D 0 (25)

is exact because we can immediately see that the function F.x; y/ D xy3 has the property
that Fx D y3 and Fy D 3xy2. Thus a general solution of Eq. (25) is

xy3 D C I
if you prefer, y.x/ D kx�1=3.

But suppose that we divide each term of the differential equation in Example
8 by y2 to obtain

y dx C 3x dy D 0: (26)

This equation is not exact because, with M D y and N D 3x, we have

@M

@y
D 1 6D 3 D @N

@x
:

Hence the necessary condition in Eq. (24) is not satisfied.
We are confronted with a curious situation here. The differential equations in

(25) and (26) are essentially equivalent, and they have exactly the same solutions,
yet one is exact and the other is not. In brief, whether a given differential equation
is exact or not is related to the precise formM dxCN dy D 0 in which it is written.

Theorem 1 tells us that (subject to differentiability conditions usually satisfied
in practice) the necessary condition in (24) is also a sufficient condition for exact-
ness. In other words, if My D Nx , then the differential equation M dx CN dy D 0
is exact.

THEOREM 1 Criterion for Exactness

Suppose that the functions M.x; y/ and N.x; y/ are continuous and have contin-
uous first-order partial derivatives in the open rectangle RW a < x < b, c < y < d .
Then the differential equation

M.x; y/ dx CN.x; y/ dy D 0 (23)

is exact in R if and only if
@M

@y
D @N

@x
(24)

at each point of R. That is, there exists a function F.x; y/ defined on R with
@F=@x DM and @F=@y D N if and only if Eq. (24) holds on R.
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Proof: We have seen already that it is necessary for Eq. (24) to hold if
Eq. (23) is to be exact. To prove the converse, we must show that if Eq. (24) holds,
then we can construct a function F.x; y/ such that @F=@x D M and @F=@y D N .
Note first that, for any function g.y/, the function

F.x; y/ D
Z
M.x; y/ dx C g.y/ (27)

satisfies the condition @F=@x D M . (In Eq. (27), the notation
R
M.x; y/ dx denotes

an antiderivative of M.x; y/ with respect to x.) We plan to choose g.y/ so that

N D @F

@y
D
�
@

@y

Z
M.x; y/ dx

�
C g0.y/

as well; that is, so that

g0.y/ D N � @

@y

Z
M.x; y/ dx: (28)

To see that there is such a function of y, it suffices to show that the right-hand side in
Eq. (28) is a function of y alone. We can then find g.y/ by integrating with respect
to y. Because the right-hand side in Eq. (28) is defined on a rectangle, and hence on
an interval as a function of x, it suffices to show that its derivative with respect to x
is identically zero. But

@

@x

�
N � @

@y

Z
M.x; y/ dx

�
D @N

@x
� @

@x

@

@y

Z
M.x; y/ dx

D @N

@x
� @

@y

@

@x

Z
M.x; y/ dx

D @N

@x
� @M
@y
D 0

by hypothesis. So we can, indeed, find the desired function g.y/ by integrating
Eq. (28). We substitute this result in Eq. (27) to obtain

F.x; y/ D
Z
M.x; y/ dx C

Z �
N.x; y/ � @

@y

Z
M.x; y/ dx

�
dy (29)

as the desired function with Fx DM and Fy D N .

Instead of memorizing Eq. (29), it is usually better to solve an exact equation
M dxCN dy D 0 by carrying out the process indicated by Eqs. (27) and (28). First
we integrate M.x; y/ with respect to x and write

F.x; y/ D
Z
M.x; y/ dx C g.y/;

thinking of the function g.y/ as an “arbitrary constant of integration” as far as the
variable x is concerned. Then we determine g.y/ by imposing the condition that
@F=@y D N.x; y/. This yields a general solution in the implicit form F.x; y/ D C .

Example 9 Solve the differential equation

.6xy � y3/ dx C .4y C 3x2 � 3xy2/ dy D 0: (30)
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Solution LetM.x; y/D 6xy�y3 andN.x; y/D 4yC3x2�3xy2. The given equation is exact because

@M

@y
D 6x � 3y2 D @N

@x
:

Integrating @F=@x DM.x; y/ with respect to x, we get

F.x; y/ D
Z
.6xy � y3/ dx D 3x2y � xy3 C g.y/:

Then we differentiate with respect to y and set @F=@y D N.x; y/. This yields

@F

@y
D 3x2 � 3xy2 C g0.y/ D 4y C 3x2 � 3xy2;

and it follows that g0.y/ D 4y. Hence g.y/ D 2y2 C C1, and thus

F.x; y/ D 3x2y � xy3 C 2y2 C C1:

Therefore, a general solution of the differential equation is defined implicitly by the equation

3x2y � xy3 C 2y2 D C (31)

(we have absorbed the constant C1 into the constant C ).

Remark Figure 1.6.7 shows a rather complicated structure of solution curves for the differ-
ential equation of Example 9. The solution satisfying a given initial condition y.x0/ D y0

is defined implicitly by Eq. (31), with C determined by substituting x D x0 and y D y0 in
the equation. For instance, the particular solution satisfying y.0/ D 1 is defined implicitly
by the equation 3x2y � xy3 C 2y2 D 2. The other two special points in the figure—at .0; 0/
and near .0:75; 2:12/—are ones where both coefficient functions in Eq. (30) vanish, so the
theorem of Section 1.3 does not guarantee a unique solution.
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FIGURE 1.6.7. Slope field and
solution curves for the exact equation
in Example 9.

Reducible Second-Order Equations
A second-order differential equation involves the second derivative of the unknown
function y.x/, and thus has the general form

F.x; y; y0; y00/ D 0: (32)

If either the dependent variable y or the independent variable x is missing from a
second-order equation, then it is easily reduced by a simple substitution to a first-
order equation that may be solvable by the methods of this chapter.

Dependent variable y missing. If y is missing, then Eq. (32) takes the form

F.x; y0; y00/ D 0: (33)

Then the substitution

p D y0 D dy

dx
; y00 D dp

dx
(34)

results in the first-order differential equation

F.x; p; p0/ D 0:

If we can solve this equation for a general solution p.x; C1/ involving an arbitrary
constant C1, then we need only write

y.x/ D
Z
y0.x/ dx D

Z
p.x; C1/ dx C C2

to get a solution of Eq. (33) that involves two arbitrary constants C1 and C2 (as is to
be expected in the case of a second-order differential equation).
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Example 10 Solve the equation xy00 C 2y0 D 6x in which the dependent variable y is missing.
Solution The substitution defined in (34) gives the first-order equation

x
dp

dx
C 2p D 6xI that is,

dp

dx
C 2

x
p D 6.

Observing that the equation on the right here is linear, we multiply by its integrating factor
� D exp

�R
.2=x/ dx

	 D e2 ln x D x2 and get

Dx.x
2p/ D 6x2;

x2p D 2x3 C C1;

p D dy

dx
D 2x C C1

x2
:

A final integration with respect to x yields the general solution

y.x/ D x2 � C1

x
C C2

of the second-order equation xy00 C 2y0 D 6x. Solution curves with C1 D 0 but C2 6D 0 are
simply vertical translates of the parabola y D x2 (for which C1 D C2 D 0). Figure 1.6.8
shows this parabola and some typical solution curves with C2 D 0 but C1 6D 0. Solution
curves with C1 and C2 both nonzero are vertical translates of those (other than the parabola)
shown in Fig. 1.6.8.
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FIGURE 1.6.8. Solution curves of

the form y.x/ D x2 � C1

x
for

C1 D 0, ˙3, ˙10, ˙20, ˙35, ˙60,
˙100.

Independent variable x missing. If x is missing, then Eq. (32) takes the form

F.y; y0; y00/ D 0: (35)

Then the substitution

p D y0 D dy

dx
; y00 D dp

dx
D dp

dy

dy

dx
D pdp

dy
(36)

results in the first-order differential equation

F

�
y; p; p

dp

dy

�
D 0

for p as a function of y. If we can solve this equation for a general solution p.y; C1/

involving an arbitrary constant C1, then (assuming that y0 6D 0) we need only write

x.y/ D
Z
dx

dy
dy D

Z
1

dy=dx
dy D

Z
1

p
dy D

Z
dy

p.y; C1/
C C2:

If the final integral P D R .1=p/ dy can be evaluated, the result is an implicit solution
x.y/ D P.y; C1/C C2 of our second-order differential equation.

Example 11 Solve the equation yy00 D .y0/2 in which the independent variable x is missing.
Solution We assume temporarily that y and y0 are both nonnegative, and then point out at the end that

this restriction is unnecessary. The substitution defined in (36) gives the first-order equation

yp
dp

dy
D p2:

Then separation of variables givesZ
dp

p
D
Z
dy

y
;

lnp D ln y C C (because y > 0 and p D y0 > 0),
p D C1y
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where C1 D eC . Hence

dx

dy
D 1

p
D 1

C1y
;

C1x D
Z
dy

y
D ln y C C2:

The resulting general solution of the second-order equation yy00 D .y0/2 is

y.x/ D exp.C1x � C2/ D AeBx ;

where A D e�C2 and B D C1. Despite our temporary assumptions, which imply that the
constants A and B are both positive, we readily verify that y.x/DAeBx satisfies yy00 D .y0/2
for all real values of A and B . With B D 0 and different values of A, we get all horizontal
lines in the plane as solution curves. The upper half of Fig. 1.6.9 shows the solution curves
obtained with A D 1 (for instance) and different positive values of B . With A D �1 these
solution curves are reflected in the x-axis, and with negative values of B they are reflected in
the y-axis. In particular, we see that we get solutions of yy00 D .y0/2, allowing both positive
and negative possibilities for both y and y0.
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FIGURE 1.6.9. The solution curves
y D AeBx with B D 0 and A D 0,
˙1 are the horizontal lines y D 0, ˙1.
The exponential curves with B > 0
and A D ˙1 are in color, those with
B < 0 and A D ˙1 are black.

1.6 Problems
Find general solutions of the differential equations in Prob-
lems 1 through 30. Primes denote derivatives with respect to
x throughout.

1. .x C y/y0 D x � y 2. 2xyy0 D x2 C 2y2

3. xy0 D y C 2pxy 4. .x � y/y0 D x C y
5. x.x C y/y0 D y.x � y/ 6. .x C 2y/y0 D y
7. xy2y0 D x3 C y3 8. x2y0 D xy C x2ey=x

9. x2y0 D xy C y2 10. xyy0 D x2 C 3y2

11. .x2 � y2/y0 D 2xy
12. xyy0 D y2 C x

p
4x2 C y2

13. xy0 D y C
p
x2 C y2

14. yy0 C x D
p
x2 C y2

15. x.x C y/y0 C y.3x C y/ D 0
16. y0 D px C y C 1 17. y0 D .4x C y/2
18. .x C y/y0 D 1 19. x2y0 C 2xy D 5y3

20. y2y0 C 2xy3 D 6x 21. y0 D y C y3

22. x2y0 C 2xy D 5y4 23. xy0 C 6y D 3xy4=3

24. 2xy0 C y3e�2x D 2xy
25. y2.xy0 C y/.1C x4/1=2 D x
26. 3y2y0 C y3 D e�x

27. 3xy2y0 D 3x4 C y3

28. xeyy0 D 2.ey C x3e2x/

29. .2x sin y cosy/y0 D 4x2 C sin2 y

30. .x C ey/y0 D xe�y � 1

In Problems 31 through 42, verify that the given differential
equation is exact; then solve it.

31. .2x C 3y/ dx C .3x C 2y/ dy D 0
32. .4x � y/ dx C .6y � x/ dy D 0
33. .3x2 C 2y2/ dx C .4xy C 6y2/ dy D 0
34. .2xy2 C 3x2/ dx C .2x2y C 4y3/ dy D 0

35.
�
x3 C y

x

�
dx C .y2 C ln x/ dy D 0

36. .1C yexy/ dx C .2y C xexy/ dy D 0

37. .cos x C ln y/ dx C
�
x

y
C ey

�
dy D 0

38. .x C tan�1 y/ dx C x C y
1C y2

dy D 0

39. .3x2y3 C y4/ dx C .3x3y2 C y4 C 4xy3/ dy D 0
40. .ex sin y C tan y/ dx C .ex cosy C x sec2 y/ dy D 0

41.

 
2x

y
� 3y

2

x4

!
dx C

 
2y

x3
� x

2

y2
C 1p

y

!
dy D 0

42.
2x5=2 � 3y5=3

2x5=2y2=3
dx C 3y5=3 � 2x5=2

3x3=2y5=3
dy D 0

Find a general solution of each reducible second-order differ-
ential equation in Problems 43–54. Assume x, y and/or y0
positive where helpful (as in Example 11).

43. xy00 D y0 44. yy00 C .y0/2 D 0
45. y00 C 4y D 0 46. xy00 C y0 D 4x
47. y00 D .y0/2 48. x2y00 C 3xy0 D 2
49. yy00 C .y0/2 D yy0 50. y00 D .x C y0/2
51. y00 D 2y.y0/3 52. y3y00 D 1
53. y00 D 2yy0 54. yy00 D 3.y0/2
55. Show that the substitution v D ax C by C c transforms

the differential equation dy=dx D F.ax C by C c/ into a
separable equation.

56. Suppose that n 6D 0 and n 6D 1. Show that the sub-
stitution v D y1�n transforms the Bernoulli equation
dy=dx C P.x/y D Q.x/yn into the linear equation

dv

dx
C .1 � n/P.x/v.x/ D .1 � n/Q.x/:
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57. Show that the substitution v D ln y transforms the differ-
ential equation dy=dx C P.x/y D Q.x/.y ln y/ into the
linear equation dv=dx C P.x/ D Q.x/v.x/.

58. Use the idea in Problem 57 to solve the equation

x
dy

dx
� 4x2y C 2y ln y D 0:

59. Solve the differential equation

dy

dx
D x � y � 1
x C y C 3

by finding h and k so that the substitutions x D u C h,
y D v C k transform it into the homogeneous equation

dv

du
D u � v
uC v :

60. Use the method in Problem 59 to solve the differential
equation

dy

dx
D 2y � x C 7
4x � 3y � 18 :

61. Make an appropriate substitution to find a solution of the
equation dy=dx D sin.x � y/. Does this general solution
contain the linear solution y.x/ D x � �=2 that is readily
verified by substitution in the differential equation?

62. Show that the solution curves of the differential equation

dy

dx
D �y.2x

3 � y3/

x.2y3 � x3/

are of the form x3 C y3 D Cxy.
63. The equation dy=dx D A.x/y2 C B.x/y C C.x/ is called

a Riccati equation. Suppose that one particular solution
y1.x/ of this equation is known. Show that the substitu-
tion

y D y1 C
1

v

transforms the Riccati equation into the linear equation

dv

dx
C .B C 2Ay1/v D �A:

Use the method of Problem 63 to solve the equations in Prob-
lems 64 and 65, given that y1.x/ D x is a solution of each.

64.
dy

dx
C y2 D 1C x2

65.
dy

dx
C 2xy D 1C x2 C y2

66. An equation of the form

y D xy0 C g.y0/ (37)

is called a Clairaut equation. Show that the one-
parameter family of straight lines described by

y.x/ D Cx C g.C / (38)

is a general solution of Eq. (37).

67. Consider the Clairaut equation

y D xy0 � 1
4 .y

0/2

for which g.y0/D �1
4 .y

0/2 in Eq. (37). Show that the line

y D Cx � 1
4C

2

is tangent to the parabola y D x2 at the point
�

1
2C;

1
4C

2
�

.

Explain why this implies that y D x2 is a singular solu-
tion of the given Clairaut equation. This singular solution
and the one-parameter family of straight line solutions are
illustrated in Fig. 1.6.10.

x

y = x2

y

y = Cx – C21
4

FIGURE 1.6.10. Solutions of the Clairaut equation
of Problem 67. The “typical” straight line with
equation y D Cx � 1

4
C 2 is tangent to the parabola at

the point . 1
2

C; 1
4

C 2/.

68. Derive Eq. (18) in this section from Eqs. (16) and (17).
69. In the situation of Example 7, suppose that a D 100 mi,

v0 D 400 mi=h, and w D 40 mi=h. Now how far north-
ward does the wind blow the airplane?

70. As in the text discussion, suppose that an airplane main-
tains a heading toward an airport at the origin. If v0 D 500
mi=h and w D 50mi=h (with the wind blowing due north),
and the plane begins at the point .200; 150/, show that its
trajectory is described by

y C
q
x2 C y2 D 2.200x9/1=10:

71. A river 100 ft wide is flowing north at w feet per second.
A dog starts at .100; 0/ and swims at v0 D 4 ft=s, always
heading toward a tree at .0; 0/ on the west bank directly
across from the dog’s starting point. (a) If w D 2 ft=s,
show that the dog reaches the tree. (b) If w D 4 ft=s,
show that the dog reaches instead the point on the west
bank 50 ft north of the tree. (c) If w D 6 ft=s, show that
the dog never reaches the west bank.

72. In the calculus of plane curves, one learns that the curva-
ture 	 of the curve y D y.x/ at the point .x; y/ is given
by

	 D jy00.x/j
Œ1C y0.x/2�3=2

;

and that the curvature of a circle of radius r is 	 D 1=r .
[See Example 3 in Section 11.6 of Edwards and Penney,
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Calculus: Early Transcendentals, 7th edition (Upper Sad-
dle River, NJ: Prentice Hall, 2008).] Conversely, substi-
tute �D y0 to derive a general solution of the second-order
differential equation

ry00 D Œ1C .y0/2�3=2

(with r constant) in the form

.x � a/2 C .y � b/2 D r2:

Thus a circle of radius r (or a part thereof) is the only plane
curve with constant curvature 1=r .

1.6 Application Computer Algebra Solutions
Computer algebra systems typically include commands for the “automatic” solution
of differential equations. But two different such systems often give different results
whose equivalence is not clear, and a single system may give the solution in an
overly complicated form. Consequently, computer algebra solutions of differential
equations often require considerable “processing” or simplification by a human user
in order to yield concrete and applicable information. Here we illustrate these issues
using the interesting differential equation

dy

dx
D sin.x � y/ (1)

that appeared in the Section 1.3 Application. The Maple command

dsolve( D(y)(x) = sin(x -- y(x)), y(x));

yields the simple and attractive result

y.x/ D x � 2 tan�1

�
x � 2 � C1
x � C1

�
(2)

that was cited there. But the supposedly equivalent Mathematica command

DSolve[ y'[x] == Sin[x -- y[x]], y[x], x]

and the WolframjAlpha query

y’ = sin(x -- y)

both yield considerably more complicated results from which—with a fair amount
of effort in simplification—one can extract the quite different looking solution

y.x/ D 2 cos�1

0B@2 cos
x

2
C .x � c/

�
cos

x

2
C sin

x

2

�
p
2C 2.x � c C 1/2

1CA : (3)

This apparent disparity is not unusual; different symbolic algebra systems, or
even different versions of the same system, often yield different forms of a solution
of the same differential equation. As an alternative to attempted reconciliation of
such seemingly disparate results as in Eqs. (2) and (3), a common tactic is sim-
plification of the differential equation before submitting it to a computer algebra
system.

EXERCISE 1: Show that the plausible substitution v D x � y in Eq. (1) yields the
separable equation

dv

dx
D 1 � sin v: (4)
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Now the Maple command int(1/(1-sin(v)),v) yields

Z
dv

1 � sin v
D 2

1 � tan
v

2

(5)

(omitting the constant of integration, as symbolic computer algebra systems often
do).

EXERCISE 2: Use simple algebra to deduce from Eq. (5) the integral formula

Z
dv

1 � sin v
D
1C tan

v

2

1 � tan
v

2

C C: (6)

EXERCISE 3: Deduce from (6) that Eq. (4) has the general solution

v.x/ D 2 tan�1

�
x � 1C C
x C 1C C

�
;

and hence that Eq. (1) has the general solution

y.x/ D x � 2 tan�1

�
x � 1C C
x C 1C C

�
: (7)

EXERCISE 4: Finally, reconcile the forms in Eq. (2) and Eq. (7). What is the
relation between the constants C and C1?

EXERCISE 5: Show that the integral in Eq. (5) yields immediately the graphing
calculator implicit solution shown in Fig. 1.6.11.

INVESTIGATION: For your own personal differential equation, let p and q be

FIGURE 1.6.11. Implicit solution of
y0 D sin.x � y/ generated by a
TI-Nspire CX CAS.

two distinct nonzero digits in your student ID number, and consider the differential
equation

dy

dx
D 1

p
cos.x � qy/: (8)

(a) Find a symbolic general solution using a computer algebra system and/or some
combination of the techniques listed in this project.

(b) Determine the symbolic particular solution corresponding to several typical ini-
tial conditions of the form y.x0/ D y0.

(c) Determine the possible values of a and b such that the straight line y D ax C b
is a solution curve of Eq. (8).

(d) Plot a direction field and some typical solution curves. Can you make a con-
nection between the symbolic solution and your (linear and nonlinear) solution
curves?
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Chapter 1 Summary
In this chapter we have discussed applications of and solution methods for several
important types of first-order differential equations, including those that are separa-
ble (Section 1.4), linear (Section 1.5), or exact (Section 1.6). In Section 1.6 we also
discussed substitution techniques that can sometimes be used to transform a given
first-order differential equation into one that is either separable, linear, or exact.

Lest it appear that these methods constitute a “grab bag” of special and unre-
lated techniques, it is important to note that they are all versions of a single idea.
Given a differential equation

f .x; y; y0/ D 0; (1)

we attempt to write it in the form

d

dx
ŒG.x; y/� D 0: (2)

It is precisely to obtain the form in Eq. (2) that we multiply the terms in Eq. (1) by an
appropriate integrating factor (even if all we are doing is separating the variables).
But once we have found a function G.x; y/ such that Eqs. (1) and (2) are equivalent,
a general solution is defined implicitly by means of the equation

G.x; y/ D C (3)

that one obtains by integrating Eq. (2).
Given a specific first-order differential equation to be solved, we can attack it

by means of the following steps:

� Is it separable? If so, separate the variables and integrate (Section 1.4).
� Is it linear? That is, can it be written in the form

dy

dx
C P.x/y D Q.x/‹

If so, multiply by the integrating factor � D exp
�R
P dx

	
of Section 1.5.

� Is it exact? That is, when the equation is written in the formM dxCN dyD 0,
is @M=@y D @N=@x (Section 1.6)?

� If the equation as it stands is not separable, linear, or exact, is there a plausible
substitution that will make it so? For instance, is it homogeneous (Section
1.6)?

Many first-order differential equations succumb to the line of attack outlined
here. Nevertheless, many more do not. Because of the wide availability of com-
puters, numerical techniques are commonly used to approximate the solutions of
differential equations that cannot be solved readily or explicitly by the methods of
this chapter. Indeed, most of the solution curves shown in figures in this chapter
were plotted using numerical approximations rather than exact solutions. Several
numerical methods for the appropriate solution of differential equations will be dis-
cussed in Chapter 2.
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Chapter 1 Review Problems

Find general solutions of the differential equations in Problems 1 through 30. Primes denote derivatives with respect
to x.

1. x3 C 3y � xy0 D 0 2. xy2 C 3y2 � x2y0 D 0
3. xy C y2 � x2y0 D 0
4. 2xy3 C ex C .3x2y2 C sin y/y0 D 0
5. 3y C x4y0 D 2xy 6. 2xy2 C x2y0 D y2

7. 2x2y C x3y0 D 1 8. 2xy C x2y0 D y2

9. xy0 C 2y D 6x2py 10. y0D 1Cx2Cy2Cx2y2

11. x2y0 D xy C 3y2

12. 6xy3 C 2y4 C .9x2y2 C 8xy3/y0 D 0
13. 4xy2 C y0 D 5x4y2 14. x3y0 D x2y � y3

15. y0 C 3y D 3x2e�3x 16. y0 D x2 � 2xy C y2

17. ex C yexy C .ey C xeyx/y0 D 0
18. 2x2y � x3y0 D y3 19. 3x5y2 C x3y0 D 2y2

20. xy0 C 3y D 3x�3=2

21. .x2 � 1/y0 C .x � 1/y D 1
22. xy0 D 6y C 12x4y2=3

23. ey C y cos x C .xey C sin x/y0 D 0

24. 9x2y2 C x3=2y0 D y2 25. 2yC .xC 1/y0 D 3xC 3
26. 9x1=2y4=3�12x1=5y3=2C.8x3=2y1=3�15x6=5y1=2/y0D 0
27. 3y C x3y4 C 3xy0 D 0 28. y C xy0 D 2e2x

29. .2x C 1/y0 C y D .2x C 1/3=2 30. y0 D px C y

Each of the differential equations in Problems 31 through 36
is of two different types considered in this chapter—separable,
linear, homogeneous, Bernoulli, exact, etc. Hence, derive gen-
eral solutions for each of these equations in two different ways;
then reconcile your results.

31.
dy

dx
D 3.y C 7/x2 32.

dy

dx
D xy3 � xy

33.
dy

dx
D �3x

2 C 2y2

4xy
34.

dy

dx
D x C 3y
y � 3x

35.
dy

dx
D 2xy C 2x

x2 C 1 36.
dy

dx
D
p
y � y

tan x
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2.1 Population Models

In Section 1.4 we introduced the exponential differential equation dP=dt D kP ,
with solution P.t/ D P0e

kt , as a mathematical model for natural population
growth that occurs as a result of constant birth and death rates. Here we present
a more general population model that accommodates birth and death rates that are
not necessarily constant. As before, however, our population function P.t/ will be
a continuous approximation to the actual population, which of course changes only
by integral increments—that is, by one birth or death at a time.

Suppose that the population changes only by the occurrence of births and
deaths—there is no immigration or emigration from outside the country or envi-
ronment under consideration. It is customary to track the growth or decline of a
population in terms of its birth rate and death rate functions defined as follows:

� ˇ.t/ is the number of births per unit of population per unit of time at time t ;
� ı.t/ is the number of deaths per unit of population per unit of time at time t .

Then the numbers of births and deaths that occur during the time interval
Œt; t C�t� is given (approximately) by

births: ˇ.t/ � P.t/ ��t; deaths: ı.t/ � P.t/ ��t:

Hence the change �P in the population during the time interval Œt; t C�t� of
length �t is

�P D fbirthsg � fdeathsg � ˇ.t/ � P.t/ ��t � ı.t/ � P.t/ ��t;

so
�P

�t
� Œˇ.t/ � ı.t/� P.t/:

75
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The error in this approximation should approach zero as �t ! 0, so—taking
the limit—we get the differential equation

dP
dt
D .ˇ � ı/P; (1)

in which we write ˇ D ˇ.t/, ı D ı.t/, and P D P.t/ for brevity. Equation (1) is the
general population equation. If ˇ and ı are constant, Eq. (1) reduces to the natural
growth equation with k D ˇ � ı. But it also includes the possibility that ˇ and ı
are variable functions of t . The birth and death rates need not be known in advance;
they may well depend on the unknown function P.t/.

Example 1 Suppose that an alligator population numbers 100 initially, and that its death rate is ı D 0 (so
none of the alligators is dying). If the birth rate is ˇ D .0:0005/P—and thus increases as the
population does—then Eq. (1) gives the initial value problem

dP
dt
D .0:0005/P 2; P.0/ D 100

(with t in years). Then upon separating the variables we getZ
1

P 2
dP D

Z
.0:0005/ dt I

� 1
P
D .0:0005/t C C:

Substitution of t D 0, P D 100 gives C D �1=100, and then we readily solve for

P.t/ D 2000

20 � t :

For instance, P.10/ D 2000=10 D 200, so after 10 years the alligator population has
doubled. But we see that P ! C1 as t ! 20, so a real “population explosion” occurs in
20 years. Indeed, the direction field and solution curves shown in Fig. 2.1.1 indicate that
a population explosion always occurs, whatever the size of the (positive) initial population
P.0/D P0. In particular, it appears that the population always becomes unbounded in a finite
period of time.

t

P

0
0

10 20 30 40 50

100

200

300

400

500

(0, 100)

FIGURE 2.1.1. Slope field and
solution curves for the equation
dP=dt D .0:0005/P 2 in Example 1.

Bounded Populations and the Logistic Equation
In situations as diverse as the human population of a nation and a fruit fly population
in a closed container, it is often observed that the birth rate decreases as the popu-
lation itself increases. The reasons may range from increased scientific or cultural
sophistication to a limited food supply. Suppose, for example, that the birth rate ˇ is
a linear decreasing function of the population size P , so that ˇ D ˇ0 � ˇ1P , where
ˇ0 and ˇ1 are positive constants. If the death rate ı D ı0 remains constant, then
Eq. (1) takes the form

dP
dt
D .ˇ0 � ˇ1P � ı0/P I

that is,
dP
dt
D aP � bP 2; (2)

where a D ˇ0 � ı0 and b D ˇ1.
If the coefficients a and b are both positive, then Eq. (2) is called the logistic

equation. For the purpose of relating the behavior of the population P.t/ to the
values of the parameters in the equation, it is useful to rewrite the logistic equation
in the form

dP
dt
D kP.M � P /; (3)

where k D b and M D a=b are constants.
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Example 2 In Example 4 of Section 1.3 we explored graphically a population that is modeled by the
logistic equation

dP
dt
D 0:0004P.150 � P / D 0:06P � 0:0004P 2: (4)

To solve this differential equation symbolically, we separate the variables and integrate. We
get Z

dP
P.150 � P / D

Z
0:0004 dt;

1

150

Z �
1

P
C 1

150 � P

�
dP D

Z
0:0004 dt [partial fractions],

ln jP j � ln j150 � P j D 0:06t C C;
P

150 � P D ˙e
C e0:06t D Be0:06t [where B D ˙eC ].

If we substitute t D 0 and P D P0 ¤ 150 into this last equation, we find that
B D P0=.150 � P0/. Hence

P

150 � P D
P0e

0:06t

150 � P0
:

Finally, this equation is easy to solve for the population

P.t/ D 150P0

P0 C .150 � P0/e�0:06t
(5)

at time t in terms of the initial population P0 D P.0/. Figure 2.1.2 shows a number of

25 50 75 100
t20

60

120
150
180

240

300

P

P0 = 300

P0 = 20

FIGURE 2.1.2. Typical solution
curves for the logistic equation
P 0 D 0:06P � 0:0004P 2.

solution curves corresponding to different values of the initial population ranging from P0 D
20 to P0 D 300. Note that all these solution curves appear to approach the horizontal line
P D 150 as an asymptote. Indeed, you should be able to see directly from Eq. (5) that
limt!1 P.t/ D 150, whatever the initial value P0 > 0.

Limiting Populations and Carrying Capacity
The finite limiting population noted in Example 2 is characteristic of logistic pop-
ulations. In Problem 32 we ask you to use the method of solution of Example 2 to
show that the solution of the logistic initial value problem

dP
dt
D kP.M � P /; P.0/ D P0 (6)

is

P.t/ D MP0

P0 C .M � P0/e�kM t
: (7)

Actual animal populations are positive valued. If P0 D M , then (7) reduces
to the unchanging (constant-valued) “equilibrium population” P.t/ � M . Other-
wise, the behavior of a logistic population depends on whether 0 < P0 < M or
P0 > M . If 0 < P0 < M , then we see from (6) and (7) that P 0 > 0 and

P.t/ D MP0

P0 C .M � P0/e�kM t
D MP0

P0 C fpos. numberg <
MP0

P0

DM:

However, if P0 > M , then we see from (6) and (7) that P 0 < 0 and

P.t/ D MP0

P0 C .M � P0/e�kM t
D MP0

P0 C fneg. numberg >
MP0

P0

DM:
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In either case, the “positive number” or “negative number” in the denominator has
absolute value less than P0 and—because of the exponential factor—approaches 0
as t !C1. It follows that

lim
t!C1

P.t/ D MP0

P0 C 0
DM: (8)

Thus a population that satisfies the logistic equation does not grow without
bound like a naturally growing population modeled by the exponential equation
P 0 D kP . Instead, it approaches the finite limiting population M as t ! C1.
As illustrated by the typical logistic solution curves in Fig. 2.1.3, the population
P.t/ steadily increases and approaches M from below if 0 < P0 < M , but steadily
decreases and approaches M from above if P0 > M . Sometimes M is called the
carrying capacity of the environment, considering it to be the maximum population

t

M

P

M/2

P = M

P = M/2

FIGURE 2.1.3. Typical solution
curves for the logistic equation
P 0 D kP.M � P /. Each solution
curve that starts below the line
P D M=2 has an inflection point on
this line. (See Problem 34.)

that the environment can support on a long-term basis.

Example 3 Suppose that in 1885 the population of a certain country was 50 million and was growing
at the rate of 750;000 people per year at that time. Suppose also that in 1940 its population
was 100 million and was then growing at the rate of 1 million per year. Assume that this
population satisfies the logistic equation. Determine both the limiting population M and the
predicted population for the year 2000.

Solution We substitute the two given pairs of data in Eq. (3) and find that

0:75 D 50k.M � 50/; 1:00 D 100k.M � 100/:

We solve simultaneously for M D 200 and k D 0:0001. Thus the limiting population of the
country in question is 200 million. With these values of M and k, and with t D 0 correspond-
ing to the year 1940 (in which P0 D 100), we find that—according to Eq. (7)—the population
in the year 2000 will be

P.60/ D 100 � 200
100C .200 � 100/e�.0:0001/.200/.60/

;

about 153:7 million people.

Historical Note
The logistic equation was introduced (around 1840) by the Belgian mathematician
and demographer P. F. Verhulst as a possible model for human population growth.
In the next two examples we compare natural growth and logistic model fits to the
19th-century U.S. population census data, then compare projections for the 20th
century.

Example 4 The U.S. population in 1800 was 5:308 million and in 1900 was 76:212 million. If we take
P0 D 5:308 (with t D 0 in 1800) in the natural growth model P.t/ D P0e

rt and substitute
t D 100, P D 76:212, we find that

76:212 D 5:308e100r ; so r D 1

100
ln
76:212

5:308
� 0:026643:

Thus our natural growth model for the U.S. population during the 19th century is

P.t/ D .5:308/e.0:026643/t (9)

(with t in years and P in millions). Because e0:026643 � 1:02700, the average population
growth between 1800 and 1900 was about 2:7% per year.
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Example 5 The U.S. population in 1850 was 23:192 million. If we take P0 D 5:308 and substitute the
data pairs t D 50, P D 23:192 (for 1850) and t D 100, P D 76:212 (for 1900) in the logistic
model formula in Eq. (7), we get the two equations

.5:308/M

5:308C .M � 5:308/e�50kM
D 23:192;

.5:308/M

5:308C .M � 5:308/e�100kM
D 76:212

(10)

in the two unknowns k and M . Nonlinear systems like this ordinarily are solved numerically
using an appropriate computer system. But with the right algebraic trick (Problem 36 in this
section) the equations in (10) can be solved manually for k D 0:000167716, M D 188:121.
Substitution of these values in Eq. (7) yields the logistic model

P.t/ D 998:546

5:308C .182:813/e�.0:031551/t
: (11)

The table in Fig. 2.1.4 compares the actual 1800–1990 U.S. census population figures
with those predicted by the exponential growth model in (9) and the logistic model in (11).
Both agree well with the 19th-century figures. But the exponential model diverges appre-
ciably from the census data in the early decades of the 20th century, whereas the logistic
model remains accurate until 1940. By the end of the 20th century the exponential model
vastly overestimates the actual U.S. population—predicting over a billion in the year 2000—
whereas the logistic model somewhat underestimates it.

Actual Exponential Exponential Logistic Logistic
Year U.S. Pop. Model Error Model Error

1800

1810

1820

1830

1840

1850

1860

1870

1880

1890

1900

1910

1920

1930

1940

1950

1960

1970

1980

1990

2000

5.308

7.240

9.638

12.861

17.064

23.192

31.443

38.558

50.189

62.980

76.212

92.228

106.022

123.203

132.165

151.326

179.323

203.302

226.542

248.710

281.422

5.308

6.929

9.044

11.805

15.409

20.113

26.253

34.268

44.730

58.387

76.212

99.479

129.849

169.492

221.237

288.780

376.943

492.023

642.236

838.308

1094.240

0.000

0.311

0.594

1.056

1.655

3.079

5.190

4.290

5.459

4.593

0.000
�7:251
�23:827
�46:289
�89:072
�137:454
�197:620
�288:721
�415:694
�589:598
�812:818

5.308

7.202

9.735

13.095

17.501

23.192

30.405

39.326

50.034

62.435

76.213

90.834

105.612

119.834

132.886

144.354

154.052

161.990

168.316

173.252

177.038

0.000

0.038
�0:097
�0:234
�0:437

0.000

1.038

�0:768
0.155

0.545

�0:001
1.394

0.410

3.369

�0:721
6.972

25.271

41.312

58.226

75.458

104.384

FIGURE 2.1.4. Comparison of exponential growth and logistic models with U.S. census populations
(in millions).
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The two models are compared in Fig. 2.1.5, where plots of their respective errors—asError

40%

1800 1850 1900 1950

20%

–20%

–40%

Year 
Logistic

Exponential

FIGURE 2.1.5. Percentage errors in
the exponential and logistic population
models for 1800–1950.

a percentage of the actual population—are shown for the 1800–1950 period. We see that the
logistic model tracks the actual population reasonably well throughout this 150-year period.
However, the exponential error is considerably larger during the 19th century and literally
goes off the chart during the first half of the 20th century.

In order to measure the extent to which a given model fits actual data, it is customary
to define the average error (in the model) as the square root of the average of the squares
of the individual errors (the latter appearing in the fourth and sixth columns of the table in
Fig. 2.1.4). Using only the 1800–1900 data, this definition gives 3:162 for the average error
in the exponential model, while the average error in the logistic model is only 0:452. Conse-
quently, even in 1900 we might well have anticipated that the logistic model would predict the
U.S. population growth during the 20th century more accurately than the exponential model.

The moral of Examples 4 and 5 is simply that one should not expect too much
of models that are based on severely limited information (such as just a pair of data
points). Much of the science of statistics is devoted to the analysis of large “data
sets” to formulate useful (and perhaps reliable) mathematical models.

More Applications of the Logistic Equation
We next describe some situations that illustrate the varied circumstances in which
the logistic equation is a satisfactory mathematical model.

1. Limited environment situation. A certain environment can support a popula-
tion of at most M individuals. It is then reasonable to expect the growth rate
ˇ � ı (the combined birth and death rates) to be proportional to M � P , be-
cause we may think of M � P as the potential for further expansion. Then
ˇ � ı D k.M � P /, so that

dP
dt
D .ˇ � ı/P D kP.M � P /:

The classic example of a limited environment situation is a fruit fly population
in a closed container.

2. Competition situation. If the birth rate ˇ is constant but the death rate ı is
proportional to P , so that ı D ˛P , then

dP
dt
D .ˇ � ˛P /P D kP.M � P /:

This might be a reasonable working hypothesis in a study of a cannibalistic
population, in which all deaths result from chance encounters between indi-
viduals. Of course, competition between individuals is not usually so deadly,
nor its effects so immediate and decisive.

3. Joint proportion situation. Let P.t/ denote the number of individuals in a
constant-size susceptible population M who are infected with a certain con-
tagious and incurable disease. The disease is spread by chance encounters.
Then P 0.t/ should be proportional to the product of the number P of indi-
viduals having the disease and the number M � P of those not having it, and
therefore dP=dt D kP.M � P /. Again we discover that the mathematical
model is the logistic equation. The mathematical description of the spread of
a rumor in a population of M individuals is identical.

Example 6 Suppose that at time t D 0, 10 thousand people in a city with population M D 100 thousand
people have heard a certain rumor. After 1 week the number P.t/ of those who have heard it
has increased to P.1/ D 20 thousand. Assuming that P.t/ satisfies a logistic equation, when
will 80% of the city’s population have heard the rumor?
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Solution Substituting P0 D 10 and M D 100 (thousand) in Eq. (7), we get

P.t/ D 1000

10C 90e�100kt
: (12)

Then substitution of t D 1, P D 20 gives the equation

20 D 1000

10C 90e�100k

that is readily solved for

e�100k D 4
9 ; so k D 1

100 ln 9
4 � 0:008109:

With P.t/ D 80, Eq. (12) takes the form

80 D 1000

10C 90e�100kt
;

which we solve for e�100kt D 1
36 . It follows that 80% of the population has heard the rumor

when

t D ln 36
100k

D ln 36

ln 9
4

� 4:42;

thus after about 4 weeks and 3 days.

Doomsday versus Extinction
Consider a population P.t/ of unsophisticated animals in which females rely solely
on chance encounters to meet males for reproductive purposes. It is reasonable to
expect such encounters to occur at a rate that is proportional to the product of the
number P=2 of males and the number P=2 of females, hence at a rate proportional
to P 2. We therefore assume that births occur at the rate kP 2 (per unit time, with
k constant). The birth rate (births=time=population) is then given by ˇ D kP . If
the death rate ı is constant, then the general population equation in (1) yields the
differential equation

dP
dt
D kP 2 � ıP D kP.P �M/ (13)

(where M D ı=k > 0) as a mathematical model of the population.
Note that the right-hand side in Eq. (13) is the negative of the right-hand side

in the logistic equation in (3). We will see that the constant M is now a threshold
population, with the way the population behaves in the future depending critically
on whether the initial population P0 is less than or greater than M .

Example 7 Consider an animal population P.t/ that is modeled by the equation

dP
dt
D 0:0004P.P � 150/ D 0:0004P 2 � 0:06P: (14)

We want to find P.t/ if (a) P.0/ D 200; (b) P.0/ D 100.
Solution To solve the equation in (14), we separate the variables and integrate. We getZ

dP
P.P � 150/ D

Z
0:0004 dt;

� 1

150

Z �
1

P
� 1

P � 150

�
dP D

Z
0:0004 dt [partial fractions],

ln jP j � ln jP � 150j D �0:06t C C;

P

P � 150 D ˙e
C e�0:06t D Be�0:06t [where B D ˙eC ]. (15)
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(a) Substitution of t D 0 and P D 200 into (15) gives B D 4. With this value of B we solve
Eq. (15) for

P.t/ D 600e�0:06t

4e�0:06t � 1 : (16)

Note that, as t increases and approaches T D ln.4/=0:06 � 23:105, the positive denominator
on the right in (16) decreases and approaches 0. Consequently P.t/!C1 as t ! T�. This
is a doomsday situation—a real population explosion.
(b) Substitution of t D 0 and P D 100 into (15) gives B D�2. With this value of B we solve
Eq. (15) for

P.t/ D 300e�0:06t

2e�0:06t C 1 D
300

2C e0:06t
: (17)

Note that, as t increases without bound, the positive denominator on the right in (16) ap-
proaches C1. Consequently, P.t/ ! 0 as t ! C1. This is an (eventual) extinction situa-
tion.

Thus the population in Example 7 either explodes or is an endangered species
threatened with extinction, depending on whether or not its initial size exceeds the
threshold populationM D 150. An approximation to this phenomenon is sometimes
observed with animal populations, such as the alligator population in certain areas
of the southern United States.

Figure 2.1.6 shows typical solution curves that illustrate the two possibilities
for a population P.t/ satisfying Eq. (13). If P0 D M (exactly!), then the popula-
tion remains constant. However, this equilibrium situation is very unstable. If P0

exceeds M (even slightly), then P.t/ rapidly increases without bound, whereas if
the initial (positive) population is less than M (however slightly), then it decreases
(more gradually) toward zero as t !C1. See Problem 33.

t

M

P

P = M

FIGURE 2.1.6. Typical solution
curves for the explosion/extinction
equation P 0 D kP.P � M/.

2.1 Problems
Separate variables and use partial fractions to solve the initial
value problems in Problems 1–8. Use either the exact solution
or a computer-generated slope field to sketch the graphs of sev-
eral solutions of the given differential equation, and highlight
the indicated particular solution.

1.
dx

dt
D x � x2, x.0/ D 2 2.

dx

dt
D 10x � x2, x.0/ D 1

3.
dx

dt
D 1 � x2, x.0/ D 3 4.

dx

dt
D 9 � 4x2, x.0/ D 0

5.
dx

dt
D 3x.5 � x/, x.0/ D 8

6.
dx

dt
D 3x.x � 5/, x.0/ D 2

7.
dx

dt
D 4x.7 � x/, x.0/ D 11

8.
dx

dt
D 7x.x � 13/, x.0/ D 17

9. The time rate of change of a rabbit population P is pro-
portional to the square root of P . At time t D 0 (months)
the population numbers 100 rabbits and is increasing at the
rate of 20 rabbits per month. How many rabbits will there
be one year later?

10. Suppose that the fish population P.t/ in a lake is attacked
by a disease at time t D 0, with the result that the fish cease
to reproduce (so that the birth rate is ˇ D 0) and the death

rate ı (deaths per week per fish) is thereafter proportional
to 1=
p
P . If there were initially 900 fish in the lake and

441 were left after 6 weeks, how long did it take all the
fish in the lake to die?

11. Suppose that when a certain lake is stocked with fish, the
birth and death rates ˇ and ı are both inversely propor-
tional to

p
P . (a) Show that

P.t/ D
�

1
2kt C

p
P0

�2
;

where k is a constant. (b) If P0 D 100 and after 6months
there are 169 fish in the lake, how many will there be after
1 year?

12. The time rate of change of an alligator population P in
a swamp is proportional to the square of P . The swamp
contained a dozen alligators in 1988, two dozen in 1998.
When will there be four dozen alligators in the swamp?
What happens thereafter?

13. Consider a prolific breed of rabbits whose birth and death
rates, ˇ and ı, are each proportional to the rabbit popula-
tion P D P.t/, with ˇ > ı. (a) Show that

P.t/ D P0

1 � kP0t
; k constant:

Note that P.t/!C1 as t ! 1=.kP0/. This is doomsday.
(b) Suppose that P0 D 6 and that there are nine rabbits
after ten months. When does doomsday occur?
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14. Repeat part (a) of Problem 13 in the case ˇ < ı. What now
happens to the rabbit population in the long run?

15. Consider a population P.t/ satisfying the logistic equa-
tion dP=dt D aP � bP 2, where B D aP is the time rate
at which births occur and D D bP 2 is the rate at which
deaths occur. If the initial population is P.0/ D P0, and
B0 births per month and D0 deaths per month are occur-
ring at time t D 0, show that the limiting population is
M D B0P0=D0.

16. Consider a rabbit population P.t/ satisfying the logistic
equation as in Problem 15. If the initial population is 120
rabbits and there are 8 births per month and 6 deaths per
month occurring at time t D 0, how many months does it
take for P.t/ to reach 95% of the limiting population M ?

17. Consider a rabbit population P.t/ satisfying the logistic
equation as in Problem 15. If the initial population is 240
rabbits and there are 9 births per month and 12 deaths per
month occurring at time t D 0, how many months does it
take for P.t/ to reach 105% of the limiting populationM ?

18. Consider a population P.t/ satisfying the extinction-
explosion equation dP=dt D aP 2 � bP , where B D aP 2

is the time rate at which births occur and D D bP is the
rate at which deaths occur. If the initial population is
P.0/ D P0 and B0 births per month and D0 deaths per
month are occurring at time t D 0, show that the threshold
population is M D D0P0=B0.

19. Consider an alligator population P.t/ satisfying the
extinction-explosion equation as in Problem 18. If the ini-
tial population is 100 alligators and there are 10 births per
month and 9 deaths per month occurring at time t D 0,
how many months does it take for P.t/ to reach 10 times
the threshold population M ?

20. Consider an alligator population P.t/ satisfying the
extinction-explosion equation as in Problem 18. If the ini-
tial population is 110 alligators and there are 11 births per
month and 12 deaths per month occurring at time t D 0,
how many months does it take for P.t/ to reach 10% of
the threshold population M ?

21. Suppose that the population P.t/ of a country satisfies the
differential equation dP=dt D kP.200 � P / with k con-
stant. Its population in 1960 was 100 million and was
then growing at the rate of 1 million per year. Predict this
country’s population for the year 2020.

22. Suppose that at time t D 0, half of a “logistic” population
of 100;000 persons have heard a certain rumor, and that the
number of those who have heard it is then increasing at the
rate of 1000 persons per day. How long will it take for this
rumor to spread to 80% of the population? (Suggestion:
Find the value of k by substituting P.0/ and P 0.0/ in the
logistic equation, Eq. (3).)

23. As the salt KNO3 dissolves in methanol, the number x.t/
of grams of the salt in a solution after t seconds satisfies
the differential equation dx=dt D 0:8x � 0:004x2.

(a) What is the maximum amount of the salt that will ever
dissolve in the methanol?

(b) If x D 50 when t D 0, how long will it take for an
additional 50 g of salt to dissolve?

24. Suppose that a community contains 15,000 people who
are susceptible to Michaud’s syndrome, a contagious dis-
ease. At time t D 0 the number N.t/ of people who have
developed Michaud’s syndrome is 5000 and is increasing
at the rate of 500 per day. Assume that N 0.t/ is propor-
tional to the product of the numbers of those who have
caught the disease and of those who have not. How long
will it take for another 5000 people to develop Michaud’s
syndrome?

25. The data in the table in Fig. 2.1.7 are given for a certain
population P.t/ that satisfies the logistic equation in (3).
(a) What is the limiting populationM ? (Suggestion: Use
the approximation

P 0.t/ � P.t C h/ � P.t � h/
2h

with hD 1 to estimate the values of P 0.t/when P D 25:00
and when P D 47:54. Then substitute these values in the
logistic equation and solve for k and M .) (b) Use the
values of k and M found in part (a) to determine when
P D 75. (Suggestion: Take t D 0 to correspond to the
year 1925.)

Year P (millions)

1924

1925

1926
:::

1974

1975

1976

24.63

25.00

25.38
:::

47.04

47.54

48.04

FIGURE 2.1.7. Population data for Problem 25.

26. A population P.t/ of small rodents has birth rate ˇ D
.0:001/P (births per month per rodent) and constant death
rate ı. If P.0/D 100 and P 0.0/D 8, how long (in months)
will it take this population to double to 200 rodents? (Sug-
gestion: First find the value of ı.)

27. Consider an animal population P.t/ with constant death
rate ı D 0:01 (deaths per animal per month) and with birth
rate ˇ proportional to P . Suppose that P.0/ D 200 and
P 0.0/ D 2. (a) When is P D 1000? (b) When does
doomsday occur?

28. Suppose that the number x.t/ (with t in months) of alliga-
tors in a swamp satisfies the differential equation dx=dt D
0:0001x2 � 0:01x.

(a) If initially there are 25 alligators in the swamp, solve
this differential equation to determine what happens
to the alligator population in the long run.
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(b) Repeat part (a), except with 150 alligators initially.

29. During the period from 1790 to 1930, the U.S. population
P.t/ (t in years) grew from 3.9 million to 123.2 million.
Throughout this period, P.t/ remained close to the solu-
tion of the initial value problem

dP
dt
D 0:03135P � 0:0001489P 2; P.0/ D 3:9:

(a) What 1930 population does this logistic equation pre-
dict?

(b) What limiting population does it predict?
(c) Has this logistic equation continued since 1930 to ac-

curately model the U.S. population?

[This problem is based on a computation by Verhulst, who
in 1845 used the 1790–1840 U.S. population data to pre-
dict accurately the U.S. population through the year 1930
(long after his own death, of course).]

30. A tumor may be regarded as a population of multiplying
cells. It is found empirically that the “birth rate” of the
cells in a tumor decreases exponentially with time, so that
ˇ.t/ D ˇ0e

�˛t (where ˛ and ˇ0 are positive constants),
and hence

dP
dt
D ˇ0e

�˛tP; P.0/ D P0:

Solve this initial value problem for

P.t/ D P0 exp
�
ˇ0

˛
.1 � e�˛t /

�
:

Observe that P.t/ approaches the finite limiting popula-
tion P0 exp .ˇ0=̨ / as t !C1.

31. For the tumor of Problem 30, suppose that at time t D 0

there are P0 D 106 cells and that P.t/ is then increasing
at the rate of 3 � 105 cells per month. After 6 months the
tumor has doubled (in size and in number of cells). Solve
numerically for ˛, and then find the limiting population of
the tumor.

32. Derive the solution

P.t/ D MP0

P0 C .M � P0/e�kM t

of the logistic initial value problem P 0 D kP.M � P /,
P.0/D P0. Make it clear how your derivation depends on
whether 0 < P0 < M or P0 > M .

33. (a) Derive the solution

P.t/ D MP0

P0 C .M � P0/ekM t

of the extinction-explosion initial value problem P 0D
kP.P �M/, P.0/ D P0.

(b) How does the behavior of P.t/ as t increases depend
on whether 0 < P0 < M or P0 > M ?

34. If P.t/ satisfies the logistic equation in (3), use the chain
rule to show that

P 00.t/ D 2k2P.P � 1
2M/.P �M/:

Conclude that P 00 >0 if 0<P < 1
2M ; P 00D 0 if P D 1

2M ;
P 00 < 0 if 1

2M <P <M ; and P 00 > 0 if P >M . In partic-
ular, it follows that any solution curve that crosses the line
P D 1

2M has an inflection point where it crosses that line,
and therefore resembles one of the lower S-shaped curves
in Fig. 2.1.3.

35. Consider two population functions P1.t/ and P2.t/, both
of which satisfy the logistic equation with the same lim-
iting population M but with different values k1 and k2 of
the constant k in Eq. (3). Assume that k1 < k2. Which
population approaches M the most rapidly? You can rea-
son geometrically by examining slope fields (especially
if appropriate software is available), symbolically by an-
alyzing the solution given in Eq. (7), or numerically by
substituting successive values of t .

36. To solve the two equations in (10) for the values of k and
M , begin by solving the first equation for the quantity
x D e�50kM and the second equation for x2 D e�100kM .
Upon equating the two resulting expressions for x2 in
terms of M , you get an equation that is readily solved for
M . With M now known, either of the original equations
is readily solved for k. This technique can be used to “fit”
the logistic equation to any three population values P0,
P1, and P2 corresponding to equally spaced times t0 D 0,
t1, and t2 D 2t1.

37. Use the method of Problem 36 to fit the logistic equation
to the actual U.S. population data (Fig. 2.1.4) for the years
1850, 1900, and 1950. Solve the resulting logistic equa-
tion and compare the predicted and actual populations for
the years 1990 and 2000.

38. Fit the logistic equation to the actual U.S. population data
(Fig. 2.1.4) for the years 1900, 1930, and 1960. Solve the
resulting logistic equation, then compare the predicted and
actual populations for the years 1980, 1990, and 2000.

39. Birth and death rates of animal populations typically are
not constant; instead, they vary periodically with the pas-
sage of seasons. Find P.t/ if the population P satisfies
the differential equation

dP
dt
D .k C b cos 2�t/P;

where t is in years and k and b are positive constants. Thus
the growth-rate function r.t/ D k C b cos 2�t varies peri-
odically about its mean value k. Construct a graph that
contrasts the growth of this population with one that has
the same initial value P0 but satisfies the natural growth
equation P 0 D kP (same constant k). How would the two
populations compare after the passage of many years?
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2.1 Application Logistic Modeling of Population Data
These investigations deal with the problem of fitting a logistic model to given pop-
ulation data. Thus we want to determine the numerical constants a and b so that the
solution P.t/ of the initial value problem

dP
dt
D aP C bP 2; P.0/ D P0 (1)

approximates the given values P0, P1, : : : , Pn of the population at the times t0 D 0,
t1, : : : , tn. If we rewrite Eq. (1) (the logistic equation with kM D a and k D �b) in
the form

1

P

dP
dt
D aC bP; (2)

then we see that the points�
P.ti /;

P 0.ti /
P.ti /

�
; i D 0; 1; 2; : : : ; n;

should all lie on the straight line with y-intercept a and slope b (as determined by
the function of P on the right-hand side in Eq. (2)).

This observation provides a way to find a and b. If we can determine the ap-
proximate values of the derivatives P 0

1; P
0
2; : : : corresponding to the given population

data, then we can proceed with the following agenda:

� First plot the points .P1; P
0
1=P1/, .P2; P

0
2=P2/, : : : on a sheet of graph paper

with horizontal P -axis.
� Then use a ruler to draw a straight line that appears to approximate these points

well.
� Finally, measure this straight line’s y-intercept a and slope b.

But where are we to find the needed values of the derivative P 0.t/ of the (as
yet) unknown function P ? It is easiest to use the approximation

P 0
i D

PiC1 � Pi�1

tiC1 � ti�1

(3)

suggested by Fig. 2.1.8. For instance, if we take i D 0 corresponding to the year
1790, then the U.S. population data in Fig. 2.1.9 give

P 0
1 D

P2 � P0

t2 � t0
D 7:240 � 3:929

20
� 0:166

P-axis

t-axistiti – 1 ti + 1

(ti + 1, Pi + 1)

(ti , Pi)

Slope: P'(ti)

(ti – 1, Pi – 1)

Slope:
Pi + 1– Pi – 1
ti + 1 – ti – 1

FIGURE 2.1.8. The symmetric difference approximation
PiC1 � Pi�1

tiC1 � ti�1

to

the derivative P 0.ti /.
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Population Slope
Year i ti Pi P 0

i

1790

1800

1810

1820

1830

1840

1850

1860

1870

1880

1890

1900

1910

0

1

2

3

4

5

6

7

8

9

10

11

12

�10
0

10

20

30

40

50

60

70

80

90

100

110

3.929

5.308

7.240

9.638

12.861

17.064

23.192

31.443

38.558

50.189

62.980

76.212

92.228

0.166

0.217

0.281

0.371

0.517

0.719

0.768

0.937

1.221

1.301

1.462

FIGURE 2.1.9. U.S. population data (in millions) and approximate
slopes.

P

P
'/P

0 20 40 60 80 100

0.02

0.03

0.04

0

0.01

FIGURE 2.1.10. Points and approximating
straight line for U.S. population data from 1800 to
1900.

for the slope at .t1; P1/ corresponding to the year 1800.

INVESTIGATION A: Use Eq. (3) to verify the slope figures shown in the final col-
World

Population
Year (billions)

1960

1965

1970

1975

1980

1985

1990

1995

2000

3.049

3.358

3.721

4.103

4.473

4.882

5.249

5.679

6.127

FIGURE 2.1.11. World population
data.

umn of the table in Fig. 2.1.9, then plot the points .P1; P
0
1=P1/, : : : , .P11; P

0
11=P11/

indicated by the dots in Fig. 2.1.10. If an appropriate graphing calculator, spread-
sheet, or computer program is available, use it to find the straight line y D a C bP
as in (2) that best fits these points. If not, draw your own straight line approximat-
ing these points, and then measure its intercept a and slope b as accurately as you
can. Next, solve the logistic equation in (1) with these numerical parameters, taking
t D 0 corresponding to the year 1800. Finally, compare the predicted 20th-century
U.S. population figures with the actual data listed in Fig. 2.1.4.

INVESTIGATION B: Repeat Investigation A, but take t D 0 in 1900 and use only
20th-century population data. Do you get a better approximation for the U.S. popu-
lation during the final decades of the 20th century?

INVESTIGATION C: Model similarly the world population data shown in
Fig. 2.1.11. The Population Division of the United Nations predicts a world popu-
lation of 8:177 billion in the year 2025. What do you predict?

2.2 Equilibrium Solutions and Stability
In previous sections we have often used explicit solutions of differential equations
to answer specific numerical questions. But even when a given differential equation
is difficult or impossible to solve explicitly, it often is possible to extract qualitative
information about general properties of its solutions. For example, we may be able
to establish that every solution x.t/ grows without bound as t!C1, or approaches
a finite limit, or is a periodic function of t . In this section we introduce—mainly by
consideration of simple differential equations that can be solved explicitly—some



2.2 Equilibrium Solutions and Stability 87

of the more important qualitative questions that can sometimes be answered for
equations that are difficult or impossible to solve.

Example 1 Let x.t/ denote the temperature of a body with initial temperature x.0/ D x0. At time t D 0
this body is immersed in a medium with constant temperature A. Assuming Newton’s law of
cooling,

dx

dt
D �k.x � A/ (k > 0 constant); (1)

we readily solve (by separation of variables) for the explicit solution

x.t/ D AC .x0 � A/e�kt :

It follows immediately that
lim

t!1 x.t/ D A; (2)

so the temperature of the body approaches that of the surrounding medium (as is evident to
one’s intuition). Note that the constant function x.t/ � A is a solution of Eq. (1); it corre-
sponds to the temperature of the body when it is in thermal equilibrium with the surrounding
medium. In Fig. 2.2.1 the limit in (2) means that every other solution curve approaches the
equilibrium solution curve x D A asymptotically as t !C1.

t

x = A

x

FIGURE 2.2.1. Typical solution
curves for the equation of Newton’s
law of cooling, dx=dt D �k.x � A/.

Remark The behavior of solutions of Eq. (1) is summarized briefly by the phase diagram
in Fig. 2.2.2—which indicates the direction (or “phase”) of change in x as a function of x
itself. The right-hand side f .x/ D �k.x � A/ D k.A � x/ is positive if x < A, negative if
x > A. This observation corresponds to the fact that solutions starting above the line x D A

x = Ax < A x > A

x' < 0x' > 0

FIGURE 2.2.2. Phase diagram for
the equation
dx=dt D f .x/ D k.A � x/.

and those starting below it both approach the limiting solution x.t/ � A as t increases (as
indicated by the arrows).

In Section 2.1 we introduced the general population equation

dx

dt
D .ˇ � ı/x; (3)

where ˇ and ı are the birth and death rates, respectively, in births or deaths per
individual per unit of time. The question of whether a population x.t/ is bounded or
unbounded as t ! C1 is of evident interest. In many situations—like the logistic
and explosion=extinction populations of Section 2.1—the birth and death rates are
known functions of x. Then Eq. (3) takes the form

dx

dt
D f .x/: (4)

This is an autonomous first-order differential equation—one in which the indepen-
dent variable t does not appear explicitly (the terminology here stemming from the
Greek word autonomos for “independent,” e.g., of the time t). As in Example 1,
the solutions of the equation f .x/D 0 play an important role and are called critical
points of the autonomous differential equation dx=dt D f .x/.

If x D c is a critical point of Eq. (4), then the differential equation has the
constant solution x.t/ � c. A constant solution of a differential equation is some-
times called an equilibrium solution (one may think of a population that remains
constant because it is in “equilibrium” with its environment). Thus the critical point
xD c, a number, corresponds to the equilibrium solution x.t/� c, a constant-valued
function.

Example 2 illustrates the fact that the qualitative behavior (as t increases) of
the solutions of an autonomous first-order equation can be described in terms of its
critical points.
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Example 2 Consider the logistic differential equation

dx

dt
D kx.M � x/ (5)

(with k > 0 and M > 0). It has two critical points—the solutions x D 0 and x D M of the
equation

f .x/ D kx.M � x/ D 0:
In Section 2.1 we discussed the logistic-equation solution

x.t/ D Mx0

x0 C .M � x0/e�kM t
(6)

satisfying the initial condition x.0/ D x0. Note that the initial values x0 D 0 and x0 D M

yield the equilibrium solutions x.t/ � 0 and x.t/ �M of Eq. (5).
We observed in Section 2.1 that if x0 > 0, then x.t/!M as t ! C1. But if x0 < 0,

then the denominator in Eq. (6) initially is positive, but vanishes when

t D t1 D
1

kM
ln
M � x0

�x0
> 0:

Because the numerator in (6) is negative in this case, it follows that

lim
t!t�

1

x.t/ D �1 if x0 < 0:

It follows that the solution curves of the logistic equation in (5) look as illustrated in

t

x = M

x = 0

x

FIGURE 2.2.3. Typical solution
curves for the logistic equation
dx=dt D kx.M � x/.

Fig. 2.2.3. Here we see graphically that every solution either approaches the equilibrium
solution x.t/ � M as t increases, or (in a visually obvious sense) diverges away from the
other equilibrium solution x.t/ � 0.

Stability of Critical Points
Figure 2.2.3 illustrates the concept of stability. A critical point x D c of an au-
tonomous first-order equation is said to be stable provided that, if the initial value
x0 is sufficiently close to c, then x.t/ remains close to c for all t > 0. More precisely,
the critical point c is stable if, for each 
 > 0, there exists ı > 0 such that

jx0 � cj < ı implies that jx.t/ � cj < 
 (7)

for all t > 0. The critical point x D c is unstable if it is not stable.
Figure 2.2.4 shows a “wider view” of the solution curves of a logistic equation

with k D 1 and M D 4. Note that the strip 3:5 < x < 4:5 enclosing the stable
equilibrium curve x D 4 acts like a funnel—solution curves (moving from left to
right) enter this strip and thereafter remain within it. By contrast, the strip �0:5 <
x < 0:5 enclosing the unstable solution curve x D 0 acts like a spout—solution
curves leave this strip and thereafter remain outside it. Thus the critical point xDM

12108642
t

x

0
–3
–2
–1
0
1
2
3
4
5
6
7

FIGURE 2.2.4. Solution curves,
funnel, and spout for
dx=dt D 4x � x2.

is stable, whereas the critical point x D 0 is unstable.
Remark 1 We can summarize the behavior of solutions of the logistic equation in (5)—in
terms of their initial values—by means of the phase diagram shown in Fig. 2.2.5. It indicates
that x.t/ ! M as t ! C1 if either x0 > M or 0 < x0 < M , whereas x.t/ ! �1 as t

x = M
Stable

x' > 0 x' < 0x' < 0

x = 0
Unstable

FIGURE 2.2.5. Phase diagram for
the logistic equation
dx=dt D f .x/ D kx.M � x/.

increases if x0 < 0. The fact thatM is a stable critical point would be important, for instance,
if we wished to conduct an experiment with a population of M bacteria. It is impossible to
count precisely M bacteria for M large, but any initially positive population will approach
M as t increases.

Remark 2 Related to the stability of the limiting solution M D a=b of the logistic equation

dx

dt
D ax � bx2 (8)
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is the “predictability” of M for an actual population. The coefficients a and b are unlikely
to be known precisely for an actual population. But if they are replaced with close approx-
imations a? and b?—derived perhaps from empirical measurements—then the approximate
limiting populationM? D a?=b? will be close to the actual limiting populationM D a=b. We
may therefore say that the valueM of the limiting population predicted by a logistic equation
not only is a stable critical point of the differential equation, but this value also is “stable”
with respect to small perturbations of the constant coefficients in the equation. (Note that one
of these two statements involves changes in the initial value x0; the other involves changes in
the coefficients a and b.)

Example 3 Consider now the explosion=extinction equation

dx

dt
D kx.x �M/ (9)

of Eq. (10) in Section 2.1. Like the logistic equation, it has the two critical points x D 0 and
x D M corresponding to the equilibrium solutions x.t/ � 0 and x.t/ � M . According to
Problem 33 in Section 2.1, its solution with x.0/ D x0 is given by

x.t/ D Mx0

x0 C .M � x0/ekM t
(10)

(with only a single difference in sign from the logistic solution in (6)). If x0 < M , then (be-
cause the coefficient of the exponential in the denominator is positive) it follows immediately
from Eq. (10) that x.t/! 0 as t !C1. But if x0 >M , then the denominator in (10) initially
is positive, but vanishes when

t D t1 D
1

kM
ln

x0

x0 �M
> 0:

Because the numerator in (10) is positive in this case, it follows that

t

x = M

x = 0

x

FIGURE 2.2.6. Typical solution
curves for the explosion/extinction
equation dx=dt D kx.x � M/.

lim
t!t�

1

x.t/ D C1 if x0 > M:

Therefore, the solution curves of the explosion=extinction equation in (9) look as illustrated
in Fig. 2.2.6. A narrow band along the equilibrium curve x D 0 (as in Fig. 2.2.4) would serve

x = M
Unstable

x' < 0 x' > 0x' > 0

x = 0
Stable

FIGURE 2.2.7. Phase diagram for
the explosion/extinction equation
dx=dt D f .x/ D kx.x � M/.

as a funnel, while a band along the solution curve x DM would serve as a spout for solutions.
The behavior of the solutions of Eq. (9) is summarized by the phase diagram in Fig. 2.2.7,
where we see that the critical point x D 0 is stable and the critical point x DM is unstable.

Harvesting a Logistic Population
The autonomous differential equation

dx

dt
D ax � bx2 � h (11)

(with a, b, and h all positive) may be considered to describe a logistic population
with harvesting. For instance, we might think of the population of fish in a lake
from which h fish per year are removed by fishing.

Example 4 Let us rewrite Eq. (11) in the form

dx

dt
D kx.M � x/ � h; (12)

which exhibits the limiting population M in the case h D 0 of no harvesting. Assuming
hereafter that h > 0, we can solve the quadratic equation �kx2 C kMx � h D 0 for the two
critical points

H;N D kM ˙
p
.kM/2 � 4hk
2k

D 1

2

�
M ˙

q
M 2 � 4h=k

�
; (13)
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assuming that the harvesting rate h is sufficiently small that 4h < kM 2, so both roots H and
N are real with 0 < H < N < M . Then we can rewrite Eq. (12) in the form

dx

dt
D k.N � x/.x �H/: (14)

For instance, the number of critical points of the equation may change abruptly as the value
of a parameter is changed. In Problem 24 we ask you to solve this equation for the solution

x.t/ D N.x0 �H/ �H.x0 �N/e�k.N �H/t

.x0 �H/ � .x0 �N/e�k.N �H/t
(15)

in terms of the initial value x.0/ D x0.
Note that the exponent �k.N �H/t is negative for t > 0. If x0 > N , then each of the

coefficients within parentheses in Eq. (15) is positive; it follows that

If x0 > N then x.t/! N as t !C1: (16)

In Problem 25 we ask you to deduce also from Eq. (15) that

x = 0

t

x = N

x = H

x

FIGURE 2.2.8. Typical solution
curves for the logistic harvesting
equation dx=dt D k.N � x/.x � H/.

If H < x0 < N then x.t/! N as t !C1; whereas (17)

if x0 < H then x.t/! �1 as t ! t1 (18)

for a positive value t1 that depends on x0. It follows that the solution curves of Eq. (12)—still
assuming that 4h < kM 2—look as illustrated in Fig. 2.2.8. (Can you visualize a funnel along
the line x D N and a spout along the line x DH?) Thus the constant solution x.t/� N is an
equilibrium limiting solution, whereas x.t/ � H is a threshold solution that separates differ-
ent behaviors—the population approaches N if x0 > H , while it becomes extinct because of
harvesting if x0 < H . Finally, the stable critical point x D N and the unstable critical point
x D H are illustrated in the phase diagram in Fig. 2.2.9.

x = N
Stable

x' > 0 x' < 0x' < 0

x = H
Unstable

FIGURE 2.2.9. Phase diagram for
the logistic harvesting equation
dx=dt D f .x/ D k.N � x/.x � H/.

Example 5 For a concrete application of our stability conclusions in Example 4, suppose that k D 1 and
M D 4 for a logistic population x.t/ of fish in a lake, measured in hundreds after t years.
Without any fishing at all, the lake would eventually contain nearly 400 fish, whatever the
initial population. Now suppose that h D 3, so that 300 fish are “harvested” annually (at
a constant rate throughout the year). Equation (12) is then dx=dt D x.4 � x/ � 3, and the
quadratic equation

�x2 C 4x � 3 D .3 � x/.x � 1/ D 0
has solutions H D 1 and N D 3. Thus the threshold population is 100 fish and the (new)
limiting population is 300 fish. In short, if the lake is stocked initially with more than 100
fish, then as t increases, the fish population will approach a limiting value of 300 fish. But
if the lake is stocked initially with fewer than 100 fish, then the lake will be “fished out” and
the fish will disappear entirely within a finite period of time.

Bifurcation and Dependence on Parameters
A biological or physical system that is modeled by a differential equation may de-
pend crucially on the numerical values of certain coefficients or parameters that
appear in the equation. For instance, the number of critical points of the equation
may change abruptly as the value of a parameter is changed.

Example 6 The differential equation
dx

dt
D x.4 � x/ � h (19)

(with x in hundreds) models the harvesting of a logistic population with k D 1 and limiting
populationM D 4 (hundred). In Example 5 we considered the case of harvesting level hD 3,
and found that the new limiting population is N D 3 hundred and the threshold population is
H D 1 hundred. Typical solution curves, including the equilibrium solutions x.t/ � 3 and
x.t/ � 1, then look like those pictured in Fig. 2.2.8.



2.2 Equilibrium Solutions and Stability 91

Now let’s investigate the dependence of this picture upon the harvesting level h. Ac-
cording to Eq. (13) with k D 1 and M D 4, the limiting and threshold populations N and H
are given by

H;N D 1

2

�
4˙
p
16 � 4h

�
D 2˙

p
4 � h: (20)

If h < 4—we can consider negative values of h to describe stocking rather than harvesting
the fish—then there are distinct equilibrium solutions x.t/ � N and x.t/ � H with N > H

as in Fig. 2.2.8.
But if h D 4, then Eq. (20) gives N D H D 2, so the differential equation has only the

single equilibrium solution x.t/� 2. In this case the solution curves of the equation look like
those illustrated in Fig. 2.2.10. If the initial number x0 (in hundreds) of fish exceeds 2, then
the population approaches a limiting population of 2 (hundred fish). However, any initial
population x0 < 2 (hundred) results in extinction with the fish dying out as a consequence
of the harvesting of 4 hundred fish annually. The critical point x D 2 might therefore be

0 2 4

1

3

5

t

x

–1

x(t) ≡ 2

FIGURE 2.2.10. Solution curves of
the equation x0 D x.4 � x/ � h with
critical harvesting h D 4. described as “semistable”—it looks stable on the side x > 2 where solution curves approach

the equilibrium solution x.t/� 2 as t increases, but unstable on the side x < 2 where solution
curves instead diverge away from the equilibrium solution.
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FIGURE 2.2.11. Solution curves of
the equation x0 D x.4 � x/ � h with
excessive harvesting h D 5.

If, finally, h > 4, then the quadratic equation corresponding to (20) has no real solu-
tions and the differential equation in (19) has no equilibrium solutions. The solution curves
then look like those illustrated in Fig. 2.2.11, and (whatever the initial number of fish) the
population dies out as a result of the excessive harvesting.

If we imagine turning a dial to gradually increase the value of the parameter h
in Eq. (19), then the picture of the solution curves changes from one like Fig. 2.2.8
with h < 4, to Fig. 2.2.10 with h D 4, to one like Fig. 2.2.11 with h > 4. Thus the
differential equation has

� two critical points if h < 4 ;
� one critical point if h D 4 ;
� no critical point if h > 4.

The value h D 4—for which the qualitative nature of the solutions changes as h
increases—is called a bifurcation point for the differential equation containing the
parameter h. A common way to visualize the corresponding “bifurcation” in the
solutions is to plot the bifurcation diagram consisting of all points .h; c/, where
c is a critical point of the equation x0 D x.4 � x/C h . For instance, if we rewrite
Eq. (20) as

c D 2˙
p
4 � h;

.c � 2/2 D 4 � h;

where either c DN or c DH , then we get the equation of the parabola that is shown
in Fig. 2.2.12. This parabola is then the bifurcation diagram for our differential
equation that models a logistic fish population with harvesting at the level specified
by the parameter h.

4
h

c

(c – 2)2 = 4 – h

FIGURE 2.2.12. The parabola
.c � 2/2 D 4 � h is the bifurcation
diagram for the differential equation
x0 D x.4 � x/ � h.

2.2 Problems
In Problems 1 through 12 first solve the equation f .x/ D 0

to find the critical points of the given autonomous differential
equation dx=dt D f .x/. Then analyze the sign of f .x/ to de-
termine whether each critical point is stable or unstable, and
construct the corresponding phase diagram for the differen-
tial equation. Next, solve the differential equation explicitly
for x.t/ in terms of t . Finally, use either the exact solution

or a computer-generated slope field to sketch typical solution
curves for the given differential equation, and verify visually
the stability of each critical point.

1.
dx

dt
D x � 4 2.

dx

dt
D 3 � x

3.
dx

dt
D x2 � 4x 4.

dx

dt
D 3x � x2
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5.
dx

dt
D x2 � 4 6.

dx

dt
D 9 � x2

7.
dx

dt
D .x � 2/2 8.

dx

dt
D �.3 � x/2

9.
dx

dt
D x2 � 5x C 4 10.

dx

dt
D 7x � x2 � 10

11.
dx

dt
D .x � 1/3 12.

dx

dt
D .2 � x/3

In Problems 13 through 18, use a computer system or graphing
calculator to plot a slope field and/or enough solution curves
to indicate the stability or instability of each critical point of
the given differential equation. .Some of these critical points
may be semistable in the sense mentioned in Example 6./

13.
dx

dt
D .x C 2/.x � 2/2 14.

dx

dt
D x.x2 � 4/

15.
dx

dt
D .x2 � 4/2 16.

dx

dt
D .x2 � 4/3

17.
dx

dt
D x2.x2 � 4/ 18.

dx

dt
D x3.x2 � 4/

19. The differential equation dx=dt D 1
10x.10�x/�hmodels

a logistic population with harvesting at rate h. Determine
(as in Example 6) the dependence of the number of critical
points on the parameter h, and then construct a bifurcation
diagram like Fig. 2.2.12.

20. The differential equation dx=dt D 1
100x.x�5/C s models

a population with stocking at rate s. Determine the depen-
dence of the number of critical points c on the parameter s,
and then construct the corresponding bifurcation diagram
in the sc-plane.

21. Consider the differential equation dx=dt D kx � x3.
(a) If k 5 0, show that the only critical value c D 0 of
x is stable. (b) If k > 0, show that the critical point c D 0
is now unstable, but that the critical points c D ˙

p
k are

stable. Thus the qualitative nature of the solutions changes
at k D 0 as the parameter k increases, and so k D 0 is a
bifurcation point for the differential equation with param-
eter k. The plot of all points of the form .k; c/ where c is a
critical point of the equation x0D kx�x3 is the “pitchfork
diagram” shown in Fig. 2.2.13.

c

k

FIGURE 2.2.13. Bifurcation diagram for
dx=dt D kx � x3.

22. Consider the differential equation dx=dt D x C kx3 con-
taining the parameter k. Analyze (as in Problem 21) the
dependence of the number and nature of the critical points
on the value of k, and construct the corresponding bifur-
cation diagram.

23. Suppose that the logistic equation dx=dt D kx.M � x/
models a population x.t/ of fish in a lake after t months
during which no fishing occurs. Now suppose that, be-
cause of fishing, fish are removed from the lake at the rate
of hx fish per month (with h a positive constant). Thus
fish are “harvested” at a rate proportional to the existing
fish population, rather than at the constant rate of Exam-
ple 4. (a) If 0 < h < kM , show that the population is
still logistic. What is the new limiting population? (b) If
h = kM , show that x.t/! 0 are t ! C1, so the lake is
eventually fished out.

24. Separate variables in the logistic harvesting equation
dx=dt D k.N � x/.x �H/ and then use partial fractions
to derive the solution given in Eq. (15).

25. Use the alternative forms

x.t/ D N.x0 �H/CH.N � x0/e
�k.N �H/t

.x0 �H/C .N � x0/e�k.N �H/t

D H.N � x0/e
�k.N �H/t �N.H � x0/

.N � x0/e�k.N �H/t � .H � x0/

of the solution in (15) to establish the conclusions stated
in (17) and (18).

Example 4 dealt with the case 4h > kM 2 in the equation
dx=dt D kx.M � x/ � h that describes constant-rate harvest-
ing of a logistic population. Problems 26 and 27 deal with the
other cases.

26. If 4h D kM 2, show that typical solution curves look
as illustrated in Fig. 2.2.14. Thus if x0 = M=2, then
x.t/!M=2 as t !C1. But if x0 < M=2, then x.t/ D 0
after a finite period of time, so the lake is fished out. The
critical point xDM=2might be called semistable, because
it looks stable from one side, unstable from the other.

t

x = M/2

x = 0

x

FIGURE 2.2.14. Solution curves for
harvesting a logistic population with
4h D kM 2.

27. If 4h > kM 2, show that x.t/ D 0 after a finite period of
time, so the lake is fished out (whatever the initial popula-
tion). [Suggestion: Complete the square to rewrite the dif-
ferential equation in the form dx=dt D �kŒ.x � a/2C b2�.
Then solve explicitly by separation of variables.] The re-
sults of this and the previous problem (together with Ex-
ample 4) show that h D 1

4kM
2 is a critical harvesting rate
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for a logistic population. At any lesser harvesting rate the
population approaches a limiting population N that is less
than M (why?), whereas at any greater harvesting rate the
population reaches extinction.

28. This problem deals with the differential equation dx=dt D
kx.x �M/ � h that models the harvesting of an unso-
phisticated population (such as alligators). Show that this
equation can be rewritten in the form dx=dt D k.x �
H/.x �K/, where

H D 1
2

�
M C

q
M 2 C 4h=k

�
> 0;

K D 1
2

�
M �

q
M 2 C 4h=k

�
< 0:

Show that typical solution curves look as illustrated in
Fig. 2.2.15.

29. Consider the two differential equations

dx

dt
D .x � a/.x � b/.x � c/ (21)

and
dx

dt
D .a � x/.b � x/.c � x/; (22)

each having the critical points a, b, and c; suppose that
a < b < c. For one of these equations, only the criti-
cal point b is stable; for the other equation, b is the only
unstable critical point. Construct phase diagrams for the
two equations to determine which is which. Without at-
tempting to solve either equation explicitly, make rough
sketches of typical solution curves for each. You should
see two funnels and a spout in one case, two spouts and a
funnel in the other.

t

x = H

x = K
x = 0x

FIGURE 2.2.15. Solution curves for harvesting
a population of alligators.

2.3 Acceleration–Velocity Models
In Section 1.2 we discussed vertical motion of a massm near the surface of the earth
under the influence of constant gravitational acceleration. If we neglect any effects
of air resistance, then Newton’s second law .F D ma) implies that the velocity v of
the mass m satisfies the equation

m
dv

dt
D FG ; (1)

where FG D �mg is the (downward-directed) force of gravity, where the gravita-
tional acceleration is g � 9:8 m=s2 (in mks units; g � 32 ft=s2 in fps units).

Example 1 Suppose that a crossbow bolt is shot straight upward from the ground (y0 D 0) with initial
velocity v0 D 49 (m=s). Then Eq. (1) with g D 9:8 gives

dv

dt
D �9:8; so v.t/ D �.9:8/t C v0 D �.9:8/t C 49:

Hence the bolt’s height function y.t/ is given by

y.t/ D
Z
Œ�.9:8/t C 49� dt D �.4:9/t2 C 49t C y0 D �.4:9/t2 C 49t:

The bolt reaches its maximum height when v D �.9:8/t C 49 D 0, hence when t D 5 (s).
Thus its maximum height is

ymax D y.5/ D �.4:9/.52/C .49/.5/ D 122.5 (m):

The bolt returns to the ground when y D �.4:9/t.t � 10/ D 0, and thus after 10 seconds
aloft.

Now we want to take account of air resistance in a problem like Example 1.
The force FR exerted by air resistance on the moving mass m must be added in
Eq. (1), so now

m
dv

dt
D FG C FR: (2)
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Newton showed in his Principia Mathematica that certain simple physical assump-
tions imply that FR is proportional to the square of the velocity: FR D kv2. But
empirical investigations indicate that the actual dependence of air resistance on ve-
locity can be quite complicated. For many purposes it suffices to assume that

FR D kvp;

where 1 5 p 5 2 and the value of k depends on the size and shape of the body, as
well as the density and viscosity of the air. Generally speaking, p D 1 for relatively
low speeds and p D 2 for high speeds, whereas 1 < p < 2 for intermediate speeds.
But how slow “low speed” and how fast “high speed” are depend on the same factors
that determine the value of the coefficient k.

Thus air resistance is a complicated physical phenomenon. But the simplify-
ing assumption that FR is exactly of the form given here, with either p D 1 or p D 2,
yields a tractable mathematical model that exhibits the most important qualitative
features of motion with resistance.

Resistance Proportional to Velocity
Let us first consider the vertical motion of a body with mass m near the surface ofy

m m

Ground level

FR

FG

Net force F = FR + FG

(Note: FR acts upward when
the body is falling.)

FIGURE 2.3.1. Vertical motion with
air resistance.

the earth, subject to two forces: a downward gravitational force FG and a force FR

of air resistance that is proportional to velocity (so that pD 1) and of course directed
opposite the direction of motion of the body. If we set up a coordinate system with
the positive y-direction upward and with y D 0 at ground level, then FG D �mg
and

FR D �kv; (3)

where k is a positive constant and v D dy=dt is the velocity of the body. Note that
the minus sign in Eq. (3) makes FR positive (an upward force) if the body is falling
(v is negative) and makes FR negative (a downward force) if the body is rising (v is
positive). As indicated in Fig. 2.3.1, the net force acting on the body is then

F D FR C FG D �kv �mg;

and Newton’s law of motion F D m.dv=dt/ yields the equation

m
dv

dt
D �kv �mg:

Thus
dv

dt
D ��v � g; (4)

where � D k=m > 0. You should verify for yourself that if the positive y-axis were
directed downward, then Eq. (4) would take the form dv=dt D ��v C g.

Equation (4) is a separable first-order differential equation, and its solution is

v.t/ D
�
v0 C

g

�

�
e��t � g

�
: (5)

Here, v0 D v.0/ is the initial velocity of the body. Note that

v� D lim
t!1 v.t/ D �g

�
: (6)
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Thus the speed of a body falling with air resistance does not increase indefinitely;
instead, it approaches a finite limiting speed, or terminal speed,

jv� j D
g

�
D mg

k
: (7)

This fact is what makes a parachute a practical invention; it even helps explain
the occasional survival of people who fall without parachutes from high-flying air-
planes.

We now rewrite Eq. (5) in the form

dy

dt
D .v0 � v� /e

��t C v� : (8)

Integration gives

y.t/ D �1
�
.v0 � v� /e

��t C v� t C C:

We substitute 0 for t and let y0 D y.0/ denote the initial height of the body. Thus
we find that C D y0 C .v0 � v� /=�, and so

y.t/ D y0 C v� t C
1

�
.v0 � v� /.1 � e��t /: (9)

Equations (8) and (9) give the velocity v and height y of a body moving ver-
tically under the influence of gravity and air resistance. The formulas depend on
the initial height y0 of the body, its initial velocity v0, and the drag coefficient �,
the constant such that the acceleration due to air resistance is aR D ��v. The two
equations also involve the terminal velocity v� defined in Eq. (6).

For a person descending with the aid of a parachute, a typical value of � is 1:5,
which corresponds to a terminal speed of jv� j � 21:3 ft=s, or about 14:5 mi=h. With
an unbuttoned overcoat flapping in the wind in place of a parachute, an unlucky
skydiver might increase � to perhaps as much as 0:5, which gives a terminal speed
of jv� j � 65 ft=s, about 44 mi=h. See Problems 10 and 11 for some parachute-jump
computations.

Example 2 We again consider a bolt shot straight upward with initial velocity v0 D 49 m=s from a
crossbow at ground level. But now we take air resistance into account, with � D 0:04 in
Eq. (4). We ask how the resulting maximum height and time aloft compare with the values
found in Example 1.

Solution We substitute y0 D 0, v0 D 49, and v� D �g=� D �245 in Eqs. (5) and (9), and obtain

v.t/ D 294e�t=25 � 245;
y.t/ D 7350 � 245t � 7350e�t=25:

To find the time required for the bolt to reach its maximum height (when v D 0), we solve
the equation

v.t/ D 294e�t=25 � 245 D 0
for tm D 25 ln.294=245/ � 4:558 (s). Its maximum height is then ymax D v.tm/ � 108:280

meters (as opposed to 122:5 meters without air resistance). To find when the bolt strikes the
ground, we must solve the equation

y.t/ D 7350 � 245t � 7350e�t=25 D 0:

Using Newton’s method, we can begin with the initial guess t0D 10 and carry out the iteration
tnC1 D tn � y.tn/=y0.tn/ to generate successive approximations to the root. Or we can simply
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use the Solve command on a calculator or computer. We find that the bolt is in the air for
tf � 9:411 seconds (as opposed to 10 seconds without air resistance). It hits the ground with
a reduced speed of jv.tf/j � 43:227 m=s (as opposed to its initial velocity of 49 m=s).

Thus the effect of air resistance is to decrease the bolt’s maximum height, the total
time spent aloft, and its final impact speed. Note also that the bolt now spends more time in
descent (tf � tm � 4:853 s) than in ascent (tm � 4:558 s).

Resistance Proportional to Square of Velocity
Now we assume that the force of air resistance is proportional to the square of the
velocity:

FR D ˙kv2; (10)

with k > 0. The choice of signs here depends on the direction of motion, which
the force of resistance always opposes. Taking the positive y-direction as upward,
FR < 0 for upward motion (when v > 0) while FR > 0 for downward motion (when
v < 0). Thus the sign of FR is always opposite that of v, so we can rewrite Eq. (10)
as

FR D �kvjvj: (100)

Then Newton’s second law gives

m
dv

dt
D FG C FR D �mg � kvjvjI

that is,
dv

dt
D �g � �vjvj; (11)

where � D k=m > 0. We must discuss the cases of upward and downward motion
separately.

UPWARD MOTION: Suppose that a projectile is launched straight upward from
the initial position y0 with initial velocity v0 > 0. Then Eq. (11) with v > 0 gives
the differential equation

dv

dt
D �g � �v2 D �g

�
1C �

g
v2

�
: (12)

In Problem 13 we ask you to make the substitution uD v
p
�=g and apply the familiar

integral Z
1

1C u2
du D tan�1 uC C

to derive the projectile’s velocity function

v.t/ D
r
g

�
tan

�
C1 � tp�g

	
with C1 D tan�1

�
v0

r
�

g

�
: (13)

Because
R

tanudu D � ln j cosuj C C , a second integration (see Problem 14) yields
the position function

y.t/ D y0 C
1

�
ln

ˇ̌̌̌
ˇcos

�
C1 � tp�g

	
cosC1

ˇ̌̌̌
ˇ : (14)
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DOWNWARD MOTION: Suppose that a projectile is launched (or dropped)
straight downward from the initial position y0 with initial velocity v0 5 0. Then
Eq. (11) with v < 0 gives the differential equation

dv

dt
D �g C �v2 D �g

�
1 � �

g
v2

�
: (15)

In Problem 15 we ask you to make the substitution uD v
p
�=g and apply the integral

Z
1

1 � u2
du D tanh�1 uC C

to derive the projectile’s velocity function

v.t/ D
r
g

�
tanh

�
C2 � tp�g

	
with C2 D tanh�1

�
v0

r
�

g

�
: (16)

Because
R

tanhudu D ln j coshuj C C , another integration (Problem 16) yields the
position function

y.t/ D y0 �
1

�
ln

ˇ̌̌̌
ˇcosh

�
C2 � tp�g

	
coshC2

ˇ̌̌̌
ˇ : (17)

(Note the analogy between Eqs. (16) and (17) and Eqs. (13) and (14) for upward
motion.)

If v0 D 0, then C2 D 0, so v.t/ D �
p
g=� tanh

�
t
p
�g
	
. Because

lim
x!1 tanh x D lim

x!1
sinh x
cosh x

D lim
x!1

1
2
.ex � e�x/

1
2
.ex C e�x/

D 1;

it follows that in the case of downward motion the body approaches the terminal
speed

jv� j D
r
g

�
(18)

(as compared with jv� j D g=� in the case of downward motion with linear resistance
described by Eq. (4)).

Example 3 We consider once more a bolt shot straight upward with initial velocity v0 D 49 m=s from a
crossbow at ground level, as in Example 2. But now we assume air resistance proportional to
the square of the velocity, with � D 0:0011 in Eqs. (12) and (15). In Problems 17 and 18 we
ask you to verify the entries in the last line of the following table.

Air Maximum Time Ascent Descent Impact
Resistance Height (ft) Aloft (s) Time (s) Time (s) Speed (ft/s)

0.0

.0:04/v

.0:0011/v2

122.5

108.28

108.47

10

9.41

9.41

5

4.56

4.61

5

4.85

4.80

49

43.23

43.49
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Comparison of the last two lines of data here indicates little difference—for the motion of

t

y

1 2 3 4 5 6 7 8 9 10

Without
resistance

With
resistance

20
40
60
80

100
120

FIGURE 2.3.2. The height functions
in Example 1 (without air resistance),
Example 2 (with linear air resistance),
and Example 3 (with air resistance
proportional to the square of the
velocity) are all plotted. The graphs of
the latter two are visually
indistinguishable.

our crossbow bolt—between linear air resistance and air resistance proportional to the square
of the velocity. And in Fig. 2.3.2, where the corresponding height functions are graphed, the
difference is hardly visible. However, the difference between linear and nonlinear resistance
can be significant in more complex situations—such as, for instance, the atmospheric reentry
and descent of a space vehicle.

Variable Gravitational Acceleration
Unless a projectile in vertical motion remains in the immediate vicinity of the earth’s
surface, the gravitational acceleration acting on it is not constant. According to
Newton’s law of gravitation, the gravitational force of attraction between two point
masses M and m located at a distance r apart is given by

F D GMm

r2
; (19)

where G is a certain empirical constant (G � 6:6726 � 10�11 N�(m=kg)2 in mks
units). The formula is also valid if either or both of the two masses are homogeneous
spheres; in this case, the distance r is measured between the centers of the spheres.

The following example is similar to Example 2 in Section 1.2, but now we
take account of lunar gravity.

Example 4 A lunar lander is free-falling toward the moon, and at an altitude of 53 kilometers above the
lunar surface its downward velocity is measured at 1477 km/h. Its retrorockets, when fired
in free space, provide a deceleration of T D 4 m/s2. At what height above the lunar surface
should the retrorockets be activated to ensure a “soft touchdown” (v D 0 at impact)?

Solution Let r.t/ denote the lander’s distance from the center of the moon at time t (Fig. 2.3.3). When
we combine the (constant) thrust acceleration T and the (negative) lunar acceleration F=m D
GM=r2 of Eq. (19), we get the (acceleration) differential equation

d2r

dt2
D T � GM

r2
; (20)

where M D 7:35 � 1022 (kg) is the mass of the moon, which has a radius of R D 1:74 � 106

meters (or 1740 km, a little over a quarter of the earth’s radius). Noting that this second-order
differential equation does not involve the independent variable t , we substitute

Lunar surface

Center of moon

Lander

r – R

R

FIGURE 2.3.3. The lunar lander
descending to the surface of the moon.

v D dr

dt
;

d2r

dt2
D dv

dt
D dv

dr
� dr
dt
D v dv

dr

(as in Eq. (36) of Section 1.6) and obtain the first-order equation

v
dv

dr
D T � GM

r2

with the new independent variable r . Integration with respect to r now yields the equation

1

2
v2 D T r C GM

r
C C (21)

that we can apply both before ignition (T D 0 ) and after ignition (T D 4).
Before ignition: Substitution of T D 0 in (21) gives the equation

1

2
v2 D GM

r
C C1 (21a)

where the constant is given by C1 D v2
0=2 �GM=r0 with

v0 D �1477
km
h
� 1000 m

km
� 1 h

3600 s
D �14770

36

m
s



2.3 Acceleration–Velocity Models 99

and r0 D .1:74� 106/C 53;000D 1:793� 106 m (from the initial velocity–position measure-
ment).

After ignition: Substitution of T D 4 and v D 0, r D R (at touchdown) into (21) gives

1

2
v2 D 4r C GM

r
C C2 (21b)

where the constant C2 D �4R � GM=R is obtained by substituting the values v D 0, r D R

at touchdown.

At the instant of ignition the lunar lander’s position and velocity satisfy both (21a)
and (21b). Therefore we can find its desired height h above the lunar surface at ignition by
equating the right-hand sides in (21a) and (21b). This gives r D 1

4 .C1 � C2/ D 1:78187 �
106 and finally h D r � R D 41;870 meters (that is, 41.87 kilometers—just over 26 miles).
Moreover, substitution of this value of r in (21a) gives the velocity v D �450 m/s at the
instant of ignition.

Escape Velocity
In his novel From the Earth to the Moon (1865), Jules Verne raised the questionr

m

M

Velocity    (t )

r (t )

R

FIGURE 2.3.4. A mass m at a great
distance from the earth.

of the initial velocity necessary for a projectile fired from the surface of the earth
to reach the moon. Similarly, we can ask what initial velocity v0 is necessary for
the projectile to escape from the earth altogether. This will be so if its velocity
v D dr=dt remains positive for all t > 0, so it continues forever to move away from
the earth. With r.t/ denoting the projectile’s distance from the earth’s center at time
t (Fig. 2.3.4), we have the equation

dv

dt
D d2r

dt2
D �GM

r2
; (22)

similar to Eq. (20), but with T D 0 (no thrust) and with M D 5:975 � 1024 (kg)
denoting the mass of the earth, which has an equatorial radius of R D 6:378 � 106

(m). Substitution of the chain rule expression dv=dt D v.dv=dr/ as in Example 4
gives

v
dv

dr
D �GM

r2
:

Then integration of both sides with respect to r yields

1

2
v2 D GM

r
C C:

Now v D v0 and r D R when t D 0, so C D 1
2
v2

0 � GM=R, and hence solution for
v2 gives

v2 D v2
0 C 2GM

�
1

r
� 1

R

�
: (23)

This implicit solution of Eq. (22) determines the projectile’s velocity v as a function
of its distance r from the earth’s center. In particular,

v2 > v2
0 �

2GM
R

;

so v will remain positive provided that v2
0 = 2GM=R. Therefore, the escape velocity

from the earth is given by

v0 D
r
2GM
R

: (24)
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In Problem 27 we ask you to show that, if the projectile’s initial velocity exceedsp
2GM=R, then r.t/ ! 1 as t ! 1, so it does, indeed, “escape” from the earth.

With the given values of G and the earth’s mass M and radius R, this gives v0 �
11;180 (m=s) (about 36,680 ft=s, about 6:95 mi=s, about 25,000 mi=h).
Remark Equation (24) gives the escape velocity for any other (spherical) planetary body
when we use its mass and radius. For instance, when we use the mass M and radius R for the
moon given in Example 4, we find that escape velocity from the lunar surface is v0 � 2375

m=s. This is just over one-fifth of the escape velocity from the earth’s surface, a fact that
greatly facilitates the return trip (“From the Moon to the Earth”).

2.3 Problems
1. The acceleration of a Maserati is proportional to the dif-

ference between 250 km=h and the velocity of this sports
car. If this machine can accelerate from rest to 100 km=h
in 10 s, how long will it take for the car to accelerate from
rest to 200 km=h?

2. Suppose that a body moves through a resisting medium
with resistance proportional to its velocity v, so that
dv=dt D �kv. (a) Show that its velocity and position
at time t are given by

v.t/ D v0e
�kt

and
x.t/ D x0 C

�v0

k

�
.1 � e�kt /:

(b) Conclude that the body travels only a finite distance,
and find that distance.

3. Suppose that a motorboat is moving at 40 ft=s when its
motor suddenly quits, and that 10 s later the boat has
slowed to 20 ft=s. Assume, as in Problem 2, that the re-
sistance it encounters while coasting is proportional to its
velocity. How far will the boat coast in all?

4. Consider a body that moves horizontally through a
medium whose resistance is proportional to the square of
the velocity v, so that dv=dt D �kv2. Show that

v.t/ D v0

1C v0kt

and that

x.t/ D x0 C
1

k
ln.1C v0kt/:

Note that, in contrast with the result of Problem 2, x.t/!
C1 as t ! C1. Which offers less resistance when the
body is moving fairly slowly—the medium in this prob-
lem or the one in Problem 2? Does your answer seem
consistent with the observed behaviors of x.t/ as t !1?

5. Assuming resistance proportional to the square of the ve-
locity (as in Problem 4), how far does the motorboat of
Problem 3 coast in the first minute after its motor quits?

6. Assume that a body moving with velocity v encounters
resistance of the form dv=dt D �kv3=2. Show that

v.t/ D 4v0�
kt
p
v0 C 2

	2

and that

x.t/ D x0 C
2

k

p
v0

�
1 � 2

kt
p
v0 C 2

�
:

Conclude that under a 3
2 -power resistance a body coasts

only a finite distance before coming to a stop.
7. Suppose that a car starts from rest, its engine providing an

acceleration of 10 ft=s2, while air resistance provides 0:1
ft=s2 of deceleration for each foot per second of the car’s
velocity. (a) Find the car’s maximum possible (limiting)
velocity. (b) Find how long it takes the car to attain 90%
of its limiting velocity, and how far it travels while doing
so.

8. Rework both parts of Problem 7, with the sole difference
that the deceleration due to air resistance now is .0:001/v2

ft=s2 when the car’s velocity is v feet per second.
9. A motorboat weighs 32,000 lb and its motor provides a

thrust of 5000 lb. Assume that the water resistance is 100
pounds for each foot per second of the speed v of the boat.
Then

1000
dv

dt
D 5000 � 100v:

If the boat starts from rest, what is the maximum velocity
that it can attain?

10. A woman bails out of an airplane at an altitude of 10,000
ft, falls freely for 20 s, then opens her parachute. How long
will it take her to reach the ground? Assume linear air re-
sistance �v ft=s2, taking � D 0:15 without the parachute
and � D 1:5 with the parachute. (Suggestion: First deter-
mine her height above the ground and velocity when the
parachute opens.)

11. According to a newspaper account, a paratrooper survived
a training jump from 1200 ft when his parachute failed to
open but provided some resistance by flapping unopened
in the wind. Allegedly he hit the ground at 100 mi=h after
falling for 8 s. Test the accuracy of this account. (Sugges-
tion: Find � in Eq. (4) by assuming a terminal velocity
of 100 mi=h. Then calculate the time required to fall 1200
ft.)

12. It is proposed to dispose of nuclear wastes—in drums with
weight W D 640 lb and volume 8 ft3—by dropping them
into the ocean (v0 D 0). The force equation for a drum
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falling through water is

m
dv

dt
D �W C B C FR;

where the buoyant force B is equal to the weight (at 62:5
lb=ft3) of the volume of water displaced by the drum
(Archimedes’ principle) and FR is the force of water resis-
tance, found empirically to be 1 lb for each foot per second
of the velocity of a drum. If the drums are likely to burst
upon an impact of more than 75 ft=s, what is the maximum
depth to which they can be dropped in the ocean without
likelihood of bursting?

13. Separate variables in Eq. (12) and substitute u D v
p
�=g

to obtain the upward-motion velocity function given in
Eq. (13) with initial condition v.0/ D v0.

14. Integrate the velocity function in Eq. (13) to obtain the
upward-motion position function given in Eq. (14) with
initial condition y.0/ D y0.

15. Separate variables in Eq. (15) and substitute u D v
p
�=g

to obtain the downward-motion velocity function given in
Eq. (16) with initial condition v.0/ D v0.

16. Integrate the velocity function in Eq. (16) to obtain the
downward-motion position function given in Eq. (17) with
initial condition y.0/ D y0.

17. Consider the crossbow bolt of Example 3, shot straight
upward from the ground (y D 0) at time t D 0 with initial
velocity v0 D 49 m=s. Take g D 9:8 m=s2 and � D 0:0011
in Eq. (12). Then use Eqs. (13) and (14) to show that
the bolt reaches its maximum height of about 108:47 m in
about 4:61 s.

18. Continuing Problem 17, suppose that the bolt is now
dropped (v0 D 0) from a height of y0 D 108:47 m. Then
use Eqs. (16) and (17) to show that it hits the ground about
4:80 s later with an impact speed of about 43:49 m=s.

19. A motorboat starts from rest (initial velocity v.0/ D v0 D
0). Its motor provides a constant acceleration of 4 ft=s2,
but water resistance causes a deceleration of v2=400 ft=s2.
Find v when t D 10 s, and also find the limiting velocity
as t ! C1 (that is, the maximum possible speed of the
boat).

20. An arrow is shot straight upward from the ground with
an initial velocity of 160 ft=s. It experiences both the de-
celeration of gravity and deceleration v2=800 due to air
resistance. How high in the air does it go?

21. If a ball is projected upward from the ground with initial
velocity v0 and resistance proportional to v2, deduce from
Eq. (14) that the maximum height it attains is

ymax D
1

2�
ln

 
1C �v2

0

g

!
:

22. Suppose that � D 0:075 (in fps units, with g D 32 ft=s2)
in Eq. (15) for a paratrooper falling with parachute open.
If he jumps from an altitude of 10,000 ft and opens his
parachute immediately, what will be his terminal speed?
How long will it take him to reach the ground?

23. Suppose that the paratrooper of Problem 22 falls freely for
30 s with � D 0:00075 before opening his parachute. How
long will it now take him to reach the ground?

24. The mass of the sun is 329;320 times that of the earth and
its radius is 109 times the radius of the earth. (a) To what
radius (in meters) would the earth have to be compressed
in order for it to become a black hole—the escape velocity
from its surface equal to the velocity c D 3 � 108 m=s of
light? (b) Repeat part (a) with the sun in place of the
earth.

25. (a) Show that if a projectile is launched straight upward
from the surface of the earth with initial velocity v0 less
than escape velocity

p
2GM=R, then the maximum dis-

tance from the center of the earth attained by the projectile
is

rmax D
2GMR

2GM �Rv2
0

;

where M and R are the mass and radius of the earth, re-
spectively. (b) With what initial velocity v0 must such a
projectile be launched to yield a maximum altitude of 100
kilometers above the surface of the earth? (c) Find the
maximum distance from the center of the earth, expressed
in terms of earth radii, attained by a projectile launched
from the surface of the earth with 90% of escape velocity.

26. Suppose that you are stranded—your rocket engine has
failed—on an asteroid of diameter 3 miles, with density
equal to that of the earth with radius 3960 miles. If you
have enough spring in your legs to jump 4 feet straight up
on earth while wearing your space suit, can you blast off
from this asteroid using leg power alone?

27. (a) Suppose a projectile is launched vertically from the
surface r D R of the earth with initial velocity v0 Dp
2GM=R, so v2

0 D k2=R where k2 D 2GM. Solve the
differential equation dr=dt D k=pr (from Eq. (23) in
this section) explicitly to deduce that r.t/ ! 1 as
t !1.

(b) If the projectile is launched vertically with initial ve-
locity v0 >

p
2GM=R, deduce that

dr

dt
D
s
k2

r
C ˛ > kp

r
:

Why does it again follow that r.t/!1 as t !1?
28. (a) Suppose that a body is dropped (v0 D 0) from a dis-

tance r0 > R from the earth’s center, so its acceleration
is dv=dt D �GM=r2. Ignoring air resistance, show that it
reaches the height r < r0 at time

t D
r

r0

2GM

�p
rr0 � r2 C r0 cos�1

r
r

r0

�
:

(Suggestion: Substitute r D r0 cos2 � to evaluateR p
r=.r0 � r/ dr .) (b) If a body is dropped from a height

of 1000 km above the earth’s surface and air resistance
is neglected, how long does it take to fall and with what
speed will it strike the earth’s surface?
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29. Suppose that a projectile is fired straight upward from the
surface of the earth with initial velocity v0 <

p
2GM=R.

Then its height y.t/ above the surface satisfies the initial
value problem

d2y

dt2
D � GM

.y CR/2 I y.0/ D 0; y0.0/ D v0:

Substitute dv=dt D v.dv=dy/ and then integrate to obtain

v2 D v2
0 �

2GMy
R.RC y/

for the velocity v of the projectile at height y. What maxi-
mum altitude does it reach if its initial velocity is 1 km=s?

30. In Jules Verne’s original problem, the projectile launched
from the surface of the earth is attracted by both the earth

and the moon, so its distance r.t/ from the center of the
earth satisfies the initial value problem

d2r

dt2
D �GMe

r2
C GMm

.S � r/2 I r.0/ D R; r 0.0/ D v0

where Me and Mm denote the masses of the earth and
the moon, respectively; R is the radius of the earth and
S D 384;400 km is the distance between the centers of
the earth and the moon. To reach the moon, the projectile
must only just pass the point between the moon and earth
where its net acceleration vanishes. Thereafter it is “under
the control” of the moon, and falls from there to the lunar
surface. Find the minimal launch velocity v0 that suffices
for the projectile to make it “From the Earth to the Moon.”

2.3 Application Rocket Propulsion
Suppose that the rocket of Fig. 2.3.5 blasts off straight upward from the surface ofy

c

F

FIGURE 2.3.5. An ascending rocket.

the earth at time t D 0. We want to calculate its height y and velocity v D dy=dt at
time t . The rocket is propelled by exhaust gases that exit (rearward) with constant
speed c (relative to the rocket). Because of the combustion of its fuel, the mass
m D m.t/ of the rocket is variable.

To derive the equation of motion of the rocket, we use Newton’s second law
in the form

dP
dt
D F; (1)

whereP is momentum (the product of mass and velocity) and F denotes net external
force (gravity, air resistance, etc.). If the massm of the rocket is constant som0.t/�
0—when its rockets are turned off or burned out, for instance—then Eq. (1) gives

F D d.mv/

dt
D mdv

dt
C dm

dt
v D mdv

dt
;

which (with dv=dt D a) is the more familiar form F D ma of Newton’s second law.
But here m is not constant. Suppose m changes to mC�m and v to v C�v

during the short time interval from t to t C�t . Then the change in the momentum
of the rocket itself is

�P � .mC�m/.v C�v/ �mv D m�v C v �mC�m�v:

But the system also includes the exhaust gases expelled during this time interval,
with mass ��m and approximate velocity v � c. Hence the total change in momen-
tum during the time interval �t is

�P � .m�v C v �mC�m�v/C .��m/.v � c/
D m�v C c �mC�m�v:

Now we divide by�t and take the limit as�t! 0, so�m! 0, assuming continuity
of m.t/. The substitution of the resulting expression for dP=dt in (1) yields the
rocket propulsion equation

m
dv

dt
C c dm

dt
D F: (2)
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If F D FG C FR, where FG D �mg is a constant force of gravity and FR D �kv is
a force of air resistance proportional to velocity, then Eq. (2) finally gives

m
dv

dt
C c dm

dt
D �mg � kv: (3)

Constant Thrust
Now suppose that the rocket fuel is consumed at the constant “burn rate” ˇ during
the time interval Œ0; t1�, during which time the mass of the rocket decreases from m0

to m1. Thus
m.0/ D m0; m.t1/ D m1;

m.t/ D m0 � ˇt;
dm

dt
D �ˇ for t � t1,

(4)

with burnout occurring at time t D t1.

PROBLEM 1 Substitute the expressions in (4) into Eq. (3) to obtain the differential
equation

.m0 � ˇt/
dv

dt
C kv D ˇc � .m0 � ˇt/g: (5)

Solve this linear equation for

v.t/ D v0M
k=ˇ � gˇt

ˇ � k C
�
ˇc

k
C gm0

ˇ � k

�
.1 �M k=ˇ /; (6)

where v0 D v.0/ and

M D m.t/

m0

D m0 � ˇt
m0

denotes the rocket’s fractional mass at time t .

No Resistance
PROBLEM 2 For the case of no air resistance, set k D 0 in Eq. (5) and integrate
to obtain

v.t/ D v0 � gt C c ln
m0

m0 � ˇt
: (7)

Because m0 � ˇt1 D m1, it follows that the velocity of the rocket at burnout (t D t1)
is

v1 D v.t1/ D v0 � gt1 C c ln
m0

m1

: (8)

PROBLEM 3 Start with Eq. (7) and integrate to obtain

y.t/ D .v0 C c/t �
1

2
gt2 � c

ˇ
.m0 � ˇt/ ln

m0

m0 � ˇt
: (9)

It follows that the rocket’s altitude at burnout is

y1 D y.t1/ D .v0 C c/t1 �
1

2
gt21 �

cm1

ˇ
ln
m0

m1

: (10)

PROBLEM 4 The V-2 rocket that was used to attack London in World War II had
an initial mass of 12,850 kg, of which 68.5% was fuel. This fuel burned uniformly
for 70 seconds with an exhaust velocity of 2 km/s. Assume it encounters air resis-
tance of 1.45 N per m/s of velocity. Then find the velocity and altitude of the V-2 at
burnout under the assumption that it is launched vertically upward from rest on the
ground.
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PROBLEM 5 Actually, our basic differential equation in (3) applies without qual-
ification only when the rocket is already in motion. However, when a rocket is
sitting on its launch pad stand and its engines are turned on initially, it is observed
that a certain time interval passes before the rocket actually “blasts off” and begins
to ascend. The reason is that if v D 0 in (3), then the resulting initial acceleration

dv

dt
D c

m

dm

dt
� g

of the rocket may be negative. But the rocket does not descend into the ground;
it just “sits there” while (because m is decreasing) this calculated acceleration in-
creases until it reaches 0 and (thereafter) positive values so the rocket can begin to
ascend. With the notation introduced to describe the constant-thrust case, show that
the rocket initially just “sits there” if the exhaust velocity c is less than m0g=̌ , and
that the time tB which then elapses before actual blastoff is given by

tB D
m0g � ˇc

ˇg
:

Free Space
Suppose finally that the rocket is accelerating in free space, where there is neither
gravity nor resistance, so g D k D 0. With g D 0 in Eq. (8) we see that, as the mass
of the rocket decreases from m0 to m1, its increase in velocity is

�v D v1 � v0 D c ln
m0

m1

: (11)

Note that �v depends only on the exhaust gas speed c and the initial-to-final mass
ratio m0=m1, but does not depend on the burn rate ˇ. For example, if the rocket
blasts off from rest (v0 D 0) and c D 5 km/s and m0=m1 D 20, then its velocity at
burnout is v1 D 5 ln 20 � 15 km/s. Thus if a rocket initially consists predominantly
of fuel, then it can attain velocities significantly greater than the (relative) velocity
of its exhaust gases.

2.4 Numerical Approximation: Euler’s Method
It is the exception rather than the rule when a differential equation of the general
form

dy

dx
D f .x; y/

can be solved exactly and explicitly by elementary methods like those discussed in
Chapter 1. For example, consider the simple equation

dy

dx
D e�x2

: (1)

A solution of Eq. (1) is simply an antiderivative of e�x2
. But it is known that every

antiderivative of f .x/ D e�x2
is a nonelementary function—one that cannot be

expressed as a finite combination of the familiar functions of elementary calculus.
Hence no particular solution of Eq. (1) is finitely expressible in terms of elementary
functions. Any attempt to use the symbolic techniques of Chapter 1 to find a simple
explicit formula for a solution of (1) is therefore doomed to failure.
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As a possible alternative, an old-fashioned computer plotter—one that uses an
ink pen to draw curves mechanically—can be programmed to draw a solution curve
that starts at the initial point .x0; y0/ and attempts to thread its way through the slope
field of a given differential equation y0 D f .x; y/. The procedure the plotter carries
out can be described as follows.

� The plotter pen starts at the initial point .x0; y0/ and moves a tiny distance
along the slope segment though .x0; y0/. This takes it to the point .x1; y1/.

� At .x1; y1/ the pen changes direction, and now moves a tiny distance along
the slope segment through this new starting point .x1; y1/. This takes it to the
next starting point .x2; y2/.

� At .x2; y2/ the pen changes direction again, and now moves a tiny distance
along the slope segment through .x2; y2/. This takes it to the next starting
point .x3; y3/.

Figure 2.4.1 illustrates the result of continuing in this fashion—by a sequence

x

y

Solution
curve

(x0, y0) (x1, y1)
(x2, y2)

(x3, y3)

FIGURE 2.4.1. The first few steps in
approximating a solution curve.

of discrete straight-line steps from one starting point to the next. In this figure we
see a polygonal curve consisting of line segments that connect the successive points
.x0; y0/; .x1; y1/; .x2; y2/; .x3; y3/; : : : However, suppose that each “tiny distance”
the pen travels along a slope segment—before the midcourse correction that sends
it along a fresh new slope segment—is so very small that the naked eye cannot
distinguish the individual line segments constituting the polygonal curve. Then the
resulting polygonal curve looks like a smooth, continuously turning solution curve
of the differential equation. Indeed, this is (in essence) how most of the solution
curves shown in the figures of Chapter 1 were computer generated.

Leonhard Euler—the great 18th-century mathematician for whom so many
mathematical concepts, formulas, methods, and results are named—did not have a
computer plotter, and his idea was to do all this numerically rather than graphically.
In order to approximate the solution of the initial value problem

dy

dx
D f .x; y/; y.x0/ D y0; (2)

we first choose a fixed (horizontal) step size h to use in making each step from
one point to the next. Suppose we’ve started at the initial point .x0; y0/ and after
n steps have reached the point .xn; yn/. Then the step from .xn; yn/ to the next
point .xnC1; ynC1/ is illustrated in Fig. 2.4.2. The slope of the direction segment

Slope

(xn, yn)

(xn+1, yn+1)

f (xn, yn) f (xn, yn)h

(xn+1, yn)h

FIGURE 2.4.2. The step from
.xn; yn/ to .xnC1; ynC1/.

through .xn; yn/ is m D f .xn; yn/. Hence a horizontal change of h from xn to
xnC1 corresponds to a vertical change of m � h D h � f .xn; yn/ from yn to ynC1.
Therefore the coordinates of the new point .xnC1; ynC1/ are given in terms of the
old coordinates by

xnC1 D xn C h; ynC1 D yn C h � f .xn; yn/:

Given the initial value problem in (2), Euler’s method with step size h con-
sists of starting with the initial point .x0; y0/ and applying the formulas

x1 D x0 C h y1 D y0 C h � f .x0; y0/

x2 D x1 C h y2 D y1 C h � f .x1; y1/

x3 D x2 C h y3 D y2 C h � f .x2; y2/
:::

:::
:::

:::
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to calculate successive points .x1; y1/, .x2; y2/, .x3; y3/, : : : on an approximate so-
lution curve.

However, we ordinarily do not sketch the corresponding polygonal approxi-
mation. Instead, the numerical result of applying Euler’s method is the sequence of
approximations

y1; y2; y3; : : : ; yn; : : :

to the true values
y.x1/; y.x2/; y.x3/; : : : ; y.xn/; : : :

at the points x1; x2; x3; : : : ; xn; : : : of the exact (though unknown) solution y.x/ of
the initial value problem. These results typically are presented in the form of a table
of approximate values of the desired solution.

ALGORITHM The Euler Method

Given the initial value problem

dy

dx
D f .x; y/; y.x0/ D y0; (2)

Euler’s method with step size h consists of applying the iterative formula

ynC1 D yn C h � f .xn; yn/ .n 	 0/ (3)

to calculate successive approximations y1, y2, y3, : : : to the [true] values y.x1/,
y.x2/, y.x3/, : : : of the [exact] solution y D y.x/ at the points x1, x2, x3, : : : ,
respectively.

The iterative formula in (3) tells us how to make the typical step from yn to
ynC1 and is the heart of Euler’s method. Although the most important applications
of Euler’s method are to nonlinear equations, we first illustrate the method with a
simple initial value problem whose exact solution is available, just for the purpose
of comparison of approximate and actual solutions.

Example 1 Apply Euler’s method to approximate the solution of the initial value problem

dy

dx
D x C 1

5
y; y.0/ D �3; (4)

(a) first with step size h D 1 on the interval Œ0; 5�,
(b) then with step size h D 0:2 on the interval Œ0; 1�.

Solution (a) With x0 D 0, y0 D �3, f .x; y/ D x C 1
5y, and h D 1 the iterative formula in (3) yields

the approximate values

y1 D y0 C h � Œx0 C 1
5y0� D .�3/C .1/Œ0C 1

5 .�3/� D �3:6;
y2 D y1 C h � Œx1 C 1

5y1� D .�3:6/C .1/Œ1C 1
5 .�3:6/� D �3:32;

y3 D y2 C h � Œx2 C 1
5y2� D .�3:32/C .1/Œ2C 1

5 .�3:32/� D �1:984;
y4 D y3 C h � Œx3 C 1

5y3� D .�1:984/C .1/Œ3C 1
5 .�1:984/� D 0:6192; and

y5 D y4 C h � Œx4 C 1
5y4� D .0:6912/C .1/Œ4C 1

5 .0:6912/� � 4:7430
at the points x1 D 1, x2 D 2, x3 D 3, x4 D 4, and x5 D 5. Note how the result of each
calculation feeds into the next one. The resulting table of approximate values is

x 0 1 2 3 4 5

Approx. y �3 �3:6 �3:32 �1:984 0.6912 4.7430
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Figure 2.4.3 shows the graph of this approximation, together with the graphs of the
Euler approximations obtained with step sizes h D 0:2 and 0.05, as well as the graph of the
exact solution

y.x/ D 22ex=5 � 5x � 25
that is readily found using the linear-equation technique of Section 1.5. We see that decreas-
ing the step size increases the accuracy, but with any single approximation, the accuracy
decreases with distance from the initial point.

x

Exact solution

h = 0.05

y

50 1 2 3 4
–5

–3

10

5

0

h = 0.2
h = 1

FIGURE 2.4.3. Graphs of Euler approximations with step sizes h D 1,
h D 0:2, and h D 0:05.

(b) Starting afresh with x0 D 0, y0 D �3, f .x; y/ D x C 1
5y, and h D 0:2, we get the

approximate values

y1 D y0 C h � Œx0 C 1
5y0� D .�3/C .0:2/Œ0C 1

5 .�3/� D �3:12;
y2 D y1 C h � Œx1 C 1

5y1� D .�3:12/C .0:2/Œ0:2C 1
5 .�3:12/� � �3:205;

y3 D y2 C h � Œx2 C 1
5y2� � .�3:205/C .0:2/Œ0:4C 1

5 .�3:205/� � �3:253;
y4 D y3 C h � Œx3 C 1

5y3� � .�3:253/C .0:2/Œ0:6C 1
5 .�3:253/� � �3:263;

y5 D y4 C h � Œx4 C 1
5y4� � .�3:263/C .0:2/Œ0:8C 1

5 .�3:263/� � �3:234

at the points x1 D 0:2, x2 D 0:4, x3 D 0:6, x4 D 0:8, and x5 D 1. The resulting table of
approximate values is

x 0 0.2 0.4 0.6 0.8 1

Approx. y �3 �3:12 �3:205 �3:253 �3:263 �3:234

High accuracy with Euler’s method usually requires a very small step size and
hence a larger number of steps than can reasonably be carried out by hand. The
application material for this section contains calculator and computer programs for
automating Euler’s method. One of these programs was used to calculate the table
entries shown in Fig. 2.4.4. We see that 500 Euler steps (with step size h D 0:002)
from x D 0 to x D 1 yield values that are accurate to within 0.001.

Example 2 Suppose the baseball of Example 3 in Section 1.3 is simply dropped (instead of being thrown
downward) from the helicopter. Then its velocity v.t/ after t seconds satisfies the initial value
problem

dv

dt
D 32 � 0:16v; v.0/ D 0: (5)
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Approx y Approx y Approx y Actual
x with h D 0:2 with h D 0:02 with h D 0:002 value of y

0

0.2

0.4

0.6

0.8

1

�3:000
�3:120
�3:205
�3:253
�3:263
�3:234

�3:000
�3:104
�3:172
�3:201
�3:191
�3:140

�3:000
�3:102
�3:168
�3:196
�3:184
�3:130

�3:000
�3:102
�3:168
�3:195
�3:183
�3:129

FIGURE 2.4.4. Euler approximations with step sizes h D 0:2, h D 0:02, and h D 0:002.

We use Euler’s method with hD 1 to track the ball’s increasing velocity at 1-second intervals
for the first 10 seconds of fall. With t0 D 0, v0 D 0, F.t; v/ D 32 � 0:16v, and h D 1 the
iterative formula in (3) yields the approximate values

v1 D v0 C h � Œ32 � 0:16v0� D .0/C .1/Œ32 � 0:16.0/� D 32;
v2 D v1 C h � Œ32 � 0:16v1� D .32/C .1/Œ32 � 0:16.32/� D 58:88;
v3 D v2 C h � Œ32 � 0:16v2� D .58:88/C .1/Œ32 � 0:16.58:88/� � 81:46;
v4 D v3 C h � Œ32 � 0:16v3� D .81:46/C .1/Œ32 � 0:16.81:46/� � 100:43; and

v5 D v4 C h � Œ32 � 0:16v4� D .100:43/C .1/Œ32 � 0:16.100:43/� � 116:36:
Continuing in this fashion, we complete the h D 1 column of v-values shown in the table of
Fig. 2.4.5—where we have rounded off velocity entries to the nearest foot per second. The
values corresponding to h D 0:1 were calculated using a computer, and we see that they are
accurate to within about 1 ft/s. Note also that after 10 seconds the falling ball has attained
about 80% of its limiting velocity of 200 ft/s.

Approx v Approx v Actual
t with h D 1 with h D 0:1 value of v

1

2

3

4

5

6

7

8

9

10

32

59

81

100

116

130

141

150

158

165

30

55

77

95

111

124

135

145

153

160

30

55

76

95

110

123

135

144

153

160

FIGURE 2.4.5. Euler approximations in Example 2 with step sizes
h D 1 and h D 0:1.

Local and Cumulative Errors
There are several sources of error in Euler’s method that may make the approxima-
tion yn to y.xn/ unreliable for large values of n, those for which xn is not sufficiently
close to x0. The error in the linear approximation formula

y.xnC1/ � yn C h � f .xn; yn/ D ynC1 (6)
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is the amount by which the tangent line at .xn; yn/ departs from the solution curve
through .xn; yn/, as illustrated in Fig. 2.4.6. This error, introduced at each step in
the process, is called the local error in Euler’s method.

The local error indicated in Fig. 2.4.6 would be the total error in ynC1 if the
starting point yn in (6) were an exact value, rather than merely an approximation
to the actual value y.xn/. But yn itself suffers from the accumulated effects of all
the local errors introduced at the previous steps. Thus the tangent line in Fig. 2.4.6
is tangent to the “wrong” solution curve—the one through .xn; yn/ rather than the
actual solution curve through the initial point .x0; y0/. Figure 2.4.7 illustrates this
cumulative error in Euler’s method; it is the amount by which the polygonal step-
wise path from .x0; y0/ departs from the actual solution curve through .x0; y0/.

x

y

xn xn + 1

(xn + 1, yn + 1)
(xn , yn)

Local error

FIGURE 2.4.6. The local error in
Euler’s method.

x0 x1 x2 x3 xn

Exact values

Approximate
values

x

y

(x0, y0)

(x1, y1)

(xn, yn)

Cumulative error

FIGURE 2.4.7. The cumulative error in Euler’s method.

The usual way of attempting to reduce the cumulative error in Euler’s method
is to decrease the step size h. The table in Fig. 2.4.8 shows the results obtained in
approximating the exact solution y.x/ D 2ex � x � 1 of the initial value problem

dy

dx
D x C y; y.0/ D 1;

using the successively smaller step sizes h D 0:1, h D 0:02, h D 0:005, and h D
0:001. We show computed values only at intervals of �x D 0:1. For instance, with
h D 0:001, the computation required 1000 Euler steps, but the value yn is shown
only when n is a multiple of 100, so that xn is an integral multiple of 0:1.

By scanning the columns in Fig. 2.4.8 we observe that, for each fixed step
size h, the error yactual � yapprox increases as x gets farther from the starting point
x0 D 0. But by scanning the rows of the table we see that for each fixed x, the
error decreases as the step size h is reduced. The percentage errors at the final point
x D 1 range from 7:25% with hD 0:1 down to only 0:08% with hD 0:001. Thus the
smaller the step size, the more slowly does the error grow with increasing distance
from the starting point.
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y with y with y with y with Actual
x h D 0:1 h D 0:02 h D 0:005 h D 0:001 y

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1000

1.2200

1.3620

1.5282

1.7210

1.9431

2.1974

2.4872

2.8159

3.1875

1.1082

1.2380

1.3917

1.5719

1.7812

2.0227

2.2998

2.6161

2.9757

3.3832

1.1098

1.2416

1.3977

1.5807

1.7933

2.0388

2.3205

2.6422

3.0082

3.4230

1.1102

1.2426

1.3993

1.5831

1.7966

2.0431

2.3261

2.6493

3.0170

3.4338

1.1103

1.2428

1.3997

1.5836

1.7974

2.0442

2.3275

2.6511

3.0192

3.4366

FIGURE 2.4.8. Approximating the solution of dy=dx D x C y, y.0/ D 1 with successively
smaller step sizes.

The column of data for h D 0:1 in Fig. 2.4.8 requires only 10 steps, so Euler’s
method can be carried out with a hand-held calculator. But 50 steps are required to
reach x D 1 with hD 0:02, 200 steps with hD 0:005, and 1000 steps with hD 0:001.
A computer is almost always used to implement Euler’s method when more than 10
or 20 steps are required. Once an appropriate computer program has been written,
one step size is—in principle—just as convenient as another; after all, the computer
hardly cares how many steps it is asked to carry out.

Why, then, do we not simply choose an exceedingly small step size (such as
h D 10�12), with the expectation that very great accuracy will result? There are two
reasons for not doing so. The first is obvious: the time required for the computation.
For example, the data in Fig. 2.4.8 were obtained using a hand-held calculator that
carried out nine Euler steps per second. Thus it required slightly over one second
to approximate y.1/ with h D 0:1 and about 1 min 50 s with h D 0:001. But with
h D 10�12 it would require over 3000 years!

The second reason is more subtle. In addition to the local and cumulative
errors discussed previously, the computer itself will contribute roundoff error at
each stage because only finitely many significant digits can be used in each calcu-
lation. An Euler’s method computation with h D 0:0001 will introduce roundoff
errors 1000 times as often as one with hD 0:1. Hence with certain differential equa-
tions, hD 0:1might actually produce more accurate results than those obtained with
h D 0:0001, because the cumulative effect of roundoff error in the latter case might
exceed combined cumulative and roundoff error in the case h D 0:1.

The “best” choice of h is difficult to determine in practice as well as in theory.
It depends on the nature of the function f .x; y/ in the initial value problem in (2), on
the exact code in which the program is written, and on the specific computer used.
With a step size that is too large, the approximations inherent in Euler’s method
may not be sufficiently accurate, whereas if h is too small, then roundoff errors may
accumulate to an unacceptable degree or the program may require too much time to
be practical. The subject of error propagation in numerical algorithms is treated in
numerical analysis courses and textbooks.

The computations in Fig. 2.4.8 illustrate the common strategy of applying a
numerical algorithm, such as Euler’s method, several times in succession, beginning
with a selected number n of subintervals for the first application, then doubling n for
each succeeding application of the method. Visual comparison of successive results



2.4 Numerical Approximation: Euler’s Method 111

often can provide an “intuitive feel” for their accuracy. In the next two examples we
present graphically the results of successive applications of Euler’s method.

Example 3 The exact solution of the logistic initial value problem

dy

dx
D 1

3y.8 � y/; y.0/ D 1

is y.x/D 8=.1C 7e�8x=3/. Figure 2.4.9 shows both the exact solution curve and approximate
solution curves obtained by applying Euler’s method on the interval 05 x 5 5with nD 5, nD
10, and nD 20 subintervals. Each of these “curves” actually consists of line segments joining
successive points .xn; yn/ and .xnC1; ynC1/. The Euler approximation with 5 subintervals
is poor, and the approximation with 10 subintervals also overshoots the limiting value y D 8
of the solution before leveling off, but with 20 subintervals we obtain fairly good qualitative
agreement with the actual behavior of the solution.

3 4 50 1 2
x

y

0

12

Exact

2

4

6

8

10

n = 5

n = 10

n = 20

FIGURE 2.4.9. Approximating a logistic
solution using Euler’s method with n D 5,
n D 10, and n D 20 subintervals.

Exact

n = 50

n = 100

n = 400
n = 200

0 5 10 15
x

y

3

2

1

0

FIGURE 2.4.10. Approximating the exact
solution y D esin x using Euler’s method with
50, 100, 200, and 400 subintervals.

Example 4 The exact solution of the initial value problem

dy

dx
D y cos x; y.0/ D 1

is the periodic function y.x/ D esin x . Figure 2.4.10 shows both the exact solution curve and
approximate solution curves obtained by applying Euler’s method on the interval 0 5 x 5 6�

with n D 50, n D 100, n D 200, and n D 400 subintervals. Even with this many subintervals,
Euler’s method evidently has considerable difficulty keeping up with the oscillations in the
actual solution. Consequently, the more accurate methods discussed in succeeding sections
are needed for serious numerical investigations.

A Word of Caution
The data shown in Fig. 2.4.8 indicate that Euler’s method works well in approximat-
ing the solution of dy=dx D x C y, y.0/ D 1 on the interval Œ0; 1�. That is, for each
fixed x it appears that the approximate values approach the actual value of y.x/ as
the step size h is decreased. For instance, the approximate values in the rows corre-
sponding to x D 0:3 and x D 0:5 suggest that y.0:3/ � 1:40 and y.0:5/ � 1:80, in
accord with the actual values shown in the final column of the table.

Example 5, in contrast, shows that some initial value problems are not so well
behaved.

Example 5 Use Euler’s method to approximate the solution of the initial value problem

dy

dx
D x2 C y2; y.0/ D 1 (7)

on the interval Œ0; 1�.
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Solution Here f .x; y/ D x2 C y2, so the iterative formula of Euler’s method is

ynC1 D yn C h � .x2
n C y2

n/: (8)

With step size h D 0:1 we obtain

y1 D 1C .0:1/ � Œ.0/2 C .1/2� D 1:1;
y2 D 1:1C .0:1/ � Œ.0:1/2 C .1:1/2� D 1:222;
y3 D 1:222C .0:1/ � Œ.0:2/2 C .1:222/2� � 1:3753;

and so forth. Rounded to four decimal places, the first ten values obtained in this manner are

y1 D 1:1000 y6 D 2:1995
y2 D 1:2220 y7 D 2:7193
y3 D 1:3753 y8 D 3:5078
y4 D 1:5735 y9 D 4:8023
y5 D 1:8371 y10 D 7:1895

But instead of naively accepting these results as accurate approximations, we decided
to use a computer to repeat the computations with smaller values of h. The table in Fig. 2.4.11
shows the results obtained with step sizes h D 0:1, h D 0:02, and h D 0:005. Observe that
now the “stability” of the procedure in Example 1 is missing. Indeed, it seems obvious that
something is going wrong near x D 1.

Figure 2.4.12 provides a graphical clue to the difficulty. It shows a slope field for
dy=dx D x2 C y2, together with a solution curve through .0; 1/ plotted using one of the
more accurate approximation methods of the following two sections. It appears that this
solution curve may have a vertical asymptote near x D 0:97. Indeed, an exact solution using
Bessel functions (see Problem 16 in Section 8.6) can be used to show that y.x/ ! C1 as
x ! 0:969811 (approximately). Although Euler’s method gives values (albeit spurious ones)
at x D 1, the actual solution does not exist on the entire interval Œ0; 1�. Moreover, Euler’s
method is unable to “keep up” with the rapid changes in y.x/ that occur as x approaches the
infinite discontinuity near 0:969811.

y with y with y with
x h D 0:1 h D 0:02 h D 0:005

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1000

1.2220

1.3753

1.5735

1.8371

2.1995

2.7193

3.5078

4.8023

7.1895

1.1088

1.2458

1.4243

1.6658

2.0074

2.5201

3.3612

4.9601

9.0000

30.9167

1.1108

1.2512

1.4357

1.6882

2.0512

2.6104

3.5706

5.5763

12.2061

1502.2090

FIGURE 2.4.11. Attempting to approximate the solution of
dy=dx D x2 C y2, y.0/ D 1.

2.01.00.0
x

y

8

–4

–2

–2.0 –1.0

0
(0, 1)

x = 0.97

2

4

6

FIGURE 2.4.12. Solution of
dy=dx D x2 C y2, y.0/ D 1.

The moral of Example 5 is that there are pitfalls in the numerical solution of
certain initial value problems. Certainly it’s pointless to attempt to approximate a
solution on an interval where it doesn’t even exist (or where it is not unique, in which
case there’s no general way to predict which way the numerical approximations will
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branch at a point of nonuniqueness). One should never accept as accurate the results
of applying Euler’s method with a single fixed step size h. A second “run” with
smaller step size (h=2, say, or h=5, or h=10) may give seemingly consistent results,
thereby suggesting their accuracy, or it may—as in Example 5—reveal the presence
of some hidden difficulty in the problem. Many problems simply require the more
accurate and powerful methods that are discussed in the final two sections of this
chapter.

2.4 Problems
In Problems 1 through 10, an initial value problem and its ex-
act solution y.x/ are given. Apply Euler’s method twice to
approximate to this solution on the interval Œ0; 1

2 �, first with
step size h D 0:25, then with step size h D 0:1. Compare the
three-decimal-place values of the two approximations at xD 1

2

with the value y.1
2 / of the actual solution.

1. y0 D �y, y.0/ D 2; y.x/ D 2e�x

2. y0 D 2y, y.0/ D 1
2 ; y.x/ D 1

2e
2x

3. y0 D y C 1, y.0/ D 1; y.x/ D 2ex � 1
4. y0 D x � y, y.0/ D 1; y.x/ D 2e�x C x � 1
5. y0 D y � x � 1, y.0/ D 1; y.x/ D 2C x � ex

6. y0 D �2xy, y.0/ D 2; y.x/ D 2e�x2

7. y0 D �3x2y, y.0/ D 3; y.x/ D 3e�x3

8. y0 D e�y , y.0/ D 0; y.x/ D ln.x C 1/
9. y0 D 1

4 .1C y2/, y.0/ D 1; y.x/ D tan 1
4 .x C �/

10. y0 D 2xy2, y.0/ D 1; y.x/ D 1

1 � x2

Note: The application following this problem set lists illus-
trative calculator/computer programs that can be used in the
remaining problems.

A programmable calculator or a computer will be useful for
Problems 11 through 16. In each problem find the exact so-
lution of the given initial value problem. Then apply Euler’s
method twice to approximate (to four decimal places) this so-
lution on the given interval, first with step size h D 0:01, then
with step size h D 0:005. Make a table showing the approxi-
mate values and the actual value, together with the percentage
error in the more accurate approximation, for x an integral
multiple of 0:2. Throughout, primes denote derivatives with
respect to x.

11. y0 D y � 2, y.0/ D 1I 0 5 x 5 1

12. y0 D 1
2 .y � 1/2, y.0/ D 2I 0 5 x 5 1

13. yy0 D 2x3, y.1/ D 3I 1 5 x 5 2

14. xy0 D y2, y.1/ D 1I 1 5 x 5 2

15. xy0 D 3x � 2y, y.2/ D 3I 2 5 x 5 3

16. y2y0 D 2x5, y.2/ D 3I 2 5 x 5 3

A computer with a printer is required for Problems 17 through
24. In these initial value problems, use Euler’s method with
step sizes h D 0:1, 0:02, 0:004, and 0:0008 to approximate to
four decimal places the values of the solution at ten equally
spaced points of the given interval. Print the results in tabular
form with appropriate headings to make it easy to gauge the
effect of varying the step size h. Throughout, primes denote
derivatives with respect to x.

17. y0 D x2 C y2, y.0/ D 0; 0 5 x 5 1

18. y0 D x2 � y2, y.0/ D 1; 0 5 x 5 2

19. y0 D x Cpy, y.0/ D 1; 0 5 x 5 2

20. y0 D x C 3
p
y, y.0/ D �1; 0 5 x 5 2

21. y0 D ln y, y.1/ D 2; 1 5 x 5 2

22. y0 D x2=3 C y2=3, y.0/ D 1; 0 5 x 5 2

23. y0 D sin x C cos y, y.0/ D 0; 0 5 x 5 1

24. y0 D x

1C y2
, y.�1/ D 1; �1 5 x 5 1

25. You bail out of the helicopter of Example 2 and imme-
diately pull the ripcord of your parachute. Now k D 1:6

in Eq. (5), so your downward velocity satisfies the initial
value problem

dv

dt
D 32 � 1:6v; v.0/ D 0

(with t in seconds and v in ft/sec). Use Euler’s method
with a programmable calculator or computer to approxi-
mate the solution for 05 t 5 2, first with step size hD 0:01
and then with h D 0:005, rounding off approximate v-
values to one decimal place. What percentage of the lim-
iting velocity 20 ft/sec has been attained after 1 second?
After 2 seconds?

26. Suppose the deer population P.t/ in a small forest initially
numbers 25 and satisfies the logistic equation

dP
dt
D 0:0225P � 0:0003P 2

(with t in months). Use Euler’s method with a pro-
grammable calculator or computer to approximate the so-
lution for 10 years, first with step size hD 1 and then with
h D 0:5, rounding off approximate P -values to integral
numbers of deer. What percentage of the limiting popula-
tion of 75 deer has been attained after 5 years? After 10
years?

Use Euler’s method with a computer system to find the desired
solution values in Problems 27 and 28. Start with step size
h D 0:1, and then use successively smaller step sizes until suc-
cessive approximate solution values at x D 2 agree rounded
off to two decimal places.

27. y0 D x2 C y2 � 1, y.0/ D 0; y.2/ D ‹
28. y0 D x C 1

2y
2, y.�2/ D 0; y.2/ D ‹
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29. Consider the initial value problem

7x
dy

dx
C y D 0; y.�1/ D 1:

(a) Solve this problem for the exact solution

y.x/ D � 1

x1=7
;

which has an infinite discontinuity at x D 0. (b) Ap-
ply Euler’s method with step size hD 0:15 to approximate
this solution on the interval �1 5 x 5 0:5. Note that,
from these data alone, you might not suspect any diffi-
culty near x D 0. The reason is that the numerical ap-
proximation “jumps across the discontinuity” to another
solution of 7xy0 C y D 0 for x > 0. (c) Finally, apply
Euler’s method with step sizes hD 0:03 and hD 0:006, but
still printing results only at the original points x D �1:00,
�0:85, �0:70, : : : , 1:20, 1:35. and 1:50. Would you now
suspect a discontinuity in the exact solution?

30. Apply Euler’s method with successively smaller step sizes
on the interval Œ0; 2� to verify empirically that the solution
of the initial value problem

dy

dx
D x2 C y2; y.0/ D 0

has a vertical asymptote near x D 2:003147. (Contrast this
with Example 2, in which y.0/ D 1.)

31. The general solution of the equation

dy

dx
D .1C y2/ cos x

is y.x/D tan.C C sin x/. With the initial condition y.0/D
0 the solution y.x/ D tan.sin x/ is well behaved. But with

y.0/ D 1 the solution y.x/ D tan
�

1
4� C sin x

�
has a ver-

tical asymptote at x D sin�1.�=4/ � 0:90334. Use Euler’s
method to verify this fact empirically.

2.4 Application Implementing Euler’s Method
Construction of a calculator or computer program to implement a numerical algo-
rithm can sharpen one’s understanding of the algorithm. Figure 2.4.13 lists TI-84
Plus and BASIC programs implementing Euler’s method to approximate the solu-
tion of the initial value problem

dy

dx
D x C y; y.0/ D 1

considered in this section. The comments provided in the final column should make
these programs intelligible even if you have little familiarity with the BASIC and
TI calculator programming languages. Indeed, the BASIC language is no longer
widely used for programming computers but is still useful (as in Fig. 2.4.13 and sub-
sequent ones in this text) for brief description of mathematical algorithms in a trans-

TI-84 Plus BASIC Comment

PROGRAM:EULER

:10!N
:0!X
:1!Y
:1!T
:(T--X)/N!H
:For(I,1,N)

:X+Y!F
:Y+H*F!Y
:X+H!X
:Disp X,Y

:End

Program EULER

N = 10

X = 0

Y = 1

X1 = 1

H = (X1--X)/N

FOR I=1 TO N

F = X + Y

Y = Y + H*F

X = X + H

PRINT X,Y

NEXT I

Program title

Number of steps

Initial x

Initial y

Final x

Step size

Begin loop

Function value

Euler iteration

New x

Display results

End loop

FIGURE 2.4.13. TI-84 Plus and BASIC Euler’s method programs.
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parent form intermediate between English and higher programming languages. (Ap-
propriately, the name BASIC is an acronym describing the Beginner’s All-purpose
Symbolic Instruction Code introduced in 1963, intially for instructional use at Dart-
mouth College.)

To increase the number of steps (and thereby decrease the step size) you need
only change the value of N specified in the first line of the program. To apply Euler’s
method to a different equation dy=dx D f .x; y/, you need change only the single
line that calculates the function value F.

Any other procedural programming language (such as FORTRAN or CCC)
would follow the pattern illustrated by the parallel lines of TI-84 Plus and BASIC
code in Fig. 2.4.13. Some of the modern functional programming languages mirror
standard mathematical notation even more closely. Figure 2.4.14 shows a MATLAB

implementation of Euler’s method. The euler function takes as input the initial
value x, the initial value y, the final value x1 of x, and the desired number n of
subintervals. For instance, the MATLAB command

[X, Y] = euler(0, 1, 1, 10)

then generates the xn- and yn-data shown in the first two columns of the table of
Fig. 2.4.8.

You should begin this project by implementing Euler’s method with your own
calculator or computer system. Test your program by first applying it to the initial
value problem in Example 1, then to some of the problems for this section.

function yp = f(x,y)
yp = x + y; % yp = y’

function [X,Y] = euler(x,y,x1,n)
h = (x1 -- x)/n; % step size
X = x; % initial x
Y = y; % initial y
for i = 1:n % begin loop

y = y + h*f(x,y); % Euler iteration
x = x + h; % new x
X = [X;x]; % update x-column
Y = [Y;y]; % update y-column
end % end loop

FIGURE 2.4.14. MATLAB implementation of Euler’s method.

Famous Numbers Investigation

The following problems describe the numbers e � 2:71828, ln 2 � 0:69315, and
� � 3:14159 as specific values of solutions of certain initial value problems. In
each case, apply Euler’s method with nD 50, 100, 200, : : : subintervals (doubling n
each time). How many subintervals are needed to obtain—twice in succession—the
correct value of the target number rounded to three decimal places?

1. The number e D y.1/, where y.x/ is the solution of the initial value problem
dy=dx D y, y.0/ D 1.

2. The number ln 2D y.2/, where y.x/ is the solution of the initial value problem
dy=dx D 1=x, y.1/ D 0.
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3. The number � D y.1/, where y.x/ is the solution of the initial value problem
dy=dx D 4=.1C x2/, y.0/ D 0.

Also explain in each problem what the point is—why the indicated famous
number is the expected numerical result.

2.5 A Closer Look at the Euler Method
The Euler method as presented in Section 2.4 is not often used in practice, mainly
because more accurate methods are available. But Euler’s method has the advantage
of simplicity, and a careful study of this method yields insights into the workings of
more accurate methods, because many of the latter are extensions or refinements of
the Euler method.

To compare two different methods of numerical approximation, we need some
way to measure the accuracy of each. Theorem 1 tells what degree of accuracy we
can expect when we use Euler’s method.

THEOREM 1 The Error in the Euler Method

Suppose that the initial value problem

dy

dx
D f .x; y/; y.x0/ D y0 (1)

has a unique solution y.x/ on the closed interval Œa; b� with a D x0, and assume
that y.x/ has a continuous second derivative on Œa; b�. (This would follow from
the assumption that f, fx , and fy are all continuous for a 5 x 5 b and c 5

y 5 d , where c 5 y.x/ 5 d for all x in Œa; b�.) Then there exists a constant
C such that the following is true: If the approximations y1; y2; y3; : : : ; yk to the
actual values y.x1/; y.x2/; y.x3/; : : : ; y.xk/ at points of Œa; b� are computed using
Euler’s method with step size h > 0, then

jyn � y.xn/j 5 Ch (2)

for each n D 1; 2; 3; : : : ; k.

Remark The error
yactual � yapprox D y.xn/ � yn

in (2) denotes the [cumulative] error in Euler’s method after n steps in the approximation,
exclusive of roundoff error (as though we were using a perfect machine that made no roundoff
errors). The theorem can be summarized by saying that the error in Euler’s method is of order
h; that is, the error is bounded by a [predetermined] constant C multiplied by the step size
h. It follows, for instance, that (on a given closed interval) halving the step size cuts the
maximum error in half; similarly, with step size h=10 we get 10 times the accuracy (that is,
1=10 the maximum error) as with step size h. Consequently, we can—in principle—get any
degree of accuracy we want by choosing h sufficiently small.

We will omit the proof of this theorem, but one can be found in Chapter 7 of
G. Birkhoff and G.-C. Rota, Ordinary Differential Equations, 4th ed. (New York:
John Wiley, 1989). The constant C deserves some comment. Because C tends to
increase as the maximum value of jy00.x/j on Œa; b� increases, it follows that C must
depend in a fairly complicated way on y, and actual computation of a value of C
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such that the inequality in (2) holds is usually impractical. In practice, the following
type of procedure is commonly employed.

1. Apply Euler’s method to the initial value problem in (1) with a reasonable
value of h.

2. Repeat with h=2, h=4, and so forth, at each stage halving the step size for the
next application of Euler’s method.

3. Continue until the results obtained at one stage agree—to an appropriate num-
ber of significant digits—with those obtained at the previous stage. Then the
approximate values obtained at this stage are considered likely to be accurate
to the indicated number of significant digits.

Example 1 Carry out this procedure with the initial value problem

dy

dx
D � 2xy

1C x2
; y.0/ D 1 (3)

to approximate accurately the value y.1/ of the solution at x D 1.
Solution Using an Euler method program, perhaps one of those listed in Figs. 2.4.13 and 2.4.14, we

begin with a step size h D 0:04 requiring n D 25 steps to reach x D 1. The table in Fig. 2.5.1
shows the approximate values of y.1/ obtained with successively smaller values of h. The
data suggest that the true value of y.1/ is exactly 0:5. Indeed, the exact solution of the initial
value problem in (3) is y.x/ D 1=.1C x2/, so the true value of y.1/ is exactly 1

2 .

h Approximate y.1/ Actual y.1/ jErrorj=h

0.04

0.02

0.01

0.005

0.0025

0.00125

0.000625

0.0003125

0.50451

0.50220

0.50109

0.50054

0.50027

0.50013

0.50007

0.50003

0.50000

0.50000

0.50000

0.50000

0.50000

0.50000

0.50000

0.50000

0.11

0.11

0.11

0.11

0.11

0.10

0.11

0.10

FIGURE 2.5.1. Table of values in Example 1.

The final column of the table in Fig. 2.5.1 displays the ratio of the magnitude
of the error to h; that is, jyactual � yapproxj=h. Observe how the data in this column
substantiate Theorem 1—in this computation, the error bound in (2) appears to hold
with a value of C slightly larger than 0:1.

An Improvement in Euler’s Method
As Fig. 2.5.2 shows, Euler’s method is rather unsymmetrical. It uses the predicted
slope k D f .xn; yn/ of the graph of the solution at the left-hand endpoint of the
interval Œxn; xn C h� as if it were the actual slope of the solution over that entire
interval. We now turn our attention to a way in which increased accuracy can easily
be obtained; it is known as the improved Euler method.

Given the initial value problem

dy

dx
D f .x; y/; y.x0/ D y0; (4)

suppose that after carrying out n steps with step size h we have computed the ap-
proximation yn to the actual value y.xn/ of the solution at xn D x0 C nh. We can

x

y

x x + h

(x + h, y (x + h))

Error

Predicted
y-value

Slope y' (x)

Solution
y = y(x)

FIGURE 2.5.2. True and predicted
values in Euler’s method.
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use the Euler method to obtain a first estimate—which we now call unC1 rather than
ynC1—of the value of the solution at xnC1 D xn C h. Thus

unC1 D yn C h � f .xn; yn/ D yn C h � k1:

Now that unC1 � y.xnC1/ has been computed, we can take

k2 D f .xnC1; unC1/

as a second estimate of the slope of the solution curve y D y.x/ at x D xnC1.
Of course, the approximate slope k1 D f .xn; yn/ at x D xn has already been

calculated. Why not average these two slopes to obtain a more accurate estimate of
the average slope of the solution curve over the entire subinterval Œxn; xnC1�? This
idea is the essence of the improved Euler method. Figure 2.5.3 shows the geometry
behind this method.

ALGORITHM The Improved Euler Method

Given the initial value problem

dy

dx
D f .x; y/; y.x0/ D y0;

the improved Euler method with step size h consists in applying the iterative
formulas

k1 D f .xn; yn/;

unC1 D yn C h � k1;

k2 D f .xnC1; unC1/;

ynC1 D yn C h � 1
2
.k1 C k2/

(5)

to compute successive approximations y1, y2, y3; : : : to the [true] values y.x1/,
y.x2/, y.x3/; : : : of the [exact] solution y D y.x/ at the points x1; x2; x3; : : : ,
respectively.

Remark The final formula in (5) takes the “Euler form”

ynC1 D yn C h � k
if we write

k D k1 C k2

2
for the approximate average slope on the interval Œxn; xnC1�.

The improved Euler method is one of a class of numerical techniques known
as predictor-corrector methods. First a predictor unC1 of the next y-value is com-
puted; then it is used to correct itself. Thus the improved Euler method with step
size h consists of using the predictor

unC1 D yn C h � f .xn; yn/ (6)

and the corrector

ynC1 D yn C h � 1
2
Œf .xn; yn/C f .xnC1; unC1/� (7)

iteratively to compute successive approximations y1, y2, y2, : : : to the values y.x1/,
y.x2/, y.x3/, : : : of the actual solution of the initial value problem in (4).
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x

y

Euler point (xn + 1, un + 1)

Improved Euler point
(xn + 1, yn + 1)

xn

(xn, yn)

xn + 1 xn + 2

Slope k1 = f (xn, yn)

Slope k2 = f (xn + 1, un + 1)

(k1 + k2)Slope 1
2

FIGURE 2.5.3. The improved Euler method: Average the slopes of the tangent lines at
.xn; yn/ and .xnC1; unC1/.

Remark Each improved Euler step requires two evaluations of the function f .x; y/, as com-
pared with the single function evaluation required for an ordinary Euler step. We naturally
wonder whether this doubled computational labor is worth the trouble.

Answer Under the assumption that the exact solution y D y.x/ of the initial value problem
in (4) has a continuous third derivative, it can be proved—see Chapter 7 of Birkhoff and
Rota—that the error in the improved Euler method is of order h2. This means that on a given
bounded interval Œa; b�, each approximate value yn satisfies the inequality

jy.xn/ � ynj 5 Ch2; (8)

where the constant C does not depend on h. Because h2 is much smaller than h if h itself is
small, this means that the improved Euler method is more accurate than Euler’s method itself.
This advantage is offset by the fact that about twice as many computations are required. But
the factor h2 in (8) means that halving the step size results in 1=4 the maximum error, and
with step size h=10 we get 100 times the accuracy (that is, 1=100 the maximum error) as with
step size h.

Example 2 Figure 2.4.8 shows results of applying Euler’s method to the initial value problem

dy

dx
D x C y; y.0/ D 1 (9)

with exact solution y.x/ D 2ex � x � 1. With f .x; y/ D x C y in Eqs. (6) and (7), the
predictor-corrector formulas for the improved Euler method are

unC1 D yn C h � .xn C yn/;

ynC1 D yn C h � 1
2 Œ.xn C yn/C .xnC1 C unC1/� :

With step size h D 0:1 we calculate

u1 D 1C .0:1/ � .0C 1/ D 1:1;
y1 D 1C .0:05/ � Œ.0C 1/C .0:1C 1:1/� D 1:11;
u2 D 1:11C .0:1/ � .0:1C 1:11/ D 1:231;
y2 D 1:11C .0:05/ � Œ.0:1C 1:11/C .0:2C 1:231/� D 1:24205;
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and so forth. The table in Fig. 2.5.4 compares the results obtained using the improved Euler
method with those obtained previously using the “unimproved” Euler method. When the
same step size h D 0:1 is used, the error in the Euler approximation to y.1/ is 7:25%, but the
error in the improved Euler approximation is only 0:24%.

Euler Method, Euler Method, Improved Euler,
h D 0:1 h D 0:005 h D 0:1 Actual

x Values of y Values of y Values of y y

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1000

1.2200

1.3620

1.5282

1.7210

1.9431

2.1974

2.4872

2.8159

3.1875

1.1098

1.2416

1.3977

1.5807

1.7933

2.0388

2.3205

2.6422

3.0082

3.4230

1.1100

1.2421

1.3985

1.5818

1.7949

2.0409

2.3231

2.6456

3.0124

3.4282

1.1103

1.2428

1.3997

1.5836

1.7974

2.0442

2.3275

2.6511

3.0192

3.4366

FIGURE 2.5.4. Euler and improved Euler approximations to the solution of dy=dx D x C y,
y.0/ D 1.

Indeed, the improved Euler method with hD 0:1 is more accurate (in this example) than
the original Euler method with h D 0:005. The latter requires 200 evaluations of the function
f .x; y/, but the former requires only 20 such evaluations, so in this case the improved Euler
method yields greater accuracy with only about one-tenth the work.

Figure 2.5.5 shows the results obtained when the improved Euler method is applied
to the initial value problem in (9) using step size h D 0:005. Accuracy of five significant
figures is apparent in the table. This suggests that, in contrast with the original Euler method,
the improved Euler method is sufficiently accurate for certain practical applications—such as
plotting solution curves.

An improved Euler program (similar to the ones listed in the project material
for this section) was used to compute approximations to the exact value y.1/ D 0:5
of the solution y.x/ D 1=.1C x2/ of the initial value problem

dy

dx
D � 2xy

1C x2
; y.0/ D 1 (3)

of Example 1. The results obtained by successively halving the step size appear in

Improved
Euler,

Approximate Actual
x y y

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.00000

1.11034

1.24280

1.39971

1.58364

1.79744

2.04423

2.32749

2.65107

3.01919

3.43654

1.00000

1.11034

1.24281

1.39972

1.58365

1.79744

2.04424

2.32751

2.65108

3.01921

3.43656

FIGURE 2.5.5. Improved Euler
approximation to the solution of Eq.
(9) with step size h D 0:005.

the table in Fig. 2.5.6. Note that the final column of this table impressively cor-
roborates the form of the error bound in (8), and that each halving of the step size
reduces the error by a factor of almost exactly 4, as should happen if the error is
proportional to h2.

In the following two examples we exhibit graphical results obtained by em-
ploying this strategy of successively halving the step size, and thus doubling the
number of subintervals of a fixed interval on which we are approximating a solu-
tion.

Example 3 In Example 3 of Section 2.4 we applied Euler’s method to the logistic initial value problem

dy

dx
D 1

3y.8 � y/; y.0/ D 1:
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Improved Euler
Approximation

h to y.1/ Error jErrorj=h2

0.04

0.02

0.01

0.005

0.0025

0.00125

0.000625

0.0003125

0.500195903

0.500049494

0.500012437

0.500003117

0.500000780

0.500000195

0.500000049

0.500000012

�0:000195903
�0:000049494
�0:000012437
�0:000003117
�0:000000780
�0:000000195
�0:000000049
�0:000000012

0.12

0.12

0.12

0.12

0.12

0.12

0.12

0.12

FIGURE 2.5.6. Improved Euler approximation to y.1/ for dy=dx D �2xy=.1 C x2/,
y.0/ D 1.

Figure 2.4.9 shows an obvious difference between the exact solution y.x/ D 8=.1C 7e�8x=3/

and the Euler approximation on 0 5 x 5 5 using n D 20 subintervals. Figure 2.5.7 shows
approximate solution curves plotted using the improved Euler’s method.

The approximation with five subintervals is still bad—perhaps worse! It appears to
level off considerably short of the actual limiting population M D 8. You should carry out
at least the first two improved Euler steps manually to see for yourself how it happens that,
after increasing appropriately during the first step, the approximate solution decreases in the
second step rather than continuing to increase (as it should). In the project for this section
we ask you to show empirically that the improved Euler approximate solution with step size
h D 1 levels off at y � 4:3542.

In contrast, the approximate solution curve with n D 20 subintervals tracks the exact
solution curve rather closely, and with nD 40 subintervals the exact and approximate solution
curves are indistinguishable in Fig. 2.5.7. The table in Fig. 2.5.8 indicates that the improved
Euler approximation with n D 200 subintervals is accurate rounded to three decimal places
(that is, four significant digits) on the interval 0 5 x 5 5. Because discrepancies in the fourth
significant digit are not visually apparent at the resolution of an ordinary computer screen,
the improved Euler method (using several hundred subintervals) is considered adequate for
many graphical purposes.

3 4 50 1 2
x

y

0

12

Exact

2

4

6

8

10

n = 5

n = 10

n = 40
n = 20

FIGURE 2.5.7. Approximating a
logistic solution using the improved
Euler method with n D 5, n D 10,
n D 20, and n D 40 subintervals.

Improved Euler
x Actual y.x/ with n D 200

0

1

2

3

4

5

1.0000

5.3822

7.7385

7.9813

7.9987

7.9999

1.0000

5.3809

7.7379

7.9812

7.9987

7.9999

FIGURE 2.5.8. Using the improved Euler method to
approximate the actual solution of the initial value
problem in Example 3.

Example 4 In Example 4 of Section 2.4 we applied Euler’s method to the initial value problem

dy

dx
D y cos x; y.0/ D 1:
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Figure 2.4.10 shows obvious visual differences between the periodic exact solution y.x/ D
Exact n = 50

n = 100n = 200

0 5 10 15
x

y

3

2

1

0

FIGURE 2.5.9. Approximating the
exact solution y D esin x using the
improved Euler method with n D 50,
100, and 200 subintervals.

esin x and the Euler approximations on 0 5 x 5 6� with as many as n D 400 subintervals.
Figure 2.5.9 shows the exact solution curve and approximate solution curves plotted

using the improved Euler method with n D 50, n D 100, and n D 200 subintervals. The
approximation obtained with n D 200 is indistinguishable from the exact solution curve, and
the approximation with n D 100 is only barely distinguishable from it.

Although Figs. 2.5.7 and 2.5.9 indicate that the improved Euler method can
provide accuracy that suffices for many graphical purposes, it does not provide the
higher-precision numerical accuracy that sometimes is needed for more careful in-
vestigations. For instance, consider again the initial value problem

dy

dx
D � 2xy

1C x2
; y.0/ D 1

of Example 1. The final column of the table in Fig. 2.5.6 suggests that, if the im-
proved Euler method is used on the interval 0 5 x 5 1 with n subintervals and step
size hD 1=n, then the resulting error E in the final approximation yn � y.1/ is given
by

E D jy.1/ � ynj � .0:12/h2 D 0:12

n2
:

If so, then 12-place accuracy (for instance) in the value y.1/ would require that
.0:12/n�2 < 5� 10�13, which means that n = 489;898. Thus, roughly half a million
steps of length h � 0:000002 would be required. Aside from the possible imprac-
ticality of this many steps (using available computational resources), the roundoff
error resulting from so many successive steps might well overwhelm the cumula-
tive error predicted by theory (which assumes exact computations in each separate
step). Consequently, still more accurate methods than the improved Euler method
are needed for such high-precision computations. Such a method is presented in
Section 2.6.

2.5 Problems
A hand-held calculator will suffice for Problems 1 through 10,
where an initial value problem and its exact solution are given.
Apply the improved Euler method to approximate this solution
on the interval Œ0; 0:5� with step size hD 0:1. Construct a table
showing four-decimal-place values of the approximate solu-
tion and actual solution at the points x D 0:1, 0:2, 0:3, 0:4,
0:5.

1. y0 D �y, y.0/ D 2; y.x/ D 2e�x

2. y0 D 2y, y.0/ D 1
2 ; y.x/ D 1

2e
2x

3. y0 D y C 1, y.0/ D 1; y.x/ D 2ex � 1
4. y0 D x � y, y.0/ D 1; y.x/ D 2e�x C x � 1
5. y0 D y � x � 1, y.0/ D 1; y.x/ D 2C x � ex

6. y0 D �2xy, y.0/ D 2; y.x/ D 2e�x2

7. y0 D �3x2y, y.0/ D 3; y.x/ D 3e�x3

8. y0 D e�y , y.0/ D 0; y.x/ D ln.x C 1/
9. y0 D 1

4 .1C y2/, y.0/ D 1; y.x/ D tan 1
4 .x C �/

10. y0 D 2xy2, y.0/ D 1; y.x/ D 1

1 � x2

Note: The application following this problem set lists illustra-
tive calculator/computer programs that can be used in Prob-
lems 11 through 24.

A programmable calculator or a computer will be useful for
Problems 11 through 16. In each problem find the exact so-
lution of the given initial value problem. Then apply the im-
proved Euler method twice to approximate (to five decimal
places) this solution on the given interval, first with step size
h D 0:01, then with step size h D 0:005. Make a table showing
the approximate values and the actual value, together with the
percentage error in the more accurate approximations, for x
an integral multiple of 0:2. Throughout, primes denote deriva-
tives with respect to x.

11. y0 D y � 2, y.0/ D 1; 0 5 x 5 1

12. y0 D 1
2 .y � 1/2, y.0/ D 2; 0 5 x 5 1

13. yy0 D 2x3, y.1/ D 3; 1 5 x 5 2

14. xy0 D y2, y.1/ D 1; 1 5 x 5 2

15. xy0 D 3x � 2y, y.2/ D 3; 2 5 x 5 3

16. y2y0 D 2x5, y.2/ D 3; 2 5 x 5 3

A computer with a printer is required for Problems 17 through
24. In these initial value problems, use the improved Euler
method with step sizes h D 0:1, 0:02, 0:004, and 0:0008 to ap-
proximate to five decimal places the values of the solution at
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ten equally spaced points of the given interval. Print the results
in tabular form with appropriate headings to make it easy to
gauge the effect of varying the step size h. Throughout, primes
denote derivatives with respect to x.

17. y0 D x2 C y2, y.0/ D 0; 0 5 x 5 1

18. y0 D x2 � y2, y.0/ D 1; 0 5 x 5 2

19. y0 D x Cpy, y.0/ D 1; 0 5 x 5 2

20. y0 D x C 3
p
y, y.0/ D �1; 0 5 x 5 2

21. y0 D ln y, y.1/ D 2; 1 5 x 5 2

22. y0 D x2=3 C y2=3, y.0/ D 1; 0 5 x 5 2

23. y0 D sin x C cos y, y.0/ D 0; 0 5 x 5 1

24. y0 D x

1C y2
, y.�1/ D 1; �1 5 x 5 1

25. As in Problem 25 of Section 2.4, you bail out of a he-
licopter and immediately open your parachute, so your
downward velocity satisfies the initial value problem

dv

dt
D 32 � 1:6v; v.0/ D 0

(with t in seconds and v in ft/s). Use the improved Euler
method with a programmable calculator or computer to
approximate the solution for 0 5 t 5 2, first with step size
h D 0:01 and then with h D 0:005, rounding off approx-
imate v-values to three decimal places. What percentage
of the limiting velocity 20 ft/s has been attained after 1
second? After 2 seconds?

26. As in Problem 26 of Section 2.4, suppose the deer popu-
lation P.t/ in a small forest initially numbers 25 and sat-
isfies the logistic equation

dP
dt
D 0:0225P � 0:0003P 2

(with t in months). Use the improved Euler method with a
programmable calculator or computer to approximate the
solution for 10 years, first with step size h D 1 and then
with h D 0:5, rounding off approximate P -values to three
decimal places. What percentage of the limiting popula-
tion of 75 deer has been attained after 5 years? After 10
years?

Use the improved Euler method with a computer system to find
the desired solution values in Problems 27 and 28. Start with
step size h D 0:1, and then use successively smaller step sizes
until successive approximate solution values at x D 2 agree
rounded off to four decimal places.

27. y0 D x2 C y2 � 1, y.0/ D 0; y.2/ D ‹
28. y0 D x C 1

2y
2, y.�2/ D 0; y.2/ D ‹

29. Consider the crossbow bolt of Example 2 in Section 2.3,
shot straight upward from the ground with an initial veloc-
ity of 49 m=s. Because of linear air resistance, its velocity
function v.t/ satisfies the initial value problem

dv

dt
D �.0:04/v � 9:8; v.0/ D 49

with exact solution v.t/ D 294e�t=25 � 245. Use a calcu-
lator or computer implementation of the improved Euler
method to approximate v.t/ for 0 5 t 5 10 using both
n D 50 and n D 100 subintervals. Display the results at
intervals of 1 second. Do the two approximations—each
rounded to two decimal places—agree both with each
other and with the exact solution? If the exact solution
were unavailable, explain how you could use the improved
Euler method to approximate closely (a) the bolt’s time
of ascent to its apex (given in Section 2.3 as 4:56 s) and
(b) its impact velocity after 9:41 s in the air.

30. Consider now the crossbow bolt of Example 3 in Section
2.3. It still is shot straight upward from the ground with
an initial velocity of 49 m=s, but because of air resistance
proportional to the square of its velocity, its velocity func-
tion v.t/ satisfies the initial value problem

dv

dt
D �.0:0011/vjvj � 9:8; v.0/ D 49:

The symbolic solution discussed in Section 2.3 required
separate investigations of the bolt’s ascent and its descent,
with v.t/ given by a tangent function during ascent and
by a hyperbolic tangent function during descent. But the
improved Euler method requires no such distinction. Use
a calculator or computer implementation of the improved
Euler method to approximate v.t/ for 05 t 5 10 using both
n D 100 and n D 200 subintervals. Display the results at
intervals of 1 second. Do the two approximations—each
rounded to two decimal places—agree with each other? If
an exact solution were unavailable, explain how you could
use the improved Euler method to approximate closely (a)
the bolt’s time of ascent to its apex (given in Section 2.3
as 4:61 s) and (b) its impact velocity after 9:41 s in the
air.

2.5 Application Improved Euler Implementation
Figure 2.5.10 lists TI-84 Plus and BASIC programs implementing the improved
Euler method to approximate the solution of the initial value problem

dy

dx
D x C y; y.0/ D 1

considered in Example 2 of this section. The comments provided in the final column
should make these programs intelligible even if you have little familiarity with the
BASIC and TI programming languages.
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TI-84 Plus BASIC Comment

PROGRAM:IMPEULER

:10!N
:0!X
:1!Y
:1!T
:(T--X)/N!H
:For(I,1,N)

:Y!Z
:X+Y!K
:Z+H*K!Y
:X+H!X
:X+Y!L
:(K+L)/2!K
:Z+H*K!Y
:Disp X,Y

:End

Program IMPEULER

DEF FN F(X,Y) = X + Y

N = 10

X = 0

Y = 1

X1 = 1

H = (X1--X)/N

FOR I=1 TO N

Y0 = Y

K1 = FNF(X,Y)

Y = Y0 + H*K1

X = X + H

K2 = FNF(X,Y)

K = (K1 + K2)/2

Y = Y0 + H*K

PRINT X,Y

NEXT I

Program title

Define function f

No. of steps

Initial x

Initial y

Final x

Step size

Begin loop

Save previous y

First slope

Predictor

New x

Second slope

Average slope

Corrector

Display results

End loop

FIGURE 2.5.10. TI-84 Plus and BASIC improved Euler programs.

To apply the improved Euler method to a differential equation dy=dx D
f .x; y/, one need only replace X+Y throughout with the desired expression. To
increase the number of steps (and thereby decrease the step size) one need only
change the value of N specified in the second line of the program.

Figure 2.5.11 exhibits one MATLAB implementation of the improved Euler
method. The impeuler function takes as input the initial value x, the initial value
y, the final value x1 of x, and the desired number n of subintervals. As output it
produces the resulting column vectors X and Y of x- and y-values. For instance, the
MATLAB command

[X, Y] = impeuler(0, 1, 1, 10)

then generates the first and fourth columns of data shown in Fig. 2.5.4.
You should begin this project by implementing the improved Euler method

with your own calculator or computer system. Test your program by applying it
first to the initial value problem of Example 1, then to some of the problems for this
section.

Famous Numbers Revisited
The following problems describe the numbers e � 2:7182818, ln 2 � 0:6931472,
and � � 3:1415927 as specific values of certain initial value problems. In each case,
apply the improved Euler method with n D 10, 20, 40, : : : subintervals (doubling n
each time). How many subintervals are needed to obtain—twice in succession—the
correct value of the target number rounded to five decimal places?

1. The number e D y.1/, where y.x/ is the solution of the initial value problem
dy=dx D y, y.0/ D 1.

2. The number ln 2D y.2/, where y.x/ is the solution of the initial value problem
dy=dx D 1=x, y.1/ D 0.
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function yp = f(x,y)
yp = x + y; % yp = y’

function [X,Y] = impeuler(x,y,x1,n)
h = (x1 -- x)/n; % step size
X = x; % initial x
Y = y; % initial y
for i = 1:n; % begin loop

k1 = f(x,y); % first slope
k2 = f(x+h,y+h*k1); % second slope
k = (k1 + k2)/2;; % average slope
x = x + h; % new x
y = y + h*k; % new y
X = [X;x]; % update x-column
Y = [Y;y]; % update y-column
end % end loop

FIGURE 2.5.11. MATLAB implementation of improved Euler method.

3. The number � D y.1/, where y.x/ is the solution of the initial value problem
dy=dx D 4=.1C x2/, y.0/ D 0.

Logistic Population Investigation
Apply your improved Euler program to the initial value problem dy=dxD 1

3
y.8�y/,

y.0/ D 1 of Example 3. In particular, verify (as claimed) that the approximate
solution with step size h D 1 levels off at y � 4:3542 rather than at the limiting
value y D 8 of the exact solution. Perhaps a table of values for 0 5 x 5 100 will
make this apparent.

For your own logistic population to investigate, consider the initial value prob-
lem

dy

dx
D 1

n
y.m � y/; y.0/ D 1

where m and n are (for instance) the largest and smallest nonzero digits in your
student ID number. Does the improved Euler approximation with step size h D 1

level off at the “correct” limiting value of the exact solution? If not, find a smaller
value of h so that it does.

Periodic Harvesting and Restocking
The differential equation

dy

dt
D ky.M � y/ � h sin

�
2�t

P

�
models a logistic population that is periodically harvested and restocked with period
P and maximal harvesting/restocking rate h. A numerical approximation program
was used to plot the typical solution curves for the case k D M D h D P D 1 that
are shown in Fig. 2.5.12. This figure suggests—although it does not prove—the
existence of a threshold initial population such that

y

–1.0

–0.5

0.0

0.5

1.0

1.5

2.0

0 1 2 3 4 5
t

FIGURE 2.5.12. Solution curves of
dy=dt D y.1 � y/ � sin 2�t .

� Beginning with an initial population above this threshold, the population os-
cillates (perhaps with period P ?) around the (unharvested) stable limiting
population y.t/ �M , whereas
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� The population dies out if it begins with an initial population below this thresh-
old.

Use an appropriate plotting utility to investigate your own logistic population with
periodic harvesting and restocking (selecting typical values of the parameters k, M ,
h, and P ). Do the observations indicated here appear to hold for your population?

2.6 The Runge–Kutta Method
We now discuss a method for approximating the solution y D y.x/ of the initial
value problem

dy

dx
D f .x; y/; y.x0/ D y0 (1)

that is considerably more accurate than the improved Euler method and is more
widely used in practice than any of the numerical methods discussed in Sections 2.4
and 2.5. It is called the Runge–Kutta method, after the German mathematicians who
developed it, Carl Runge (1856–1927) and Wilhelm Kutta (1867–1944).

With the usual notation, suppose that we have computed the approximations
y1, y2, y3, : : : , yn to the actual values y.x1/, y.x2/, y.x3/, : : : , y.xn/ and now want
to compute ynC1 � y.xnC1/. Then

y.xnC1/ � y.xn/ D
Z xnC1

xn

y0.x/ dx D
Z xnCh

xn

y0.x/ dx (2)

by the fundamental theorem of calculus. Next, Simpson’s rule for numerical inte-
gration yields

y.xnC1/ � y.xn/ �
h

6

�
y0.xn/C 4y0

�
xn C

h

2

�
C y0.xnC1/

�
: (3)

Hence we want to define ynC1 so that

ynC1 � yn C
h

6

�
y0.xn/C 2y0

�
xn C

h

2

�
C 2y0

�
xn C

h

2

�
C y0.xnC1/

�
I (4)

we have split 4y0 �xn C 1
2
h
	

into a sum of two terms because we intend to approx-
imate the slope y0 �xn C 1

2
h
	

at the midpoint xn C 1
2
h of the interval Œxn; xnC1� in

two different ways.
On the right-hand side in (4), we replace the [true] slope values y0.xn/,

y0 �xn C 1
2
h
	
, y0 �xn C 1

2
h
	
, and y0.xnC1/, respectively, with the following esti-

mates.
k1 D f .xn; yn/ (5a)

� This is the Euler method slope at xn.

k2 D f
�
xn C 1

2
h; yn C 1

2
hk1

	
(5b)

� This is an estimate of the slope at the midpoint of the interval Œxn; xnC1� using
the Euler method to predict the ordinate there.

k3 D f
�
xn C 1

2
h; yn C 1

2
hk2

	
(5c)

� This is an improved Euler value for the slope at the midpoint.
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k4 D f .xnC1; yn C hk3/ (5d)

� This is the Euler method slope at xnC1, using the improved slope k3 at the
midpoint to step to xnC1.

When these substitutions are made in (4), the result is the iterative formula

ynC1 D yn C
h

6
.k1 C 2k2 C 2k3 C k4/: (6)

The use of this formula to compute the approximations y1, y2, y3, : : : successively
constitutes the Runge–Kutta method. Note that Eq. (6) takes the “Euler form”

ynC1 D yn C h � k

if we write

k D 1

6
.k1 C 2k2 C 2k3 C k4/ (7)

for the approximate average slope on the interval Œxn; xnC1�.
The Runge–Kutta method is a fourth-order method—it can be proved that the

cumulative error on a bounded interval Œa; b� with a D x0 is of order h4. (Thus the
iteration in (6) is sometimes called the fourth-order Runge–Kutta method because
it is possible to develop Runge–Kutta methods of other orders.) That is,

jy.xn/ � ynj 5 Ch4; (8)

where the constant C depends on the function f .x; y/ and the interval Œa; b�, but
does not depend on the step size h. The following example illustrates this high
accuracy in comparison with the lower-order accuracy of our previous numerical
methods.

Example 1 We first apply the Runge–Kutta method to the illustrative initial value problem

dy

dx
D x C y; y.0/ D 1 (9)

that we considered in Fig. 2.4.8 of Section 2.4 and again in Example 2 of Section 2.5. The
exact solution of this problem is y.x/ D 2ex � x � 1. To make a point we use h D 0:5, a
larger step size than in any previous example, so only two steps are required to go from x D 0
to x D 1.

In the first step we use the formulas in (5) and (6) to calculate

k1 D 0C 1 D 1;
k2 D .0C 0:25/C .1C .0:25/ � .1// D 1:5;
k3 D .0C 0:25/C .1C .0:25/ � .1:5// D 1:625;
k4 D .0:5/C .1C .0:5/ � .1:625// D 2:3125;

and then

y1 D 1C
0:5

6
Œ1C 2 � .1:5/C 2 � .1:625/C 2:3125� � 1:7969:

Similarly, the second step yields y2 � 3:4347.
Figure 2.6.1 presents these results together with the results (from Fig. 2.5.4) of apply-

ing the improved Euler method with step size h D 0:1. We see that even with the larger step
size, the Runge–Kutta method gives (for this problem) four to five times the accuracy (in
terms of relative percentage errors) of the improved Euler method.
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Improved Euler Runge–Kutta
x y with h D 0:1 Percent Error y with h D 0:5 Percent Error Actual y

0.0

0.5

1.0

1.0000

1.7949

3.4282

0.00%

0.14%

0.24%

1.0000

1.7969

3.4347

0.00%

0.03%

0.05%

1.0000

1.7974

3.4366

FIGURE 2.6.1. Runge–Kutta and improved Euler results for the initial value problem
dy=dx D x C y, y.0/ D 1.

It is customary to measure the computational labor involved in solving
dy=dx D f .x; y/ numerically by counting the number of evaluations of the function
f .x; y/ that are required. In Example 1, the Runge–Kutta method required eight
evaluations of f .x; y/ D x C y (four at each step), whereas the improved Euler
method required 20 such evaluations (two for each of 10 steps). Thus the Runge–
Kutta method gave over four times the accuracy with only 40% of the labor.

Computer programs implementing the Runge–Kutta method are listed in the
project material for this section. Figure 2.6.2 shows the results obtained by apply-
ing the improved Euler and Runge–Kutta methods to the problem dy=dx D x C y,
y.0/ D 1 with the same step size h D 0:1. The relative error in the improved Euler
value at x D 1 is about 0:24%, but for the Runge–Kutta value it is 0:00012%. In this
comparison the Runge–Kutta method is about 2000 times as accurate, but requires
only twice as many function evaluations, as the improved Euler method.

x Improved Euler y Runge–Kutta y Actual y

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1100

1.2421

1.3985

1.5818

1.7949

2.0409

2.3231

2.6456

3.0124

3.4282

1.110342

1.242805

1.399717

1.583648

1.797441

2.044236

2.327503

2.651079

3.019203

3.436559

1.110342

1.242806

1.399718

1.583649

1.797443

2.044238

2.327505

2.651082

3.019206

3.436564

FIGURE 2.6.2. Runge–Kutta and improved Euler results for the initial value problem
dy=dx D x C y, y.0/ D 1, with the same step size h D 0:1.

The error bound

jy.xn/ � ynj 5 Ch4 (8)

for the Runge–Kutta method results in a rapid decrease in the magnitude of errors
when the step size h is reduced (except for the possibility that very small step sizes
may result in unacceptable roundoff errors). It follows from the inequality in (8) that
(on a fixed bounded interval) halving the step size decreases the absolute error by
a factor of

�
1
2

	4 D 1
16

. Consequently, the common practice of successively halving
the step size until the computed results “stabilize” is particularly effective with the
Runge–Kutta method.
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Example 2 In Example 5 of Section 2.4 we saw that Euler’s method is not adequate to approximate the
solution y.x/ of the initial value problem

2.01.00.0
x

y

8

–4

–2

–2.0 –1.0

0
(0, 1)

x = 0.97

2

4

6

FIGURE 2.6.3. Solutions of
dy=dx D x2 C y2, y.0/ D 1.

dy

dx
D x2 C y2; y.0/ D 1 (10)

as x approaches the infinite discontinuity near x D 0:969811 (see Fig. 2.6.3). Now we apply
the Runge–Kutta method to this initial value problem.

Figure 2.6.4 shows Runge–Kutta results on the interval Œ0:0; 0:9�, computed with step
sizes h D 0:1, h D 0:05, and h D 0:025. There is still some difficulty near x D 0:9, but it
seems safe to conclude from these data that y.0:5/ � 2:0670.

x y with h D 0:1 y with h D 0:05 y with h D 0:025

0.1

0.3

0.5

0.7

0.9

1.1115

1.4397

2.0670

3.6522

14.0218

1.1115

1.4397

2.0670

3.6529

14.2712

1.1115

1.4397

2.0670

3.6529

14.3021

FIGURE 2.6.4. Approximating the solution of the initial value problem in Eq. (10).

We therefore begin anew and apply the Runge–Kutta method to the initial value prob-
lem

dy

dx
D x2 C y2; y.0:5/ D 2:0670: (11)

Figure 2.6.5 shows results on the interval Œ0:5; 0:9�, obtained with step sizes h D 0:01, h D
0:005, and h D 0:0025. We now conclude that y.0:9/ � 14:3049.

x y with h D 0:01 y with h D 0:005 y with h D 0:0025

0.5

0.6

0.7

0.8

0.9

2.0670

2.6440

3.6529

5.8486

14.3048

2.0670

2.6440

3.6529

5.8486

14.3049

2.0670

2.6440

3.6529

5.8486

14.3049

FIGURE 2.6.5. Approximating the solution of the initial value problem in Eq. (11).

Finally, Fig. 2.6.6 shows results on the interval Œ0:90; 0:95� for the initial value problem

dy

dx
D x2 C y2; y.0:9/ D 14:3049; (12)

x y with h D 0:002 y with h D 0:001 y with h D 0:0005

0.90

0.91

0.92

0.93

0.94

0.95

14.3049

16.7024

20.0617

25.1073

33.5363

50.4722

14.3049

16.7024

20.0617

25.1073

33.5363

50.4723

14.3049

16.7024

20.0617

25.1073

33.5363

50.4723

FIGURE 2.6.6. Approximating the solution of the initial value problem in Eq. (12).
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obtained using step sizes h D 0:002, h D 0:001, and h D 0:0005. Our final approximate result
is y.0:95/ � 50:4723. The actual value of the solution at x D 0:95 is y.0:95/ � 50:471867.
Our slight overestimate results mainly from the fact that the four-place initial value in (12)
is (in effect) the result of rounding up the actual value y.0:9/ � 14:304864; such errors are
magnified considerably as we approach the vertical asymptote.

Example 3 A skydiver with a mass of 60 kg jumps from a helicopter hovering at an initial altitude of
5 kilometers. Assume that she falls vertically with initial velocity zero and experiences an
upward force FR of air resistance given in terms of her velocity v (in meters per second) by

FR D .0:0096/.100v C 10v2 C v3/

(in newtons, and with the coordinate axis directed downward so that v > 0 during her descent
to the ground). If she does not open her parachute, what will be her terminal velocity? How
fast will she be falling after 5 s have elapsed? After 10 s? After 20 s?

Solution Newton’s law F D ma gives

m
dv

dt
D mg � FRI

that is,

60
dv

dt
D .60/.9:8/ � .0:0096/.100v C 10v2 C v3/ (13)

becausemD 60 and gD 9:8. Thus the velocity function v.t/ satisfies the initial value problem

dv

dt
D f .v/; v.0/ D 0; (14)

where
f .v/ D 9:8 � .0:00016/.100v C 10v2 C v3/: (15)

The skydiver reaches her terminal velocity when the forces of gravity and air resistance
balance, so f .v/D 0. We can therefore calculate her terminal velocity immediately by solving
the equation

f .v/ D 9:8 � .0:00016/.100v C 10v2 C v3/ D 0: (16)

Figure 2.6.7 shows the graph of the function f .v/ and exhibits the single real solution v �
35:5780 (found graphically or by using a calculator or computer Solve procedure). Thus the
skydiver’s terminal speed is approximately 35:578 m=s, about 128 km=h (almost 80 mi=h).

Figure 2.6.8 shows the results of Runge–Kutta approximations to the solution of the
initial value problem in (14); the step sizes h D 0:2 and h D 0:1 yield the same results (to
three decimal places). Observe that the terminal velocity is effectively attained in only 15 s.
But the skydiver’s velocity is 91:85% of her terminal velocity after only 5 s, and 99:78% after
10 s.

0 40 806020 100–40 –20–60

60

0

–60

20

–40

40

–20

f(
  )

FIGURE 2.6.7. Graph of f .v/ D
9:8 � .0:00016/.100v C 10v2 C v3/.

t (s) v (m/s) t (s) v (m/s)

0

1

2

3

4

5

6

7

8

9

10

0

9.636

18.386

25.299

29.949

32.678

34.137

34.875

35.239

35.415

35.500

11

12

13

14

15

16

17

18

19

20

35.541

35.560

35.569

35.574

35.576

35.577

35.578

35.578

35.578

35.578

FIGURE 2.6.8. The skydiver’s
velocity data.
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Runge–Kutta y Runge–Kutta y Runge–Kutta y

x with h D 0:2 with h D 0:1 with h D 0:05 Actual y

0.4

0.8

1.2

1.6

2.0

2.4

2.8

3.2

3.6

4.0

0.66880

0.43713

0.21099

�0:46019
�4:72142
�35:53415
�261:25023
�1;916:69395
�14059:35494
�103;126:5270

0.67020

0.44833

0.29376

0.14697
�0:27026
�2:90419
�22:05352
�163:25077
�1205:71249
�8903:12866

0.67031

0.44926

0.30067

0.19802

0.10668
�0:12102
�1:50367
�11:51868
�85:38156
�631:03934

0.67032

0.44933

0.30119

0.20190

0.13534

0.09072

0.06081

0.04076

0.02732

0.01832

FIGURE 2.6.9. Runge–Kutta attempts to solve numerically the initial value problem in Eq. (17).

The final example of this section contains a warning: For certain types of
initial value problems, the numerical methods we have discussed are not nearly so
successful as in the previous examples.

Example 4 Consider the seemingly innocuous initial value problem

dy

dx
D 5y � 6e�x ; y.0/ D 1 (17)

whose exact solution is y.x/ D e�x . The table in Fig. 2.6.9 shows the results obtained by
applying the Runge–Kutta method on the interval Œ0; 4� with step sizes h D 0:2, h D 0:1, and
hD 0:05. Obviously these attempts are spectacularly unsuccessful. Although y.x/D e�x! 0

as x!C1, it appears that our numerical approximations are headed toward �1 rather than
zero.

The explanation lies in the fact that the general solution of the equation dy=dx D 5y �
6e�x is

y.x/ D e�x C Ce5x : (18)

The particular solution of (17) satisfying the initial condition y.0/D 1 is obtained with C D 0.
But any departure, however small, from the exact solution y.x/ D e�x—even if due only to
roundoff error—introduces [in effect] a nonzero value of C in Eq. (18). And as indicated in
Fig. 2.6.10, all solution curves of the form in (18) with C ¤ 0 diverge rapidly away from the
one with C D 0, even if their initial values are close to 1.

3.02.52.01.51.00.5
x

y = e–x

y

0

2.5

2.0

1.5

1.0

0.5

0.0

–1.0

–0.5

FIGURE 2.6.10. Direction field and
solution curves for
dy=dx D 5y � 6e�x .

Difficulties of the sort illustrated by Example 4 sometimes are unavoidable,
but one can at least hope to recognize such a problem when it appears. Approxi-
mate values whose order of magnitude varies with changing step size are a common
indicator of such instability. These difficulties are discussed in numerical analysis
textbooks and are the subject of current research in the field.

2.6 Problems
A hand-held calculator will suffice for Problems 1 through 10,
where an initial value problem and its exact solution are given.
Apply the Runge–Kutta method to approximate this solution on
the interval Œ0; 0:5� with step size h D 0:25. Construct a table
showing five-decimal-place values of the approximate solution
and actual solution at the points x D 0:25 and 0:5.

1. y0 D �y, y.0/ D 2; y.x/ D 2e�x

2. y0 D 2y, y.0/ D 1
2 ; y.x/ D 1

2e
2x

3. y0 D y C 1, y.0/ D 1; y.x/ D 2ex � 1
4. y0 D x � y, y.0/ D 1; y.x/ D 2e�x C x � 1
5. y0 D y � x � 1, y.0/ D 1; y.x/ D 2C x � ex

6. y0 D �2xy, y.0/ D 2; y.x/ D 2e�x2
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7. y0 D �3x2y, y.0/ D 3; y.x/ D 3e�x3

8. y0 D e�y , y.0/ D 0; y.x/ D ln.x C 1/
9. y0 D 1

4 .1C y2/, y.0/ D 1; y.x/ D tan 1
4 .x C �/

10. y0 D 2xy2, y.0/ D 1; y.x/ D 1

1 � x2

Note: The application following this problem set lists illus-
trative calculator/computer programs that can be used in the
remaining problems.

A programmable calculator or a computer will be useful for
Problems 11 through 16. In each problem find the exact solu-
tion of the given initial value problem. Then apply the Runge–
Kutta method twice to approximate (to five decimal places) this
solution on the given interval, first with step size h D 0:2, then
with step size h D 0:1. Make a table showing the approximate
values and the actual value, together with the percentage error
in the more accurate approximation, for x an integral multi-
ple of 0:2. Throughout, primes denote derivatives with respect
to x.

11. y0 D y � 2, y.0/ D 1; 0 5 x 5 1

12. y0 D 1
2 .y � 1/2, y.0/ D 2; 0 5 x 5 1

13. yy0 D 2x3, y.1/ D 3; 1 5 x 5 2

14. xy0 D y2, y.1/ D 1; 1 5 x 5 2

15. xy0 D 3x � 2y, y.2/ D 3; 2 5 x 5 3

16. y2y0 D 2x5, y.2/ D 3; 2 5 x 5 3

A computer with a printer is required for Problems 17 through
24. In these initial value problems, use the Runge–Kutta
method with step sizes h D 0:2, 0:1, 0:05, and 0:025 to approx-
imate to six decimal places the values of the solution at five
equally spaced points of the given interval. Print the results
in tabular form with appropriate headings to make it easy to
gauge the effect of varying the step size h. Throughout, primes
denote derivatives with respect to x.

17. y0 D x2 C y2, y.0/ D 0; 0 5 x 5 1

18. y0 D x2 � y2, y.0/ D 1; 0 5 x 5 2

19. y0 D x Cpy, y.0/ D 1; 0 5 x 5 2

20. y0 D x C 3
p
y, y.0/ D �1; 0 5 x 5 2

21. y0 D ln y, y.1/ D 2; 1 5 x 5 2

22. y0 D x2=3 C y2=3, y.0/ D 1; 0 5 x 5 2

23. y0 D sin x C cos y, y.0/ D 0; 0 5 x 5 1

24. y0 D x

1C y2
, y.�1/ D 1; �1 5 x 5 1

25. As in Problem 25 of Section 2.5, you bail out of a he-
licopter and immediately open your parachute, so your
downward velocity satisfies the initial value problem

dv

dt
D 32 � 1:6v; v.0/ D 0

(with t in seconds and v in ft/s). Use the Runge–Kutta
method with a programmable calculator or computer to
approximate the solution for 0 5 t 5 2, first with step size
hD 0:1 and then with hD 0:05, rounding off approximate
v-values to three decimal places. What percentage of the
limiting velocity 20 ft/s has been attained after 1 second?
After 2 seconds?

26. As in Problem 26 of Section 2.5, suppose the deer popu-
lation P.t/ in a small forest initially numbers 25 and sat-
isfies the logistic equation

dP
dt
D 0:0225P � 0:0003P 2

(with t in months). Use the Runge–Kutta method with a
programmable calculator or computer to approximate the
solution for 10 years, first with step size h D 6 and then
with h D 3, rounding off approximate P -values to four
decimal places. What percentage of the limiting popula-
tion of 75 deer has been attained after 5 years? After 10
years?

Use the Runge–Kutta method with a computer system to find
the desired solution values in Problems 27 and 28. Start with
step size h D 1, and then use successively smaller step sizes
until successive approximate solution values at x D 2 agree
rounded off to five decimal places.

27. y0 D x2 C y2 � 1, y.0/ D 0; y.2/ D‹
28. y0 D x C 1

2y
2, y.�2/ D 0; y.2/ D‹

Velocity-Acceleration Problems
In Problems 29 and 30, the linear acceleration a D dv=dt of a
moving particle is given by a formula dv=dt D f .t; v/, where
the velocity vD dy=dt is the derivative of the function y D y.t/
giving the position of the particle at time t . Suppose that the
velocity v.t/ is approximated using the Runge–Kutta method
to solve numerically the initial value problem

dv

dt
D f .t; v/; v.0/ D v0: (19)

That is, starting with t0 D 0 and v0, the formulas in Eqs. (5)
and (6) are applied—with t and v in place of x and y—to
calculate the successive approximate velocity values v1, v2,
v3, : : : , vm at the successive times t1, t2, t3, : : : , tm (with
tnC1 D tn C h). Now suppose that we also want to approx-
imate the distance y.t/ traveled by the particle. We can do this
by beginning with the initial position y.0/ D y0 and calculat-
ing

ynC1 D yn C vnhC 1
2anh

2 (20)

(n D 1, 2, 3, : : : ), where an D f .tn; vn/ � v0.tn/ is the par-
ticle’s approximate acceleration at time tn. The formula in
(20) would give the correct increment (from yn to ynC1) if
the acceleration an remained constant during the time interval
Œtn; tnC1�.

Thus, once a table of approximate velocities has been
calculated, Eq. (20) provides a simple way to calculate a table
of corresponding successive positions. This process is illus-
trated in the project for this section, by beginning with the ve-
locity data in Fig. 2.6.8 (Example 3) and proceeding to follow
the skydiver’s position during her descent to the ground.

29. Consider again the crossbow bolt of Example 2 in Sec-
tion 2.3, shot straight upward from the ground with an ini-
tial velocity of 49 m=s. Because of linear air resistance,
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its velocity function v D dy=dt satisfies the initial value
problem

dv

dt
D �.0:04/v � 9:8; v.0/ D 49

with exact solution v.t/D 294e�t=25�245. (a) Use a cal-
culator or computer implementation of the Runge–Kutta
method to approximate v.t/ for 0 5 t 5 10 using both
n D 100 and n D 200 subintervals. Display the results at
intervals of 1 second. Do the two approximations—each
rounded to four decimal places—agree both with each
other and with the exact solution? (b) Now use the veloc-
ity data from part (a) to approximate y.t/ for 0 5 t 5 10

using nD 200 subintervals. Display the results at intervals
of 1 second. Do these approximate position values—each
rounded to two decimal places—agree with the exact so-
lution

y.t/ D 7350
�
1 � e�t=25

�
� 245t?

(c) If the exact solution were unavailable, explain how
you could use the Runge–Kutta method to approximate
closely the bolt’s times of ascent and descent and the max-
imum height it attains.

30. Now consider again the crossbow bolt of Example 3 in
Section 2.3. It still is shot straight upward from the ground

with an initial velocity of 49 m=s, but because of air resis-
tance proportional to the square of its velocity, its velocity
function v.t/ satisfies the initial value problem

dv

dt
D �.0:0011/vjvj � 9:8; v.0/ D 49:

Beginning with this initial value problem, repeat parts (a)
through (c) of Problem 25 (except that you may need
n D 200 subintervals to get four-place accuracy in part
(a) and n D 400 subintervals for two-place accuracy in
part (b)). According to the results of Problems 17 and 18
in Section 2.3, the bolt’s velocity and position functions
during ascent and descent are given by the following for-
mulas.

Ascent:
v.t/ D .94:388/ tan.0:478837 � Œ0:103827�t/;
y.t/ D 108:465

C .909:091/ ln .cos.0:478837 � Œ0:103827�t// I
Descent:
v.t/ D �.94:388/ tanh.0:103827Œt � 4:6119�/;
y.t/ D 108:465

� .909:091/ ln .cosh.0:103827Œt � 4:6119�// :

2.6 Application Runge–Kutta Implementation
Figure 2.6.11 lists TI-Nspire CX CAS and BASIC programs implementing the
Runge–Kutta method to approximate the solution of the initial value problem

dy

dx
D x C y; y.0/ D 1

considered in Example 1 of this section. The comments provided in the final column
should make these programs intelligible even if you have little familiarity with the
BASIC and TI programming languages.

To apply the Runge–Kutta method to a different equation dy=dx D f .x; y/,
one need only change the initial line of the program, in which the function f is
defined. To increase the number of steps (and thereby decrease the step size), one
need only change the value of n specified in the second line of the program.

Figure 2.6.12 exhibits a MATLAB implementation of the Runge–Kutta
method. Suppose that the function f describing the differential equation y0 D
f .x; y/ has been defined. Then the rk function takes as input the initial value x,
the initial value y, the final value x1 of x, and the desired number n of subintervals.
As output it produces the resulting column vectors X and Y of x- and y-values. For
instance, the MATLAB command

[X, Y] = rk(0, 1, 1, 10)

then generates the first and third columns of data shown in the table in Fig. 2.6.2.
You should begin this project by implementing the Runge–Kutta method with

your own calculator or computer system. Test your program by applying it first to
the initial value problem in Example 1, then to some of the problems for this section.
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TI-Nspire CX CAS BASIC Comment

Define rk()=Prgm
f(x,y):=x+y
n:=10
x:=0.0
y:=1.0
x1:=1.0
h:=(x1--x)/n
For i,1,n

x0:=x
y0:=y
k1:=f(x,y)
x:=x0+h/2
y:=y0+(h*k1)/2
k2:=f(x,y)
y:=y0+(h*k2)/2
k3:=f(x,y)
x:=x0+h
y:=y0+h*k3
k4:=f(x,y)
k:=(k1+2*k2+2*k3+k4)/6

y:=y0+h*k
Disp x,y

EndFor
EndPrgm

Program RK
DEF FN F(X,Y) = X + Y
N = 10
X = 0
Y = 1
X1 = 1
H = (X1--X)/N
FOR I=1 TO N
X0 = X
Y0 = Y
K1 = FNF(X,Y)
X = X0 + H/2
Y = Y0 + H*K1/2
K2 = FNF(X,Y)
Y = Y0 + H*K2/2
K3 = FNF(X,Y)
X = X0 + H
Y = Y0 + H*K3
K4 = FNF(X,Y)
K = (K1+2*K2+2*K3

+K4)/6
Y = Y0 + H*K
PRINT X,Y
NEXT I

Program title
Define function f
No. of steps
Initial x
Initial y
Final x
Step size
Begin loop
Save previous x
Save previous y
First slope
Midpoint
Midpt predictor
Second slope
Midpt predictor
Third slope
New x
Endpt predictor
Fourth slope
Average slope

Corrector
Display results
End loop

FIGURE 2.6.11. TI-Nspire CX CAS and BASIC Runge–Kutta programs.

function yp = f(x,y)
yp = x + y; % yp = y’

function [X,Y] = rk(x,y,x1,n)
h = (x1 -- x)/n; % step size
X = x; % initial x
Y = y; % initial y
for i = 1:n % begin loop

k1 = f(x,y); % first slope
k2 = f(x+h/2,y+h*k1/2); % second slope
k3 = f(x+h/2,y+h*k2/2); % third slope
k4 = f(x+h,y+h*k3); % fourth slope
k = (k1+2*k2+2*k3+k4)/6; % average slope
x = x + h; % new x
y = y + h*k; % new y
X = [X;x]; % update x-column
Y = [Y;y]; % update y-column
end % end loop

FIGURE 2.6.12. MATLAB implementation of the Runge–Kutta method.
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Famous Numbers Revisited, One Last Time
The following problems describe the numbers

e � 2:71828182846; ln 2 � 0:69314718056; and � � 3:14159265359

as specific values of certain initial value problems. In each case, apply the Runge–
Kutta method with n D 10, 20, 40, : : : subintervals (doubling n each time). How
many subintervals are needed to obtain—twice in succession—the correct value of
the target number rounded to nine decimal places?

1. The number e D y.1/, where y.x/ is the solution of the initial value problem
dy=dx D y, y.0/ D 1.

2. The number ln 2D y.2/, where y.x/ is the solution of the initial value problem
dy=dx D 1=x, y.1/ D 0.

3. The number � D y.1/, where y.x/ is the solution of the initial value problem
dy=dx D 4=.1C x2/, y.0/ D 0.

The Skydiver’s Descent
The following MATLAB function describes the skydiver’s acceleration function in
Example 3.

function vp = f(t,v)
vp = 9.8 -- 0.00016�(100�v + 10�v^2 + v^3);

Then the commands

k = 200 % 200 subintervals
[t,v] = rk(0, 0, 20, k); % Runge-Kutta approximation
[t(1:10:k+1); v(1:10:k+1)] % Display every 10th entry

produce the table of approximate velocities shown in Fig. 2.6.8. Finally, the com-
mands

y = zeros(k+1,1): % initialize y
h = 0.1; % step size
for n = 1:k % for n = 1 to k
a = f(t(n),v(n)): % acceleration
y(n+1) = y(n) + v(n)�h + 0.5�a�h^2; % Equation (20)

end % end loop
[t(1:20:k+1),v(1:20:k+1),y(1:20:k+1)] % each 20th entry

carry out the position function calculations described in Eq. (20) in the instruc-
tions for Problems 29 and 30. The results of these calculations are shown in
the table in Fig. 2.6.13. It appears that the skydiver falls 629:866 m during her
first 20 s of descent, and then free falls the remaining 4370:134 meters to the
ground at her terminal speed of 35:578 m=s. Hence her total time of descent is
20C .4370:134=35:578/ � 142:833 s, or about 2 min 23 s.

For an individual problem to solve after implementing these methods using
an available computer system, analyze your own skydive (perhaps from a different
height), using your own mass m and a plausible air-resistance force of the form

t (s) v (m/s) y (m)

0

2

4

6

8

10

12

14

16

18

20

0

18.386

29.949

34.137

35.239

35.500

35.560

35.574

35.577

35.578

35.578

0

18.984

68.825

133.763

203.392

274.192

345.266

416.403

487.555

558.710

629.866

FIGURE 2.6.13. The skydiver’s
velocity and position data.

FR D av C bv2 C cv3.
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of Higher Order

3.1 Introduction: Second-Order Linear Equations

In Chapters 1 and 2 we investigated first-order differential equations. We now turn
to equations of higher order n = 2, beginning in this chapter with equations that

are linear. The general theory of linear differential equations parallels the second-
order case (n D 2), which we outline in this initial section.

Recall that a second-order differential equation in the (unknown) function
y.x/ is one of the form

G.x; y; y0; y00/ D 0: (1)

This differential equation is said to be linear provided that G is linear in the depen-
dent variable y and its derivatives y0 and y00. Thus a linear second-order equation
takes (or can be written in) the form

A.x/y00 C B.x/y0 C C.x/y D F.x/: (2)

Unless otherwise noted, we will always assume that the (known) coefficient func-
tions A.x/, B.x/, C.x/, and F.x/ are continuous on some open interval I (perhaps
unbounded) on which we wish to solve this differential equation, but we do not
require that they be linear functions of x. Thus the differential equation

exy00 C .cos x/y0 C .1Cpx /y D tan�1 x

is linear because the dependent variable y and its derivatives y0 and y00 appear lin-
early. By contrast, the equations

y00 D yy0 and y00 C 3.y0/2 C 4y3 D 0

are not linear because products and powers of y or its derivatives appear.

136
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If the function F.x/ on the right-hand side of Eq. (2) vanishes identically on
I , then we call Eq. (2) a homogeneous linear equation; otherwise, it is nonhomo-
geneous. For example, the second-order equation

x2y00 C 2xy0 C 3y D cos x

is nonhomogeneous; its associated homogeneous equation is

x2y00 C 2xy0 C 3y D 0:
In general, the homogeneous linear equation associated with Eq. (2) is

A.x/y00 C B.x/y0 C C.x/y D 0: (3)

In case the differential equation in (2) models a physical system, the nonhomoge-
neous term F.x/ frequently corresponds to some external influence on the system.
Remark Note that the meaning of the term “homogeneous” for a second-order linear differ-
ential equation is quite different from its meaning for a first-order differential equation (as in
Section 1.6). Of course, it is not unusual—either in mathematics or in the English language
more generally—for the same word to have different meanings in different contexts.

A Typical Application
Linear differential equations frequently appear as mathematical models of mechan-Spring Mass Dashpot

x (t)
x  = 0

Equilibrium
position

x  > 0

m

FIGURE 3.1.1. A mass–spring–
dashpot system.

ical systems and electrical circuits. For example, suppose that a mass m is attached
both to a spring that exerts on it a force FS and to a dashpot (shock absorber) that
exerts a force FR on the mass (Fig. 3.1.1). Assume that the restoring force FS of
the spring is proportional to the displacement x of the mass from its equilibrium
position and acts opposite to the direction of displacement. Then

FS D �kx (with k > 0)

so FS < 0 if x > 0 (spring stretched) while FS > 0 if x < 0 (spring compressed).
We assume that the dashpot force FR is proportional to the velocity v D dx=dt of
the mass and acts opposite to the direction of motion. Thenm

x ,  v  > 0

FRFS

FIGURE 3.1.2. Directions of the
forces acting on m.

FR D �cv D �c
dx

dt
(with c > 0);

so FR < 0 if v > 0 (motion to the right) while FR > 0 if v < 0 (motion to the left).
If FR and FS are the only forces acting on the mass m and its resulting accel-

eration is a D dv=dt , then Newton’s law F D ma gives

mx00 D FS C FRI (4)

that is,

m
d2x

dt2
C c dx

dt
C kx D 0: (5)

Thus we have a differential equation satisfied by the position function x.t/ of the
massm. This homogeneous second-order linear equation governs the free vibrations
of the mass; we will return to this problem in detail in Section 3.4.

If, in addition to FS and FR, the mass m is acted on by an external force
F.t/—which must then be added to the right-hand side in Eq. (4)—the resulting
equation is

m
d2x

dt2
C c dx

dt
C kx D F.t/: (6)

This nonhomogeneous linear differential equation governs the forced vibrations of
the mass under the influence of the external force F.t/.
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Homogeneous Second-Order Linear Equations
Consider the general second-order linear equation

A.x/y00 C B.x/y0 C C.x/y D F.x/; (7)

where the coefficient functions A, B , C , and F are continuous on the open interval
I . Here we assume in addition that A.x/ ¤ 0 at each point of I , so we can divide
each term in Eq. (7) by A.x/ and write it in the form

y00 C p.x/y0 C q.x/y D f .x/: (8)

We will discuss first the associated homogeneous equation

y00 C p.x/y0 C q.x/y D 0: (9)

A particularly useful property of this homogeneous linear equation is the fact that the
sum of any two solutions of Eq. (9) is again a solution, as is any constant multiple
of a solution. This is the central idea of the following theorem.

THEOREM 1 Principle of Superposition for Homogeneous

Equations

Let y1 and y2 be two solutions of the homogeneous linear equation in (9) on the
interval I . If c1 and c2 are constants, then the linear combination

y D c1y1 C c2y2 (10)

is also a solution of Eq. (9) on I .

Proof: The conclusion follows almost immediately from the linearity of the
operation of differentiation, which gives

y0 D c1y
0
1 C c2y

0
2 and y00 D c1y

00
1 C c2y

00
2 :

Then

y00 C py0 C qy D .c1y1 C c2y2/
00 C p.c1y1 C c2y2/

0 C q.c1y1 C c2y2/

D .c1y
00
1 C c2y

00
2 /C p.c1y

0
1 C c2y

0
2/C q.c1y1 C c2y2/

D c1.y
00
1 C py0

1 C qy1/C c2.y
00
2 C py0

2 C qy2/

D c1 � 0C c2 � 0 D 0

because y1 and y2 are solutions. Thus y D c1y1 C c2y2 is also a solution.

Example 1 We can see by inspection that

y1.x/ D cos x and y2.x/ D sin x

are two solutions of the equation
y00 C y D 0:

Theorem 1 tells us that any linear combination of these solutions, such as

y.x/ D 3y1.x/ � 2y2.x/ D 3 cos x � 2 sin x;
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is also a solution. We will see later that, conversely, every solution of y00 C y D 0 is a
linear combination of these two particular solutions y1 and y2. Thus a general solution of
y00 C y D 0 is given by

y.x/ D c1 cos x C c2 sin x:

It is important to understand that this single formula for the general solution encompasses
a “twofold infinity” of particular solutions, because the two coefficients c1 and c2 can be
selected independently. Figures 3.1.3 through 3.1.5 illustrate some of the possibilities, with
either c1 or c2 set equal to zero, or with both nonzero.

0 2ππ–π

x

y

8

0

–8

2

–6

4

–4

6

–2

c1 = 5

c1 = –5

FIGURE 3.1.3. Solutions
y.x/ D c1 cos x of y00 C y D 0.

0 2ππ–π

x

y

8

0

–8

2

–6

4

–4

6

–2

c2 = 5

c2 = –5

FIGURE 3.1.4. Solutions
y.x/ D c2 sin x of y00 C y D 0.

3π2π–π

y = 6 cos x – 2 sin x
y = 3 cos x + 4 sin x

y = cos x – 2 sin x

0
x

y

10
8
6
4
2
0

–10
–8
–6
–4
–2

π

FIGURE 3.1.5. Solutions of
y00 C y D 0 with c1 and c2 both
nonzero.

Earlier in this section we gave the linear equation mx00 C cx0 C kx D F.t/ as
a mathematical model of the motion of the mass shown in Fig. 3.1.1. Physical con-
siderations suggest that the motion of the mass should be determined by its initial
position and initial velocity. Hence, given any preassigned values of x.0/ and x0.0/,
Eq. (6) ought to have a unique solution satisfying these initial conditions. More
generally, in order to be a “good” mathematical model of a deterministic physical
situation, a differential equation must have unique solutions satisfying any appro-
priate initial conditions. The following existence and uniqueness theorem (proved
in the Appendix) gives us this assurance for the general second-order equation.

THEOREM 2 Existence and Uniqueness for Linear Equations

Suppose that the functions p, q, and f are continuous on the open interval I
containing the point a. Then, given any two numbers b0 and b1, the equation

y00 C p.x/y0 C q.x/y D f .x/ (8)

has a unique (that is, one and only one) solution on the entire interval I that
satisfies the initial conditions

y.a/ D b0; y0.a/ D b1: (11)

Remark 1 Equation (8) and the conditions in (11) constitute a second-order linear initial
value problem. Theorem 2 tells us that any such initial value problem has a unique solution
on the whole interval I where the coefficient functions in (8) are continuous. Recall from
Section 1.3 that a nonlinear differential equation generally has a unique solution on only a
smaller interval.

Remark 2 Whereas a first-order differential equation dy=dx D F.x; y/ generally admits
only a single solution curve y D y.x/ passing through a given initial point .a; b/, Theorem
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2 implies that the second-order equation in (8) has infinitely many solution curves pass-
ing through the point .a; b0/—namely, one for each (real number) value of the initial slope
y0.a/ D b1. That is, instead of there being only one line through .a; b0/ tangent to a solu-
tion curve, every nonvertical straight line through .a; b0/ is tangent to some solution curve of
Eq. (8). Figure 3.1.6 shows a number of solution curves of the equation y00 C 3y0 C 2y D 0

all having the same initial value y.0/D 1, while Fig. 3.1.7 shows a number of solution curves
all having the same initial slope y0.0/ D 1. The application at the end of this section suggests
how to construct such families of solution curves for a given homogeneous second-order
linear differential equation.
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FIGURE 3.1.6. Solutions of
y00 C 3y0 C 2y D 0 with the same
initial value y.0/ D 1 but different
initial slopes.
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FIGURE 3.1.7. Solutions of
y00 C 3y0 C 2y D 0 with the same
initial slope y0.0/ D 1 but different
initial values.

Continued

Example 1 We saw in the first part of Example 1 that y.x/ D 3 cos x � 2 sin x is a solution (on the entire
real line) of y00 C y D 0. It has the initial values y.0/ D 3, y0.0/ D �2. Theorem 2 tells us
that this is the only solution with these initial values. More generally, the solution

y.x/ D b0 cos x C b1 sin x

satisfies the arbitrary initial conditions y.0/D b0, y0.0/D b1; this illustrates the existence of
such a solution, also as guaranteed by Theorem 2.

Example 1 suggests how, given a homogeneous second-order linear equation,
we might actually find the solution y.x/ whose existence is assured by Theorem 2.
First, we find two “essentially different” solutions y1 and y2; second, we attempt to
impose on the general solution

y D c1y1 C c2y2 (12)

the initial conditions y.a/ D b0, y0.a/ D b1. That is, we attempt to solve the simul-
taneous equations

c1y1.a/C c2y2.a/ D b0;

c1y
0
1.a/C c2y

0
2.a/ D b1

(13)

for the coefficients c1 and c2.

Example 2 Verify that the functions
y1.x/ D ex and y2.x/ D xex

are solutions of the differential equation

y00 � 2y0 C y D 0;
and then find a solution satisfying the initial conditions y.0/ D 3, y0.0/ D 1.
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Solution The verification is routine; we omit it. We impose the given initial conditions on the general
solution

y.x/ D c1e
x C c2xe

x ;

for which
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FIGURE 3.1.8. Different solutions
y.x/ D 3ex C c2xex of
y00 � 2y0 C y D 0 with the same
initial value y.0/ D 3.

y0.x/ D .c1 C c2/ex C c2xe
x ;

to obtain the simultaneous equations

y.0/ D c1 D 3,
y0.0/ D c1 C c2 D 1.

The resulting solution is c1 D 3, c2 D �2. Hence the solution of the original initial value
problem is

y.x/ D 3ex � 2xex :

Figure 3.1.8 shows several additional solutions of y00 � 2y0 C y D 0, all having the same
initial value y.0/ D 3.

In order for the procedure of Example 2 to succeed, the two solutions y1 and
y2 must have the elusive property that the equations in (13) can always be solved for
c1 and c2, no matter what the initial conditions b0 and b1 might be. The following
definition tells precisely how different the two functions y1 and y2 must be.

DEFINITION Linear Independence of Two Functions

Two functions defined on an open interval I are said to be linearly independent
on I provided that neither is a constant multiple of the other.

Two functions are said to be linearly dependent on an open interval provided
that they are not linearly independent there; that is, one of them is a constant multi-
ple of the other. We can always determine whether two given functions f and g are
linearly dependent on an interval I by noting at a glance whether either of the two
quotients f=g or g=f is a constant-valued function on I .

Example 3 Thus it is clear that the following pairs of functions are linearly independent on the entire real
line:

sin x and cos xI
ex and e�2x I
ex and xex I

x C 1 and x2I
x and jxj:

That is, neither sin x=cos x D tan x nor cos x=sin x D cot x is a constant-valued function;
neither ex=e�2x D e3x nor e�2x=ex is a constant-valued function; and so forth. But the
identically zero function f .x/ � 0 and any other function g are linearly dependent on every
interval, because 0 � g.x/ D 0 D f .x/. Also, the functions

f .x/ D sin 2x and g.x/ D sin x cos x

are linearly dependent on any interval because f .x/ D 2g.x/ is the familiar trigonometric
identity sin 2x D 2 sin x cos x.

General Solutions
But does the homogeneous equation y00 C py0 C qy D 0 always have two linearly
independent solutions? Theorem 2 says yes! We need only choose y1 and y2 so that

y1.a/ D 1; y0
1.a/ D 0 and y2.a/ D 0; y0

2.a/ D 1:
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It is then impossible that either y1 D ky2 or y2 D ky1 because k � 0 ¤ 1 for any
constant k. Theorem 2 tells us that two such linearly independent solutions exist;
actually finding them is a crucial matter that we will discuss briefly at the end of
this section, and in greater detail beginning in Section 3.3.

We want to show, finally, that given any two linearly independent solutions y1

and y2 of the homogeneous equation

y00.x/C p.x/y0.x/C q.x/y.x/ D 0; (9)

every solution y of Eq. (9) can be expressed as a linear combination

y D c1y1 C c2y2 (12)

of y1 and y2. This means that the function in (12) is a general solution of Eq. (9)—it
provides all possible solutions of the differential equation.

As suggested by the equations in (13), the determination of the constants c1

and c2 in (12) depends on a certain 2 � 2 determinant of values of y1, y2, and
their derivatives. Given two functions f and g, the Wronskian of f and g is the
determinant

W D
ˇ̌̌̌
ˇ f g

f 0 g0

ˇ̌̌̌
ˇ D fg0 � f 0g:

We write either W.f; g/ or W.x/, depending on whether we wish to emphasize the
two functions or the point x at which the Wronskian is to be evaluated. For example,

W.cos x; sin x/ D
ˇ̌̌̌

cos x sin x
� sin x cos x

ˇ̌̌̌
D cos2 x C sin2 x D 1

and

W.ex ; xex/ D
ˇ̌̌̌
ex xex

ex ex C xex

ˇ̌̌̌
D e2x :

These are examples of linearly independent pairs of solutions of differential equa-
tions (see Examples 1 and 2). Note that in both cases the Wronskian is everywhere
nonzero.

On the other hand, if the functions f and g are linearly dependent, with f D
kg (for example), then

W.f; g/ D
ˇ̌̌̌
kg g

kg0 g0

ˇ̌̌̌
D kgg0 � kg0g � 0:

Thus the Wronskian of two linearly dependent functions is identically zero. In
Section 3.2 we will prove that, if the two functions y1 and y2 are solutions of a
homogeneous second-order linear equation, then the strong converse stated in part
(b) of Theorem 3 holds.

THEOREM 3 Wronskians of Solutions

Suppose that y1 and y2 are two solutions of the homogeneous second-order linear
equation (Eq. (9))

y00 C p.x/y0 C q.x/y D 0
on an open interval I on which p and q are continuous.
(a) If y1 and y2 are linearly dependent, then W.y1; y2/ � 0 on I .

(b) If y1 and y2 are linearly independent, then W.y1; y2/ 6D 0 at each point of I .
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Thus, given two solutions of Eq. (9), there are just two possibilities: The
Wronskian W is identically zero if the solutions are linearly dependent; the Wron-
skian is never zero if the solutions are linearly independent. The latter fact is what
we need to show that y D c1y1C c2y2 is the general solution of Eq. (9) if y1 and y2

are linearly independent solutions.

THEOREM 4 General Solutions of Homogeneous Equations

Let y1 and y2 be two linearly independent solutions of the homogeneous equation
(Eq. (9))

y00 C p.x/y0 C q.x/y D 0
with p and q continuous on the open interval I . If Y is any solution whatsoever
of Eq. (9) on I , then there exist numbers c1 and c2 such that

Y.x/ D c1y1.x/C c2y2.x/

for all x in I .

In essence, Theorem 4 tells us that when we have found two linearly inde-
pendent solutions of the second-order homogeneous equation in (9), then we have
found all of its solutions. We therefore call the linear combination Y D c1y1C c2y2

a general solution of the differential equation.

Proof of Theorem 4: Choose a point a of I , and consider the simultaneous
equations

c1y1.a/C c2y2.a/ D Y.a/;
c1y

0
1.a/C c2y

0
2.a/ D Y 0.a/:

(14)

The determinant of the coefficients in this system of linear equations in the un-
knowns c1 and c2 is simply the Wronskian W.y1; y2/ evaluated at x D a. By The-
orem 3, this determinant is nonzero, so by elementary algebra it follows that the
equations in (14) can be solved for c1 and c2. With these values of c1 and c2, we
define the solution

G.x/ D c1y1.x/C c2y2.x/

of Eq. (9); then
G.a/ D c1y1.a/C c2y2.a/ D Y.a/

and
G0.a/ D c1y

0
1.a/C c2y

0
2.a/ D Y 0.a/:

Thus the two solutions Y and G have the same initial values at a; likewise, so do Y 0
and G0. By the uniqueness of a solution determined by such initial values (Theorem
2), it follows that Y and G agree on I . Thus we see that

Y.x/ � G.x/ D c1y1.x/C c2y2.x/;

as desired.

Example 4 If y1.x/ D e2x and y2.x/ D e�2x , then

y00
1 D .2/.2/e2x D 4e2x D 4y1 and y00

2 D .�2/.�2/e�2x D 4e�2x D 4y2:

Therefore, y1 and y2 are linearly independent solutions of

y00 � 4y D 0: (15)
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But y3.x/ D cosh 2x and y4.x/ D sinh 2x are also solutions of Eq. (15), because

d2

dx2
.cosh 2x/ D d

dx
.2 sinh 2x/ D 4 cosh 2x

and, similarly, .sinh 2x/00 D 4 sinh 2x. It therefore follows from Theorem 4 that the functions
cosh 2x and sinh 2x can be expressed as linear combinations of y1.x/ D e2x and y2.x/ D
e�2x . Of course, this is no surprise, because

cosh 2x D 1
2e

2x C 1
2 e

�2x and sinh 2x D 1
2e

2x � 1
2e

�2x

by the definitions of the hyperbolic cosine and hyperbolic sine.

Remark Because e2x , e�2x and cosh x, sinh x are two different pairs of linearly indepen-
dent solutions of the equation y00 � 4y D 0 in (15), Theorem 4 implies that every particular
solution Y.x/ of this equation can be written both in the form

Y.x/ D c1e
2x C c2e

�2x

and in the form
Y.x/ D a cosh 2x C b sinh 2x:

Thus these two different linear combinations (with arbitrary constant coefficients) provide
two different descriptions of the set of all solutions of the same differential equation y00�4yD
0. Hence each of these two linear combinations is a general solution of the equation. Indeed,
this is why it is accurate to refer to a specific such linear combination as “a general solution”
rather than as “the general solution.”

Linear Second-Order Equations with Constant Coefficients
As an illustration of the general theory introduced in this section, we discuss the
homogeneous second-order linear differential equation

ay00 C by0 C cy D 0 (16)

with constant coefficients a, b, and c. We first look for a single solution of Eq. (16)
and begin with the observation that

.erx/0 D rerx and .erx/00 D r2erx; (17)

so any derivative of erx is a constant multiple of erx . Hence, if we substituted
y D erx in Eq. (16), then each term would be a constant multiple of erx , with the
constant coefficients dependent on r and the coefficients a, b, and c. This suggests
that we try to find a value of r so that these multiples of erx will have sum zero. If
we succeed, then y D erx will be a solution of Eq. (16).

For example, if we substitute y D erx in the equation

y00 � 5y0 C 6y D 0;

we obtain
r2erx � 5rerx C 6erx D 0:

Thus
.r2 � 5r C 6/erx D 0I .r � 2/.r � 3/erx D 0:

Hence y D erx will be a solution if either r D 2 or r D 3. So, in searching for a
single solution, we actually have found two solutions: y1.x/D e2x and y2.x/D e3x .
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To carry out this procedure in the general case, we substitute y D erx in
Eq. (16). With the aid of the equations in (17), we find the result to be

ar2erx C brerx C cerx D 0:

Because erx is never zero, we conclude that y.x/ D erx will satisfy the differential
equation in (16) precisely when r is a root of the algebraic equation

ar2 C br C c D 0: (18)

This quadratic equation is called the characteristic equation of the homogeneous
linear differential equation

ay00 C by0 C cy D 0: (16)

If Eq. (18) has two distinct (unequal) roots r1 and r2, then the corresponding solu-
tions y1.x/ D er1x and y2.x/ D er2x of (16) are linearly independent. (Why?) This
gives the following result.

THEOREM 5 Distinct Real Roots

If the roots r1 and r2 of the characteristic equation in (18) are real and distinct,
then

y.x/ D c1e
r1x C c2e

r2x (19)

is a general solution of Eq. (16).

Example 5 Find the general solution of
2y00 � 7y0 C 3y D 0:

Solution We can solve the characteristic equation

2r2 � 7r C 3 D 0

by factoring:
.2r � 1/.r � 3/ D 0:

The roots r1 D 1
2 and r2 D 3 are real and distinct, so Theorem 5 yields the general solution

y.x/ D c1e
x=2 C c2e3x :

Example 6 The differential equation y00 C 2y0 D 0 has characteristic equation

r2 C 2r D r.r C 2/ D 0

with distinct real roots r1 D 0 and r2 D �2. Because e0�x � 1, we get the general solution

y.x/ D c1 C c2e
�2x :

Figure 3.1.9 shows several different solution curves with c1 D 1, all appearing to approach
the solution curve y.x/ � 1 (with c2 D 0) as x !C1.

Remark Note that Theorem 5 changes a problem involving a differential equation into one
involving only the solution of an algebraic equation.
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If the characteristic equation in (18) has equal roots r1 D r2, we get (at first)
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FIGURE 3.1.9. Solutions
y.x/ D 1 C c2e�2x of y00 C 2y0 D 0
with different values of c2.

only the single solution y1.x/ D er1x of Eq. (16). The problem in this case is to
produce the “missing” second solution of the differential equation.

A double root r D r1 will occur precisely when the characteristic equation is
a constant multiple of the equation

.r � r1/2 D r2 � 2r1r C r2
1 D 0:

Any differential equation with this characteristic equation is equivalent to

y00 � 2r1y0 C r2
1y D 0: (20)

But it is easy to verify by direct substitution that y D xer1x is a second solution of
Eq. (20). It is clear (but you should verify) that

y1.x/ D er1x and y2.x/ D xer1x

are linearly independent functions, so the general solution of the differential equa-
tion in (20) is

y.x/ D c1e
r1x C c2xe

r1x :

THEOREM 6 Repeated Roots

If the characteristic equation in (18) has equal (necessarily real) roots r1 D r2,
then

y.x/ D .c1 C c2x/e
r1x (21)

is a general solution of Eq. (16).

Example 7 To solve the initial value problem

y00 C 2y0 C y D 0I
y.0/ D 5; y0.0/ D �3;

we note first that the characteristic equation

r2 C 2r C 1 D .r C 1/2 D 0
has equal roots r1 D r2 D �1. Hence the general solution provided by Theorem 6 is

y.x/ D c1e
�x C c2xe

�x :

Differentiation yields
y0.x/ D �c1e

�x C c2e
�x � c2xe

�x ;

so the initial conditions yield the equations

y.0/ D c1 D 5,

y0.0/ D �c1 C c2 D �3,
which imply that c1 D 5 and c2 D 2. Thus the desired particular solution of the initial value
problem is

y.x/ D 5e�x C 2xe�x :

This particular solution, together with several others of the form y.x/ D c1e
�x C 2xe�x , is

illustrated in Fig. 3.1.10.
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FIGURE 3.1.10. Solutions
y.x/ D c1e�x C 2xe�x of
y00 C 2y0 C y D 0 with different
values of c1.

The characteristic equation in (18) may have either real or complex roots. The
case of complex roots will be discussed in Section 3.3.
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3.1 Problems
In Problems 1 through 16, a homogeneous second-order lin-
ear differential equation, two functions y1 and y2, and a pair
of initial conditions are given. First verify that y1 and y2 are
solutions of the differential equation. Then find a particular
solution of the form y D c1y1 C c2y2 that satisfies the given
initial conditions. Primes denote derivatives with respect to x.

1. y00 � y D 0; y1 D ex , y2 D e�x ; y.0/ D 0, y0.0/ D 5

2. y00 � 9y D 0; y1 D e3x , y2 D e�3x ; y.0/D�1, y0.0/D 15
3. y00C4y D 0; y1D cos 2x, y2D sin 2x; y.0/D 3, y0.0/D 8
4. y00 C 25y D 0; y1 D cos 5x, y2 D sin 5x; y.0/ D 10,
y0.0/ D �10

5. y00�3y0C2y D 0; y1 D ex , y2 D e2x ; y.0/D 1, y0.0/D 0
6. y00 C y0 � 6y D 0; y1 D e2x , y2 D e�3x ; y.0/ D 7,
y0.0/ D �1

7. y00 C y0 D 0; y1 D 1, y2 D e�x ; y.0/ D �2, y0.0/ D 8
8. y00 � 3y0 D 0; y1 D 1, y2 D e3x ; y.0/ D 4, y0.0/ D �2
9. y00 C 2y0 C y D 0; y1 D e�x , y2 D xe�x ; y.0/ D 2,
y0.0/ D �1

10. y00 � 10y0 C 25y D 0; y1 D e5x , y2 D xe5x ; y.0/ D 3,
y0.0/ D 13

11. y00�2y0C 2y D 0; y1 D ex cos x, y2 D ex sin x; y.0/D 0,
y0.0/ D 5

12. y00C 6y0C 13y D 0; y1 D e�3x cos 2x, y2 D e�3x sin 2x;
y.0/ D 2, y0.0/ D 0

13. x2y00 � 2xy0 C 2y D 0; y1 D x, y2 D x2; y.1/ D 3,
y0.1/ D 1

14. x2y00 C 2xy0 � 6y D 0; y1 D x2, y2 D x�3; y.2/ D 10,
y0.2/ D 15

15. x2y00 � xy0 C y D 0; y1 D x, y2 D x ln x; y.1/ D 7,
y0.1/ D 2

16. x2y00 C xy0 C y D 0; y1 D cos.ln x/, y2 D sin.ln x/;
y.1/ D 2, y0.1/ D 3

The following three problems illustrate the fact that the super-
position principle does not generally hold for nonlinear equa-
tions.

17. Show that y D 1=x is a solution of y0 C y2 D 0, but that
if c 6D 0 and c 6D 1, then y D c=x is not a solution.

18. Show that y D x3 is a solution of yy00 D 6x4, but that if
c2 6D 1, then y D cx3 is not a solution.

19. Show that y1 � 1 and y2 D
p
x are solutions of yy00 C

.y0/2 D 0, but that their sum y D y1C y2 is not a solution.

Determine whether the pairs of functions in Problems 20
through 26 are linearly independent or linearly dependent on
the real line.

20. f .x/ D � , g.x/ D cos2 x C sin2 x

21. f .x/ D x3, g.x/ D x2jxj
22. f .x/ D 1C x, g.x/ D 1C jxj
23. f .x/ D xex , g.x/ D jxjex

24. f .x/ D sin2 x, g.x/ D 1 � cos 2x
25. f .x/ D ex sin x, g.x/ D ex cos x
26. f .x/ D 2 cos x C 3 sin x, g.x/ D 3 cos x � 2 sin x
27. Let yp be a particular solution of the nonhomogeneous

equation y00 C py0 C qy D f .x/ and let yc be a solu-
tion of its associated homogeneous equation. Show that
y D yc C yp is a solution of the given nonhomogeneous
equation.

28. With yp D 1 and yc D c1 cos x C c2 sin x in the notation
of Problem 27, find a solution of y00Cy D 1 satisfying the
initial conditions y.0/ D �1 D y0.0/.

29. Show that y1 D x2 and y2 D x3 are two different solu-
tions of x2y00 � 4xy0 C 6y D 0, both satisfying the initial
conditions y.0/ D 0 D y0.0/. Explain why these facts do
not contradict Theorem 2 (with respect to the guaranteed
uniqueness).

30. (a) Show that y1 D x3 and y2 D
ˇ̌
x3
ˇ̌

are linearly inde-
pendent solutions on the real line of the equation x2y00 �
3xy0 C 3y D 0. (b) Verify that W.y1; y2/ is identically
zero. Why do these facts not contradict Theorem 3?

31. Show that y1 D sin x2 and y2 D cos x2 are linearly in-
dependent functions, but that their Wronskian vanishes at
x D 0. Why does this imply that there is no differential
equation of the form y00 C p.x/y0 C q.x/y D 0, with both
p and q continuous everywhere, having both y1 and y2 as
solutions?

32. Let y1 and y2 be two solutions of A.x/y00 C B.x/y0 C
C.x/y D 0 on an open interval I where A, B , and C

are continuous and A.x/ is never zero. (a) Let W D
W.y1; y2/. Show that

A.x/
dW

dx
D .y1/.Ay

00
2 / � .y2/.Ay

00
1 /:

Then substitute for Ay00
2 and Ay00

1 from the original differ-
ential equation to show that

A.x/
dW

dx
D �B.x/W.x/:

(b) Solve this first-order equation to deduce Abel’s for-
mula

W.x/ D K exp
�
�
Z
B.x/

A.x/
dx

�
;

where K is a constant. (c) Why does Abel’s formula
imply that the Wronskian W.y1; y2/ is either zero every-
where or nonzero everywhere (as stated in Theorem 3)?

Apply Theorems 5 and 6 to find general solutions of the dif-
ferential equations given in Problems 33 through 42. Primes
denote derivatives with respect to x.

33. y00 � 3y0 C 2y D 0 34. y00 C 2y0 � 15y D 0
35. y00 C 5y0 D 0 36. 2y00 C 3y0 D 0
37. 2y00 � y0 � y D 0 38. 4y00 C 8y0 C 3y D 0
39. 4y00 C 4y0 C y D 0 40. 9y00 � 12y0 C 4y D 0
41. 6y00 � 7y0 � 20y D 0 42. 35y00 � y0 � 12y D 0

Each of Problems 43 through 48 gives a general solution
y.x/ of a homogeneous second-order differential equation
ay00 C by0 C cy D 0 with constant coefficients. Find such an
equation.
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43. y.x/ D c1 C c2e
�10x 44. y.x/ D c1e

10x C c2e
�10x

45. y.x/ D c1e
�10x C c2xe�10x

46. y.x/ D c1e
10x C c2e100x 47. y.x/ D c1 C c2x

48. y.x/ D ex
�
c1e

x
p

2 C c2e
�x

p
2
�

Problems 49 and 50 deal with the solution curves of y00C3y0C
2y D 0 shown in Figs. 3.1.6 and 3.1.7.

49. Find the highest point on the solution curve with y.0/ D 1
and y0.0/ D 6 in Fig. 3.1.6.

50. Figure 3.1.7 suggests that the solution curves shown all
meet at a common point in the third quadrant. Assum-
ing that this is indeed the case, find the coordinates of that
point.

51. A second-order Euler equation is one of the form

ax2y00 C bxy0 C cy D 0 (22)

where a, b, c are constants. (a) Show that if x > 0, then the
substitution vD ln x transforms Eq. (22) into the constant-
coefficient linear equation

a
d2y

dv2
C .b � a/dy

dv
C cy D 0 (23)

with independent variable v. (b) If the roots r1 and r2 of
the characteristic equation of Eq. (23) are real and distinct,
conclude that a general solution of the Euler equation in
(22) is y.x/ D c1x

r1 C c2xr2 .

Make the substitution v D ln x of Problem 51 to find general
solutions (for x > 0) of the Euler equations in Problems 52–56.

52. x2y00 C xy0 � y D 0 53. x2y00 C 2xy0 � 12y D 0
54. 4x2y00 C 8xy0 � 3y D 0 55. x2y00 C xy0 D 0
56. x2y00 � 3xy0 C 4y D 0

3.1 Application Plotting Second-Order Solution Families
This application deals with the plotting by computer of families of solutions such as

FIGURE 3.1.11. TI-Nspire CX CAS
screen showing the general solution of
y00 C 3y0 C 2y D 0.

those illustrated in Figs. 3.1.6 and 3.1.7. Show first that the general solution of the
differential equation

y00 C 3y0 C 2y D 0 (1)

is
y.x/ D c1e

�x C c2e
�2x : (2)

This is equivalent to the graphing calculator result shown in Figure 3.1.11, and to
the WolframjAlpha output generated by the simple query

y’’ + 3y’ + 2y = 0

Next show that the particular solution of Eq. (1) satisfying y.0/D a, y0.0/D b
corresponds to c1 D 2aC b and c2 D �a � b, that is

y.x/ D .2aC b/e�x � .aC b/e�2x : (3)

For Fig. 3.1.6, we fix a D 1, leading to the particular solution

y.x/ D .b C 2/e�x � .b C 1/e�2x : (4)

The MATLAB loop

x = -- 1 : 0.02 : 5 % x-vector from x = -- 1 to x = 5
for b = --6 : 2 : 6 % for b = --6 to 6 with db = 2 do

y = (b + 2)*exp(--x) -- (b + 1)*exp(--2*x);
plot(x,y)

end

was used to generate Fig. 3.1.6.
For Fig. 3.1.7, we instead fix b D 1, leading to the particular solution

y.x/ D .2aC 1/e�x � .aC 1/e�2x : (5)

The MATLAB loop
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x = --2 : 0.02 : 4 % x-vector from x = --2 to x = 4
for a = --3 : 1 : 3 % for a = --3 to 3 with da = 1 do

y = (2*a + 1)*exp(--x) -- (a + 1)*exp(--2*x);
plot(x,y)

end

was used to generate Fig. 3.1.7.
Computer systems, such as Maple and Mathematica, as well as graphing

calculators, have commands to carry out for-loops such as the two shown here.

−1 0 1 2 3 4 5
−5
−4
−3
−2
−1

0
1
2
3
4
5

a = 2 b = 1

x

y

FIGURE 3.1.12. MATLAB graph of
Eq. (3) with a D 2 and b D 1. Using
the sliders, a and b can be changed
interactively.

Moreover, such systems often allow for interactive investigation, in which the so-
lution curve is immediately redrawn in response to on-screen input. For example,
Fig. 3.1.12 was generated using MATLAB’s uicontrol command; moving the slid-
ers allows the user to experiment with various combinations of the initial conditions
y.0/ D a and y0.0/ D b.

The Mathematica command

Manipulate[
Plot[(2*a+b)*Exp[--x]+(--b--a)*Exp[--2*x],
{x,--1,5}, PlotRange --> {--5,5}],
{a,--3,3}, {b,--6,6}]

produces a similar display, as does the Maple command

Explore(plot((2*a+b)*exp(--x)+(--b--a)*exp(--2*x),
x = --1..5, y=--5..5))

(after first bringing up a dialog box in which the ranges of values for a and b are

FIGURE 3.1.13. TI-Nspire CX CAS
graph of Eq. (3) with a D 2 and
b D 1. The arrows allow a and b to be
changed interactively.

specified). Likewise some graphing calculators feature a touchpad or other screen
navigation method allowing the user to vary specified parameters in real time (see
Fig. 3.1.13).

Begin by either reproducing Figs. 3.1.6 and 3.1.7 or by creating an interactive
display that shows the graph of (3) for any desired combination of a and b. Then,
for each of the following differential equations, modify your commands to examine
the family of solution curves satisfying y.0/ D 1 , as well as the family of solution
curves satisfying the initial condition y0.0/ D 1.

1. y00 � y D 0
2. y00 � 3y0 C 2y D 0
3. 2y00 C 3y0 C y D 0
4. y00 C y D 0 (see Example 1)

5. y00 C 2y0 C 2y D 0, which has general solution y.x/ D e�x.c1 cos x C c2 sin x/

3.2 General Solutions of Linear Equations
We now show that our discussion in Section 3.1 of second-order linear equations
generalizes in a very natural way to the general nth-order linear differential equa-
tion of the form

P0.x/y
.n/ C P1.x/y

.n�1/ C � � � C Pn�1.x/y
0 C Pn.x/y D F.x/: (1)

Unless otherwise noted, we will always assume that the coefficient functions Pi .x/

and F.x/ are continuous on some open interval I (perhaps unbounded) where we
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wish to solve the equation. Under the additional assumption that P0.x/ ¤ 0 at each
point of I , we can divide each term in Eq. (1) by P0.x/ to obtain an equation with
leading coefficient 1, of the form

y.n/ C p1.x/y
.n�1/ C � � � C pn�1.x/y

0 C pn.x/y D f .x/: (2)

The homogeneous linear equation associated with Eq. (2) is

y.n/ C p1.x/y
.n�1/ C � � � C pn�1.x/y

0 C pn.x/y D 0: (3)

Just as in the second-order case, a homogeneous nth-order linear differential equa-
tion has the valuable property that any superposition, or linear combination, of so-
lutions of the equation is again a solution. The proof of the following theorem is
essentially the same—a routine verification—as that of Theorem 1 of Section 3.1.

THEOREM 1 Principle of Superposition for Homogeneous

Equations

Let y1, y2, : : : ; yn be n solutions of the homogeneous linear equation in (3) on
the interval I . If c1, c2, : : : ; cn are constants, then the linear combination

y D c1y1 C c2y2 C � � � C cnyn (4)

is also a solution of Eq. (3) on I .

Example 1 It is easy to verify that the three functions

y1.x/ D e�3x ; y2.x/ D cos 2x; and y3.x/ D sin 2x

are all solutions of the homogeneous third-order equation

y.3/ C 3y00 C 4y0 C 12y D 0

on the entire real line. Theorem 1 tells us that any linear combination of these solutions, such
as

y.x/ D �3y1.x/C 3y2.x/ � 2y3.x/ D �3e�3x C 3 cos 2x � 2 sin 2x;

is also a solution on the entire real line. We will see that, conversely, every solution of the
differential equation of this example is a linear combination of the three particular solutions
y1, y2, and y3. Thus a general solution is given by

y.x/ D c1e
�3x C c2 cos 2x C c3 sin 2x:

Existence and Uniqueness of Solutions

We saw in Section 3.1 that a particular solution of a second-order linear differential
equation is determined by two initial conditions. Similarly, a particular solution of
an nth-order linear differential equation is determined by n initial conditions. The
following theorem, proved in the Appendix, is the natural generalization of Theorem
2 of Section 3.1.
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THEOREM 2 Existence and Uniqueness for Linear Equations

Suppose that the functions p1, p2, : : : ; pn, and f are continuous on the open
interval I containing the point a. Then, given n numbers b0, b1, : : : ; bn�1, the
nth-order linear equation (Eq. (2))

y.n/ C p1.x/y
.n�1/ C � � � C pn�1.x/y

0 C pn.x/y D f .x/

has a unique (that is, one and only one) solution on the entire interval I that
satisfies the n initial conditions

y.a/ D b0; y0.a/ D b1; : : : ; y.n�1/.a/ D bn�1: (5)

Equation (2) and the conditions in (5) constitute an nth-order initial value
problem. Theorem 2 tells us that any such initial value problem has a unique so-
lution on the whole interval I where the coefficient functions in (2) are continuous.
It tells us nothing, however, about how to find this solution. In Section 3.3 we will
see how to construct explicit solutions of initial value problems in the constant-
coefficient case that occurs often in applications.

Continued

Example 1 We saw earlier that
y.x/ D �3e�3x C 3 cos 2x � 2 sin 2x

is a solution of

0 2 4 6 8 10
x

y

–6

–4

–2

0

2

4

6

FIGURE 3.2.1. The particular
solution y.x/ D
�3e�3x C 3 cos 2x � 2 sin 2x.

y.3/ C 3y00 C 4y0 C 12y D 0
on the entire real line. This particular solution has initial values y.0/ D 0, y0.0/ D 5, and
y00.0/ D �39, and Theorem 2 implies that there is no other solution with these same initial
values. Note that its graph (in Fig. 3.2.1) looks periodic on the right. Indeed, because of the
negative exponent, we see that y.x/ � 3 cos 2x � 2 sin 2x for large positive x.

Remark Because its general solution involves the three arbitrary constants c1, c2, and c3,
the third-order equation in Example 1 has a “threefold infinity” of solutions, including three
families of especially simple solutions:

� y.x/ D c1e
�3x (obtained from the general solution with c2 D c3 D 0),

� y.x/ D c2 cos 2x (with c1 D c3 D 0), and
� y.x/ D c3 sin 2x (with c1 D c2 D 0).

Alternatively, Theorem 2 suggests a threefold infinity of particular solutions corresponding
to independent choices of the three initial values y.0/ D b0, y0.0/ D b1, and y00.0/ D b2.
Figures 3.2.2 through 3.2.4 illustrate three corresponding families of solutions—for each of
which, two of these three initial values are zero.

Note that Theorem 2 implies that the trivial solution y.x/ � 0 is the only
solution of the homogeneous equation

y.n/ C p1.x/y
.n�1/ C � � � C pn�1.x/y

0 C pn.x/y D 0 (3)

that satisfies the trivial initial conditions

y.a/ D y0.a/ D � � � D y.n�1/.a/ D 0:

Example 2 It is easy to verify that
y1.x/ D x2 and y2.x/ D x3
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FIGURE 3.2.2. Solutions of
y.3/ C 3y00 C 4y0 C 12y D 0 with
y0.0/ D y00.0/ D 0 but with different
values for y.0/.
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FIGURE 3.2.3. Solutions of
y.3/ C 3y00 C 4y0 C 12y D 0 with
y.0/ D y00.0/ D 0 but with different
values for y0.0/.
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FIGURE 3.2.4. Solutions of
y.3/ C 3y00 C 4y0 C 12y D 0 with
y.0/ D y0.0/ D 0 but with different
values for y00.0/.

are two different solutions of
x2y00 � 4xy0 C 6y D 0;

and that both satisfy the initial conditions y.0/ D y0.0/ D 0. Why does this not contradict
the uniqueness part of Theorem 2? It is because the leading coefficient in this differential
equation vanishes at x D 0, so this equation cannot be written in the form of Eq. (3) with
coefficient functions continuous on an open interval containing the point x D 0.

Linearly Independent Solutions
On the basis of our knowledge of general solutions of second-order linear equations,
we anticipate that a general solution of the homogeneous nth-order linear equation

y.n/ C p1.x/y
.n�1/ C � � � C pn�1.x/y

0 C pn.x/y D 0 (3)

will be a linear combination

y D c1y1 C c2y2 C � � � C cnyn; (4)

where y1, y2, : : : ; yn are particular solutions of Eq. (3). But these n particular
solutions must be “sufficiently independent” that we can always choose the coef-
ficients c1, c2, : : : ; cn in (4) to satisfy arbitrary initial conditions of the form in
(5). The question is this: What should be meant by independence of three or more
functions?

Recall that two functions f1 and f2 are linearly dependent if one is a constant
multiple of the other; that is, if either f1 D kf2 or f2 D kf1 for some constant k. If
we write these equations as

.1/f1 C .�k/f2 D 0 or .k/f1 C .�1/f2 D 0;

we see that the linear dependence of f1 and f2 implies that there exist two constants
c1 and c2 not both zero such that

c1f1 C c2f2 D 0: (6)

Conversely, if c1 and c2 are not both zero, then Eq. (6) certainly implies that f1 and
f2 are linearly dependent.
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In analogy with Eq. (6), we say that n functions f1, f2, : : : ; fn are linearly
dependent provided that some nontrivial linear combination

c1f1 C c2f2 C � � � C cnfn

of them vanishes identically; nontrivial means that not all of the coefficients c1, c2,
: : : ; cn are zero (although some of them may be zero).

DEFINITION Linear Dependence of Functions

The n functions f1, f2, : : : ; fn are said to be linearly dependent on the interval
I provided that there exist constants c1, c2, : : : ; cn not all zero such that

c1f1 C c2f2 C � � � C cnfn D 0 (7)

on I ; that is,
c1f1.x/C c2f2.x/C � � � C cnfn.x/ D 0

for all x in I .

If not all the coefficients in Eq. (7) are zero, then clearly we can solve for at least
one of the functions as a linear combination of the others, and conversely. Thus the
functions f1, f2, : : : ; fn are linearly dependent if and only if at least one of them is
a linear combination of the others.

Example 3 The functions

f1.x/ D sin 2x; f2.x/ D sin x cos x; and f3.x/ D ex

are linearly dependent on the real line because

.1/f1 C .�2/f2 C .0/f3 D 0
(by the familiar trigonometric identity sin 2x D 2 sin x cos x).

The n functions f1, f2, : : : ; fn are called linearly independent on the interval
I provided that they are not linearly dependent there. Equivalently, they are linearly
independent on I provided that the identity

c1f1 C c2f2 C � � � C cnfn D 0 (7)

holds on I only in the trivial case

c1 D c2 D � � � D cn D 0I

that is, no nontrivial linear combination of these functions vanishes on I . Put yet
another way, the functions f1, f2, : : : ; fn are linearly independent if no one of them
is a linear combination of the others. (Why?)

Sometimes one can show that n given functions are linearly dependent by
finding, as in Example 3, nontrivial values of the coefficients so that Eq. (7) holds.
But in order to show that n given functions are linearly independent, we must prove
that nontrivial values of the coefficients cannot be found, and this is seldom easy to
do in any direct or obvious manner.

Fortunately, in the case of n solutions of a homogeneous nth-order linear equa-
tion, there is a tool that makes the determination of their linear dependence or inde-
pendence a routine matter in many examples. This tool is the Wronskian determi-
nant, which we introduced (for the case n D 2) in Section 3.1. Suppose that the n
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functions f1, f2, : : : ; fn are each n� 1 times differentiable. Then their Wronskian
is the n � n determinant

W D

ˇ̌̌̌
ˇ̌̌̌
ˇ̌̌̌

f1 f2 � � � fn

f 0
1 f 0

2 � � � f 0
n

:::
:::

:::

f
.n�1/

1 f
.n�1/

2 � � � f
.n�1/

n

ˇ̌̌̌
ˇ̌̌̌
ˇ̌̌̌ : (8)

We write W.f1; f2; : : : ; fn/ or W.x/, depending on whether we wish to emphasize
the functions or the point x at which their Wronskian is to be evaluated. The Wron-
skian is named after the Polish mathematician J. M. H. Wronski (1778–1853).

We saw in Section 3.1 that the Wronskian of two linearly dependent functions
vanishes identically. More generally, the Wronskian of n linearly dependent func-
tions f1, f2, : : : ; fn is identically zero. To prove this, assume that Eq. (7) holds on
the interval I for some choice of the constants c1, c2, : : : ; cn not all zero. We then
differentiate this equation n � 1 times in succession, obtaining the n equations

c1f1.x/C c2f2.x/ C � � �C cnfn.x/ D 0;
c1f

0
1.x/C c2f

0
2.x/ C � � �C cnf

0
n.x/ D 0;

:::

c1f
.n�1/

1 .x/C c2f
.n�1/

2 .x/ C � � �C cnf
.n�1/

n .x/ D 0;

(9)

which hold for all x in I . We recall from linear algebra that a system of n lin-
ear homogeneous equations in n unknowns has a nontrivial solution if and only
if the determinant of coefficients vanishes. In Eq. (9) the unknowns are the con-
stants c1, c2, : : : ; cn and the determinant of coefficients is simply the Wronskian
W.f1; f2; : : : ; fn/ evaluated at the typical point x of I . Because we know that the
ci are not all zero, it follows that W.x/ � 0, as we wanted to prove.

Therefore, to show that the functions f1, f2, : : : ; fn are linearly independent
on the interval I , it suffices to show that their Wronskian is nonzero at just one point
of I .

Example 4 Show that the functions y1.x/ D e�3x , y2.x/ D cos 2x, and y3.x/ D sin 2x (of Example 1)
are linearly independent.

Solution Their Wronskian is

W D

ˇ̌̌̌
ˇ̌̌̌
ˇ

e�3x cos 2x sin 2x

�3e�3x �2 sin 2x 2 cos 2x

9e�3x �4 cos 2x �4 sin 2x

ˇ̌̌̌
ˇ̌̌̌
ˇ

D e�3x

ˇ̌̌̌
ˇ̌ �2 sin 2x 2 cos 2x

�4 cos 2x �4 sin 2x

ˇ̌̌̌
ˇ̌C 3e�3x

ˇ̌̌̌
ˇ̌ cos 2x sin 2x

�4 cos 2x �4 sin 2x

ˇ̌̌̌
ˇ̌

C 9e�3x

ˇ̌̌̌
ˇ̌ cos 2x sin 2x

�2 sin 2x 2 cos 2x

ˇ̌̌̌
ˇ̌ D 26e�3x 6D 0:

Because W ¤ 0 everywhere, it follows that y1, y2, and y3 are linearly independent on any
open interval (including the entire real line).
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Example 5 Show first that the three solutions

y1.x/ D x; y2.x/ D x ln x; and y3.x/ D x2

of the third-order equation

x3y.3/ � x2y00 C 2xy0 � 2y D 0 (10)

are linearly independent on the open interval x > 0. Then find a particular solution of Eq. (10)
that satisfies the initial conditions

y.1/ D 3; y0.1/ D 2; y00.1/ D 1: (11)

Solution Note that for x > 0, we could divide each term in (10) by x3 to obtain a homogeneous linear
equation of the standard form in (3). When we compute the Wronskian of the three given
solutions, we find that

W D

ˇ̌̌̌
ˇ̌̌̌
ˇ
x x ln x x2

1 1C ln x 2x

0
1

x
2

ˇ̌̌̌
ˇ̌̌̌
ˇ D x:

Thus W.x/ ¤ 0 for x > 0, so y1, y2, and y3 are linearly independent on the interval x > 0.
To find the desired particular solution, we impose the initial conditions in (11) on

y.x/ D c1x C c2x ln x C c3x
2;

y0.x/ D c1 C c2.1C ln x/ C 2c3x;

y00.x/ D 0 C c2

x
C 2c3:

This yields the simultaneous equations

y.1/ D c1 C c3 D 3;

y0.1/ D c1 C c2 C 2c3 D 2;

y00.1/ D c2 C 2c3 D 1I

we solve to find c1 D 1, c2 D �3, and c3 D 2. Thus the particular solution in question is

y.x/ D x � 3x ln x C 2x2:

Provided that W.y1; y2; : : : ; yn/ ¤ 0, it turns out (Theorem 4) that we can
always find values of the coefficients in the linear combination

y D c1y1 C c2y2 C � � � C cnyn

that satisfy any given initial conditions of the form in (5). Theorem 3 provides the
necessary nonvanishing of W in the case of linearly independent solutions.
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THEOREM 3 Wronskians of Solutions

Suppose that y1, y2, : : : ; yn are n solutions of the homogeneous nth-order linear
equation

y.n/ C p1.x/y
.n�1/ C � � � C pn�1.x/y

0 C pn.x/y D 0 (3)

on an open interval I , where each pi is continuous. Let

W D W.y1; y2; : : : ; yn/:

(a) If y1, y2, : : : ; yn are linearly dependent, then W � 0 on I .

(b) If y1, y2, : : : ; yn are linearly independent, then W ¤ 0 at each point of I .

Thus there are just two possibilities: Either W D 0 everywhere on I , or W ¤ 0

everywhere on I .

Proof: We have already proven part (a). To prove part (b), it is sufficient
to assume that W.a/ D 0 at some point of I , and show this implies that the solu-
tions y1, y2, : : : ; yn are linearly dependent. But W.a/ is simply the determinant of
coefficients of the system of n homogeneous linear equations

c1y1.a/ C c2y2.a/ C � � � C cnyn.a/ D 0,
c1y

0
1.a/ C c2y

0
2.a/ C � � � C cny

0
n.a/ D 0,

:::

c1y
.n�1/
1 .a/ C c2y

.n�1/
2 .a/ C � � � C cny

.n�1/
n .a/ D 0

(12)

in the n unknowns c1, c2, : : : ; cn. Because W.a/ D 0, the basic fact from linear
algebra quoted just after (9) implies that the equations in (12) have a nontrivial
solution. That is, the numbers c1, c2, : : : ; cn are not all zero.

We now use these values to define the particular solution

Y.x/ D c1y1.x/C c2y2.x/C � � � C cnyn.x/ (13)

of Eq. (3). The equations in (12) then imply that Y satisfies the trivial initial
conditions

Y.a/ D Y 0.a/ D � � � D Y .n�1/.a/ D 0:
Theorem 2 (uniqueness) therefore implies that Y.x/ � 0 on I . In view of (13)
and the fact that c1, c2, : : : ; cn are not all zero, this is the desired conclusion that
the solutions y1, y2, : : : ; yn are linearly dependent. This completes the proof of
Theorem 3.

General Solutions
We can now show that, given any fixed set of n linearly independent solutions of
a homogeneous nth-order equation, every (other) solution of the equation can be
expressed as a linear combination of those n particular solutions. Using the fact
from Theorem 3 that the Wronskian of n linearly independent solutions is nonzero,
the proof of the following theorem is essentially the same as the proof of Theorem
4 of Section 3.1 (the case n D 2).



3.2 General Solutions of Linear Equations 157

THEOREM 4 General Solutions of Homogeneous Equations

Let y1, y2, : : : ; yn be n linearly independent solutions of the homogeneous equa-
tion

y.n/ C p1.x/y
.n�1/ C � � � C pn�1.x/y

0 C pn.x/y D 0 (3)

on an open interval I where the pi are continuous. If Y is any solution whatso-
ever of Eq. (3), then there exist numbers c1, c2, : : : ; cn such that

Y.x/ D c1y1.x/C c2y2.x/C � � � C cnyn.x/

for all x in I .

Thus every solution of a homogeneous nth-order linear differential equation
is a linear combination

y D c1y1 C c2y2 C � � � C cnyn

of any n given linearly independent solutions. On this basis we call such a linear
combination a general solution of the differential equation.

Example 6 According to Example 4, the particular solutions y1.x/D e�3x , y2.x/D cos 2x, and y3.x/D
sin 2x of the linear differential equation y.3/C 3y00C 4y0C 12y D 0 are linearly independent.
Now Theorem 2 says that—given b0, b1, and b2—there exists a particular solution y.x/
satisfying the initial conditions y.0/ D b0, y0.0/ D b1, and y00.0/ D b2. Hence Theorem 4
implies that this particular solution is a linear combination of y1, y2, and y3. That is, there
exist coefficients c1, c2, and c3 such that

y.x/ D c1e
�3x C c2 cos 2x C c3 sin 2x:

Upon successive differentiation and substitution of x D 0, we discover that to find these
coefficients, we need only solve the three linear equations

c1 C c2 D b0,

�3c1 C 2c3 D b1,

9c1 � 4c2 D b2.

(See the application for this section.)

Nonhomogeneous Equations
We now consider the nonhomogeneous nth-order linear differential equation

y.n/ C p1.x/y
.n�1/ C � � � C pn�1.x/y

0 C pn.x/y D f .x/ (2)

with associated homogeneous equation

y.n/ C p1.x/y
.n�1/ C � � � C pn�1.x/y

0 C pn.x/y D 0: (3)

Suppose that a single fixed particular solution yp of the nonhomogeneous
equation in (2) is known, and that Y is any other solution of Eq. (2). If yc D Y � yp ,
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then subsitution of yc in the differential equation gives (using the linearity of differ-
entiation)

y.n/
c C p1y

.n�1/
c C � � � C pn�1y

0
c C pnyc

D
h
.Y .n/ C p1Y

.n�1/ C � � � C pn�1Y
0 C pnY

i
�
h
.y.n/

p C p1y
.n�1/
p C � � � C pn�1y

0
p C pnyp

i
D f .x/ � f .x/ D 0:

Thus yc D Y �yp is a solution of the associated homogeneous equation in (3). Then

Y D yc C yp; (14)

and it follows from Theorem 4 that

yc D c1y1 C c2y2 C � � � C cnyn; (15)

where y1, y2, : : : ; yn are linearly independent solutions of the associated homo-
geneous equation. We call yc a complementary function of the nonhomogeneous
equation and have thus proved that a general solution of the nonhomogeneous equa-
tion in (2) is the sum of its complementary function yc and a single particular solu-
tion yp of Eq. (2).

THEOREM 5 Solutions of Nonhomogeneous Equations

Let yp be a particular solution of the nonhomogeneous equation in (2) on an open
interval I where the functions pi and f are continuous. Let y1, y2, : : : ; yn be
linearly independent solutions of the associated homogeneous equation in (3). If
Y is any solution whatsoever of Eq. (2) on I , then there exist numbers c1, c2, : : : ;
cn such that

Y.x/ D c1y1.x/C c2y2.x/C � � � C cnyn.x/C yp.x/ (16)

for all x in I .

Example 7 It is evident that yp D 3x is a particular solution of the equation

y00 C 4y D 12x; (17)

and that yc.x/ D c1 cos 2x C c2 sin 2x is its complementary solution. Find a solution of
Eq. (17) that satisfies the initial conditions y.0/ D 5, y0.0/ D 7.

Solution The general solution of Eq. (17) is

y.x/ D c1 cos 2x C c2 sin 2x C 3x:
Now

y0.x/ D �2c1 sin 2x C 2c2 cos 2x C 3:
Hence the initial conditions give

y.0/ D c1 D 5;

y0.0/ D 2c2 C 3 D 7:
We find that c1 D 5 and c2 D 2. Thus the desired solution is

y.x/ D 5 cos 2x C 2 sin 2x C 3x:
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3.2 Problems
In Problems 1 through 6, show directly that the given functions
are linearly dependent on the real line. That is, find a non-
trivial linear combination of the given functions that vanishes
identically.

1. f .x/ D 2x, g.x/ D 3x2, h.x/ D 5x � 8x2

2. f .x/ D 5, g.x/ D 2 � 3x2, h.x/ D 10C 15x2

3. f .x/ D 0, g.x/ D sin x, h.x/ D ex

4. f .x/ D 17, g.x/ D 2 sin2 x, h.x/ D 3 cos2 x

5. f .x/ D 17, g.x/ D cos2 x, h.x/ D cos 2x
6. f .x/ D ex , g.x/ D cosh x, h.x/ D sinh x

In Problems 7 through 12, use the Wronskian to prove that the
given functions are linearly independent on the indicated in-
terval.

7. f .x/ D 1, g.x/ D x, h.x/ D x2; the real line
8. f .x/ D ex , g.x/ D e2x , h.x/ D e3x ; the real line
9. f .x/ D ex , g.x/ D cos x, h.x/ D sin x; the real line

10. f .x/ D ex , g.x/ D x�2, h.x/ D x�2 ln x; x > 0
11. f .x/ D x, g.x/ D xex , h.x/ D x2ex ; the real line
12. f .x/ D x, g.x/ D cos.ln x/, h.x/ D sin.ln x/; x > 0

In Problems 13 through 20, a third-order homogeneous linear
equation and three linearly independent solutions are given.
Find a particular solution satisfying the given initial condi-
tions.

13. y.3/C 2y00 � y0 � 2y D 0; y.0/D 1, y0.0/D 2, y00.0/D 0;
y1 D ex , y2 D e�x , y3 D e�2x

14. y.3/�6y00C11y0�6yD 0; y.0/D 0, y0.0/D 0, y00.0/D 3;
y1 D ex , y2 D e2x , y3 D e3x

15. y.3/ � 3y00C 3y0 � y D 0; y.0/D 2, y0.0/D 0, y00.0/D 0;
y1 D ex , y2 D xex , y3 D x2ex

16. y.3/� 5y00C 8y0� 4y D 0; y.0/D 1, y0.0/D 4, y00.0/D 0;
y1 D ex , y2 D e2x , y3 D xe2x

17. y.3/ C 9y0 D 0; y.0/ D 3, y0.0/ D �1, y00.0/ D 2; y1 D 1,
y2 D cos 3x, y3 D sin 3x

18. y.3/� 3y00C 4y0� 2y D 0; y.0/D 1, y0.0/D 0, y00.0/D 0;
y1 D ex , y2 D ex cos x, y3 D ex sin x.

19. x3y.3/ � 3x2y00 C 6xy0 � 6y D 0; y.1/ D 6, y0.1/ D 14,
y00.1/ D 22; y1 D x, y2 D x2, y3 D x3

20. x3y.3/ C 6x2y00 C 4xy0 � 4y D 0; y.1/ D 1, y0.1/ D 5,
y00.1/ D �11; y1 D x, y2 D x�2, y3 D x�2 ln x

In Problems 21 through 24, a nonhomogeneous differential
equation, a complementary solution yc , and a particular so-
lution yp are given. Find a solution satisfying the given initial
conditions.

21. y00 C y D 3x; y.0/ D 2, y0.0/ D �2;
yc D c1 cos x C c2 sin x; yp D 3x

22. y00 � 4y D 12; y.0/ D 0, y0.0/ D 10;
yc D c1e

2x C c2e�2x ; yp D �3
23. y00 � 2y0 � 3y D 6; y.0/ D 3, y0.0/ D 11;

yc D c1e
�x C c2e

3x ; yp D �2

24. y00 � 2y0 C 2y D 2x; y.0/ D 4, y0.0/ D 8;
yc D c1e

x cos x C c2e
x sin x; yp D x C 1

25. Let Ly D y00 C py0 C qy. Suppose that y1 and y2 are two
functions such that

Ly1 D f .x/ and Ly2 D g.x/:

Show that their sum y D y1 C y2 satisfies the nonhomo-
geneous equation Ly D f .x/C g.x/.

26. (a) Find by inspection particular solutions of the two non-
homogeneous equations

y00 C 2y D 4 and y00 C 2y D 6x:

(b) Use the method of Problem 25 to find a particular so-
lution of the differential equation y00 C 2y D 6x C 4.

27. Prove directly that the functions

f1.x/ � 1; f2.x/ D x; and f3.x/ D x2

are linearly independent on the whole real line. (Sugges-
tion: Assume that c1C c2xC c3x

2 D 0. Differentiate this
equation twice, and conclude from the equations you get
that c1 D c2 D c3 D 0.)

28. Generalize the method of Problem 27 to prove directly that
the functions

f0.x/ � 1; f1.x/ D x; f2.x/ D x2; : : : ; fn.x/ D xn

are linearly independent on the real line.
29. Use the result of Problem 28 and the definition of linear

independence to prove directly that, for any constant r , the
functions

f0.x/ D erx ; f1.x/ D xerx ; : : : ; fn.x/ D xnerx

are linearly independent on the whole real line.
30. Verify that y1 D x and y2 D x2 are linearly independent

solutions on the entire real line of the equation

x2y00 � 2xy0 C 2y D 0;

but that W.x; x2/ vanishes at x D 0. Why do these obser-
vations not contradict part (b) of Theorem 3?

31. This problem indicates why we can impose only n initial
conditions on a solution of an nth-order linear differential
equation. (a) Given the equation

y00 C py0 C qy D 0;

explain why the value of y00.a/ is determined by the values
of y.a/ and y0.a/. (b) Prove that the equation

y00 � 2y0 � 5y D 0

has a solution satisfying the conditions

y.0/ D 1; y0.0/ D 0; and y00.0/ D C

if and only if C D 5.
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32. Prove that an nth-order homogeneous linear differential
equation satisfying the hypotheses of Theorem 2 has n lin-
early independent solutions y1; y2; : : : ; yn. (Suggestion:
Let yi be the unique solution such that

y
.i�1/
i .a/ D 1 and y

.k/
i .a/ D 0 if k 6D i � 1./

33. Suppose that the three numbers r1, r2, and r3 are dis-
tinct. Show that the three functions exp.r1x/, exp.r2x/,
and exp.r3x/ are linearly independent by showing that
their Wronskian

W D expŒ.r1 C r2 C r3/x� �

ˇ̌̌̌
ˇ̌̌̌
ˇ
1 1 1

r1 r2 r3

r2
1 r2

2 r2
3

ˇ̌̌̌
ˇ̌̌̌
ˇ

is nonzero for all x.
34. Assume as known that the Vandermonde determinant

V D

ˇ̌̌̌
ˇ̌̌̌
ˇ̌̌̌
ˇ̌̌

1 1 � � � 1

r1 r2 � � � rn

r2
1 r2

2 � � � r2
n

:::
:::

:::

rn�1
1 rn�1

2 � � � rn�1
n

ˇ̌̌̌
ˇ̌̌̌
ˇ̌̌̌
ˇ̌̌

is nonzero if the numbers r1; r2; : : : ; rn are distinct. Prove
by the method of Problem 33 that the functions

fi .x/ D exp.rix/; 1 5 i 5 n

are linearly independent.
35. According to Problem 32 of Section 3.1, the Wronskian

W.y1; y2/ of two solutions of the second-order equation

y00 C p1.x/y
0 C p2.x/y D 0

is given by Abel’s formula

W.x/ D K exp
�
�
Z
p1.x/ dx

�
for some constant K. It can be shown that the Wronskian
of n solutions y1; y2; : : : ; yn of the nth-order equation

y.n/ C p1.x/y
.n�1/ C � � � C pn�1.x/y

0 C pn.x/y D 0
satisfies the same identity. Prove this for the case n D 3

as follows: (a) The derivative of a determinant of func-
tions is the sum of the determinants obtained by separately
differentiating the rows of the original determinant. Con-
clude that

W 0 D

ˇ̌̌̌
ˇ̌̌̌
ˇ
y1 y2 y3

y0
1 y0

2 y0
3

y
.3/
1 y

.3/
2 y

.3/
3

ˇ̌̌̌
ˇ̌̌̌
ˇ :

(b) Substitute for y.3/
1 , y.3/

2 , and y.3/
3 from the equation

y.3/ C p1y
00 C p2y

0 C p3y D 0;
and then show that W 0 D �p1W . Integration now gives
Abel’s formula.

36. Suppose that one solution y1.x/ of the homogeneous
second-order linear differential equation

y00 C p.x/y0 C q.x/y D 0 (18)

is known (on an interval I where p and q are continuous
functions). The method of reduction of order consists
of substituting y2.x/ D v.x/y1.x/ in (18) and attempting
to determine the function v.x/ so that y2.x/ is a second
linearly independent solution of (18). After substituting
y D v.x/y1.x/ in Eq. (18), use the fact that y1.x/ is a
solution to deduce that

y1v
00 C .2y0

1 C py1/v
0 D 0: (19)

If y1.x/ is known, then (19) is a separable equation that
is readily solved for the derivative v0.x/ of v.x/. Integra-
tion of v0.x/ then gives the desired (nonconstant) function
v.x/.

37. Before applying Eq. (19) with a given homogeneous
second-order linear differential equation and a known so-
lution y1.x/, the equation must first be written in the form
of (18) with leading coefficient 1 in order to correctly
determine the coefficient function p.x/. Frequently it is
more convenient to simply substitute y D v.x/y1.x/ in
the given differential equation and then proceed directly
to find v.x/. Thus, starting with the readily verified solu-
tion y1.x/ D x3 of the equation

x2y00 � 5xy0 C 9y D 0 .x > 0/;

substitute y D vx3 and deduce that xv00 C v0 D 0. Thence
solve for v.x/ D C ln x, and thereby obtain (with C D 1)
the second solution y2.x/ D x3 ln x.

In each of Problems 38 through 42, a differential equation and
one solution y1 are given. Use the method of reduction of or-
der as in Problem 37 to find a second linearly independent
solution y2.

38. x2y00 C xy0 � 9y D 0 .x > 0/; y1.x/ D x3

39. 4y00 � 4y0 C y D 0; y1.x/ D ex=2

40. x2y00 � x.x C 2/y0 C .x C 2/y D 0 .x > 0/; y1.x/ D x
41. .x C 1/y00 � .x C 2/y0 C y D 0 .x > �1/; y1.x/ D ex

42. .1 � x2/y00 C 2xy0 � 2y D 0 .�1 < x < 1/; y1.x/ D x
43. First note that y1.x/ D x is one solution of Legendre’s

equation of order 1,

.1 � x2/y00 � 2xy0 C 2y D 0:
Then use the method of reduction of order to derive the
second solution

y2.x/ D 1 �
x

2
ln
1C x
1 � x (for �1 < x < 1).

44. First verify by substitution that y1.x/D x�1=2 cos x is one
solution (for x > 0) of Bessel’s equation of order 1

2 ,

x2y00 C xy0 C .x2 � 1
4 /y D 0:

Then derive by reduction of order the second solution
y2.x/ D x�1=2 sin x.
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3.2 Application Plotting Third-Order Solution Families
This application deals with the plotting by computer of families of solutions such
as those illustrated in Figs. 3.2.2 through 3.2.4. We know from Example 6 that the
general solution of

y.3/ C 3y00 C 4y0 C 12y D 0 (1)

is

y.x/ D c1e
�3x C c2 cos 2x C c3 sin 2x: (2)

For Fig. 3.2.2, use the method of Example 6 to show that the particular solution
of Eq. (1) satisfying the initial conditions y.0/D a, y0.0/D 0, and y00.0/D 0 is given
by

y.x/ D a

13

�
4e�3x C 9 cos 2x C 6 sin 2x

	
: (3)

The MATLAB loop

x = --1.5 : 0.02 : 5 % x-vector from x = --1.5 to x = 5
for a = --3 : 1 : 3 % for a = --3 to 3 with da = 1 do

c1 = 4*a/13;
c2 = 9*a/13;
c3 = 6*a/13;
y = c1*exp(--3*x) + c2*cos(2*x) + c3*sin(2*x);
plot(x,y)

end

was used to generate Fig. 3.2.2.
For Fig. 3.2.3, show that the particular solution of Eq. (1) satisfying the initial

conditions y.0/ D 0, y0.0/ D b, and y00.0/ D 0 is given by

y.x/ D b

2
sin 2x; (4)

and alter the preceding for-loop accordingly.
For Fig. 3.2.4, show that the particular solution of Eq. (1) satisfying the initial

conditions y.0/ D 0, y0.0/ D 0, and y00.0/ D c is given by

y.x/ D c

26

�
2e�3x � 2 cos 2x C 3 sin 2x

	
: (5)

Computer algebra systems such as Maple and Mathematica, as well as graph-
ing calculators, have commands to carry out for-loops such as the one shown here.
Begin by reproducing Figs. 3.2.2 through 3.2.4. Then plot similar families of solu-
tion curves for the differential equations in Problems 13 through 20.
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3.3 Homogeneous Equations with Constant Coefficients
In Section 3.2 we saw that a general solution of an nth-order homogeneous linear
equation is a linear combination of n linearly independent particular solutions, but
we said little about how actually to find even a single solution. The solution of a
linear differential equation with variable coefficients ordinarily requires numerical
methods (Chapter 2) or infinite series methods (Chapter 8). But we can now show
how to find, explicitly and in a rather straightforward way, n linearly independent
solutions of a given nth-order linear equation if it has constant coefficients. The
general such equation may be written in the form

any
.n/ C an�1y

.n�1/ C � � � C a2y
00 C a1y

0 C a0y D 0; (1)

where the coefficients a0, a1, a2, : : : ; an are real constants with an ¤ 0.

The Characteristic Equation
We first look for a single solution of Eq. (1), and begin with the observation that

dk

dxk
.erx/ D rkerx ; (2)

so any derivative of erx is a constant multiple of erx . Hence, if we substituted
y D erx in Eq. (1), each term would be a constant multiple of erx , with the constant
coefficients depending on r and the coefficients ak . This suggests that we try to find
r so that all these multiples of erx will have sum zero, in which case y D erx will
be a solution of Eq. (1).

For example, in Section 3.1 we substituted y D erx in the second-order equa-
tion

ay00 C by0 C cy D 0
to derive the characteristic equation

ar2 C br C c D 0
that r must satisfy.

To carry out this technique in the general case, we substitute yD erx in Eq. (1),
and with the aid of Eq. (2) we find the result to be

anr
nerx C an�1r

n�1erx C � � � C a2r
2erx C a1re

rx C a0e
rx D 0I

that is,
erx

�
anr

n C an�1r
n�1 C � � � C a2r

2 C a1r C a0

	 D 0:
Because erx is never zero, we see that y D erx will be a solution of Eq. (1) precisely
when r is a root of the equation

anr
n C an�1r

n�1 C � � � C a2r
2 C a1r C a0 D 0: (3)

This equation is called the characteristic equation or auxiliary equation of the
differential equation in (1). Our problem, then, is reduced to the solution of this
purely algebraic equation.

According to the fundamental theorem of algebra, every nth-degree poly-
nomial—such as the one in Eq. (3)—has n zeros, though not necessarily distinct
and not necessarily real. Finding the exact values of these zeros may be difficult
or even impossible; the quadratic formula is sufficient for second-degree equations,
but for equations of higher degree we may need either to spot a fortuitous fac-
torization or to apply a numerical technique such as Newton’s method (or use a
calculator=computer solve command).
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Distinct Real Roots

Whatever the method we use, let us suppose that we have solved the characteristic
equation. Then we can always write a general solution of the differential equation.
The situation is slightly more complicated in the case of repeated roots or complex
roots of Eq. (3), so let us first examine the simplest case—in which the characteristic
equation has n distinct (no two equal) real roots r1, r2, : : : ; rn. Then the functions

er1x ; er2x; : : : ; ernx

are all solutions of Eq. (1), and (by Problem 34 of Section 3.2) these n solutions are
linearly independent on the entire real line. In summary, we have proved Theorem 1.

THEOREM 1 Distinct Real Roots

If the roots r1, r2, : : : ; rn of the characteristic equation in (3) are real and distinct,
then

y.x/ D c1e
r1x C c2e

r2x C � � � C cne
rnx (4)

is a general solution of Eq. (1).

Example 1 Solve the initial value problem

y.3/ C 3y00 � 10y0 D 0I
y.0/ D 7; y0.0/ D 0; y00.0/ D 70:

Solution The characteristic equation of the given differential equation is

r3 C 3r2 � 10r D 0:

We solve by factoring:

r.r2 C 3r � 10/ D r.r C 5/.r � 2/ D 0;

and so the characteristic equation has the three distinct real roots r D 0, r D �5, and r D 2.
Because e0 D 1, Theorem 1 gives the general solution

y.x/ D c1 C c2e�5x C c3e
2x :

Then the given initial conditions yield the linear equations

y.0/ D c1 C c2 C c3 D 7,

y0.0/ D � 5c2 C 2c3 D 0,

y00.0/ D 25c2 C 4c3 D 70

in the coefficients c1, c2, and c3. The last two equations give y00.0/ � 2y0.0/ D 35c2 D 70,
so c2 D 2. Then the second equation gives c3 D 5, and finally the first equation gives c1 D 0.
Thus the desired particular solution is

y.x/ D 2e�5x C 5e2x :
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Polynomial Differential Operators
If the roots of the characteristic equation in (3) are not distinct—there are repeated
roots—then we cannot produce n linearly independent solutions of Eq. (1) by the
method of Theorem 1. For example, if the roots are 1, 2, 2, and 2, we obtain only
the two functions ex and e2x . The problem, then, is to produce the missing linearly
independent solutions. For this purpose, it is convenient to adopt “operator notation”
and write Eq. (1) in the form Ly D 0, where the operator

L D an

dn

dxn
C an�1

dn�1

dxn�1
C � � � C a2

d2

dx2
C a1

d

dx
C a0 (5)

operates on the n-times differentiable function y.x/ to produce the linear combina-
tion

Ly D any
.n/ C an�1y

.n�1/ C � � � C a2y
.2/ C a1y

0 C a0y

of y and its first n derivatives. We also denote by D D d=dx the operation of
differentiation with respect to x, so that

Dy D y0; D2y D y00; D3y D y.3/;

and so on. In terms of D, the operator L in (5) may be written

L D anD
n C an�1D

n�1 C � � � C a2D
2 C a1D C a0; (6)

and we will find it useful to think of the right-hand side in Eq. (6) as a (formal) nth-
degree polynomial in the “variable” D; it is a polynomial differential operator.

A first-degree polynomial operator with leading coefficient 1 has the form
D � a, where a is a real number. It operates on a function y D y.x/ to produce

.D � a/y D Dy � ay D y0 � ay:

The important fact about such operators is that any two of them commute:

.D � a/.D � b/y D .D � b/.D � a/y (7)

for any twice differentiable function y D y.x/. The proof of the formula in (7) is
the following computation:

.D � a/.D � b/y D .D � a/.y0 � by/
D D.y0 � by/ � a.y0 � by/
D y00 � .b C a/y0 C aby D y00 � .aC b/y0 C bay
D D.y0 � ay/ � b.y0 � ay/
D .D � b/.y0 � ay/ D .D � b/.D � a/y:

We see here also that .D � a/.D � b/ D D2 � .a C b/D C ab. Similarly, it can
be shown by induction on the number of factors that an operator product of the
form .D � a1/.D � a2/ � � � .D � an/ expands—by multiplying out and collecting
coefficients—in the same way as does an ordinary product .x � a1/.x � a2/ � � �
.x � an/ of linear factors, with x denoting a real variable. Consequently, the al-
gebra of polynomial differential operators closely resembles the algebra of ordinary
real polynomials.



3.3 Homogeneous Equations with Constant Coefficients 165

Repeated Real Roots
Let us now consider the possibility that the characteristic equation

anr
n C an�1r

n�1 C � � � C a2r
2 C a1r C a0 D 0 (3)

has repeated roots. For example, suppose that Eq. (3) has only two distinct roots, r0
of multiplicity 1 and r1 of multiplicity k D n � 1 > 1. Then (after dividing by an)
Eq. (3) can be rewritten in the form

.r � r1/k.r � r0/ D .r � r0/.r � r1/k D 0: (8)

Similarly, the corresponding operator L in (6) can be written as

L D .D � r1/k.D � r0/ D .D � r0/.D � r1/k; (9)

the order of the factors making no difference because of the formula in (7).
Two solutions of the differential equation Ly D 0 are certainly y0 D er0x and

y1 D er1x . This is, however, not sufficient; we need k C 1 linearly independent
solutions in order to construct a general solution, because the equation is of order
k C 1. To find the missing k � 1 solutions, we note that

Ly D .D � r0/Œ.D � r1/ky� D 0:

Consequently, every solution of the kth-order equation

.D � r1/ky D 0 (10)

will also be a solution of the original equation Ly D 0. Hence our problem is
reduced to that of finding a general solution of the differential equation in (10).

The fact that y1 D er1x is one solution of Eq. (10) suggests that we try the
substitution

y.x/ D u.x/y1.x/ D u.x/er1x ; (11)

where u.x/ is a function yet to be determined. Observe that

.D � r1/ Œuer1x � D .Du/er1x C u.r1er1x/ � r1.uer1x/ D .Du/er1x : (12)

Upon k applications of this fact, it follows that

.D � r1/k Œuer1x� D .Dku/er1x (13)

for any sufficiently differentiable function u.x/. Hence y D uer1x will be a solution
of Eq. (10) if and only if Dku D u.k/ D 0. But this is so if and only if

u.x/ D c1 C c2x C c3x
2 C � � � C ckx

k�1;

a polynomial of degree at most k � 1. Hence our desired solution of Eq. (10) is

y.x/ D uer1x D .c1 C c2x C c3x
2 C � � � C ckx

k�1/er1x :

In particular, we see here the additional solutions xer1x , x2er1x , : : : ; xk�1er1x of
the original differential equation Ly D 0.

The preceding analysis can be carried out with the operator D � r1 replaced
with an arbitrary polynomial operator. When this is done, the result is a proof of the
following theorem.
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THEOREM 2 Repeated Roots

If the characteristic equation in (3) has a repeated root r of multiplicity k, then
the part of a general solution of the differential equation in (1) corresponding to
r is of the form

.c1 C c2x C c3x
2 C � � � C ckx

k�1/erx : (14)

We may observe that, according to Problem 29 of Section 3.2, the k functions
erx , xerx , x2erx , : : : ; and xk�1erx involved in (14) are linearly independent on
the real line. Thus a root of multiplicity k corresponds to k linearly independent
solutions of the differential equation.

Example 2 Find a general solution of the fifth-order differential equation

9y.5/ � 6y.4/ C y.3/ D 0:

Solution The characteristic equation is

9r5 � 6r4 C r3 D r3.9r2 � 6r C 1/ D r3.3r � 1/2 D 0:

It has the triple root r D 0 and the double root r D 1
3 . The triple root r D 0 contributes

c1e
0�x C c2xe

0�x C c3x
2e0�x D c1 C c2x C c3x

2

to the solution, while the double root r D 1
3 contributes c4e

x=3 C c5xe
x=3. Hence a general

solution of the given differential equation is

y.x/ D c1 C c2x C c3x
2 C c4e

x=3 C c5xe
x=3:

Complex-Valued Functions and Euler’s Formula
Because we have assumed that the coefficients of the differential equation and its
characteristic equation are real, any complex (nonreal) roots will occur in complex
conjugate pairs a˙ bi where a and b are real and i D

p
�1. This raises the question

of what might be meant by an exponential such as e.aCbi/x .
To answer this question, we recall from elementary calculus the Taylor (or

MacLaurin) series for the exponential function

et D
1X

nD0

tn

nŠ
D 1C t C t2

2Š
C t3

3Š
C t4

4Š
C � � � :

If we substitute t D i� in this series and recall that i2 D �1, i3 D �i , i4 D 1, and
so on, we get

ei� D
1X

nD0

.i�/n

nŠ

D 1C i� � �
2

2Š
� i�

3

3Š
C �4

4Š
C i�5

5Š
� � � �

D
�
1 � �

2

2Š
C �4

4Š
� � � �

�
C i

�
� � �

3

3Š
C �5

5Š
� � � �

�
:
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Because the two real series in the last line are the Taylor series for cos � and sin � ,
respectively, this implies that

ei� D cos � C i sin �: (15)

This result is known as Euler’s formula. Because of it, we define the exponential
function e´, for ´ D x C iy an arbitrary complex number, to be

e´ D exCiy D exeiy D ex.cosy C i siny/: (16)

Thus it appears that complex roots of the characteristic equation will lead to
complex-valued solutions of the differential equation. A complex-valued function
F of the real variable x associates with each real number x (in its domain of defini-
tion) the complex number

F.x/ D f .x/C ig.x/: (17)

The real-valued functions f and g are called the real and imaginary parts, respec-
tively, of F . If they are differentiable, we define the derivative F 0 of F by

F 0.x/ D f 0.x/C ig0.x/: (18)

Thus we simply differentiate the real and imaginary parts of F separately.
We say that the complex-valued function F.x/ satisfies the homogeneous lin-

ear differential equation LŒF.x/� D 0 provided that its real and imaginary parts in
(17) separately satisfy this equation—so LŒF.x/� D LŒf .x/�C iLŒg.x/� D 0.

The particular complex-valued functions of interest here are of the form
F.x/ D erx , where r D a˙ bi . We note from Euler’s formula that

e.aCbi/x D eaxeibx D eax.cos bx C i sin bx/ (19a)

and

e.a�bi/x D eaxe�ibx D eax.cos bx � i sin bx/: (19b)

The most important property of erx is that

Dx.e
rx/ D rerx ; (20)

if r is a complex number. The proof of this assertion is a straightforward computa-
tion based on the definitions and formulas given earlier:

Dx.e
rx/ D Dx.e

ax cos bx/C iDx.e
ax sin bx/

D .aeax cos bx � beax sin bx/C i .aeax sin bx C beax cos bx/

D .aC bi/.eax cos bx C ieax sin bx/ D rerx :
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Complex Roots
It follows from Eq. (20) that when r is complex (just as when r is real), erx will be a
solution of the differential equation in (1) if and only if r is a root of its characteristic
equation. If the complex conjugate pair of roots r1 D a C bi and r2 D a � bi are
simple (nonrepeated), then the corresponding part of a general solution of Eq. (1) is

y.x/ D C1e
r1x C C2e

r2x D C1e
.aCbi/x C C2e

.a�bi/x

D C1e
ax.cos bx C i sin bx/C C2e

ax.cos bx � i sin bx/

y.x/ D .C1 C C2/e
ax cos bx C i.C1 � C2/e

ax sin bx;

where the arbitrary constants C1 and C2 can be complex. For instance, the choice
C1 D C2 D 1

2
gives the real-valued solution y1.x/ D eax cos bx, while the choice

C1 D �1
2
i , C2 D 1

2
i gives the independent real-valued solution y2.x/ D eax sin bx.

This yields the following result.

THEOREM 3 Complex Roots

If the characteristic equation in (3) has an unrepeated pair of complex conjugate
roots a ˙ bi (with b ¤ 0), then the corresponding part of a general solution of
Eq. (1) has the form

eax.c1 cos bx C c2 sin bx/: (21)

Example 3 The characteristic equation of

y00 C b2y D 0 .b > 0/

is r2 C b2 D 0, with roots r D ˙bi . So Theorem 3 (with a D 0) gives the general solution

y.x/ D c1 cos bx C c2 sin bx:

Example 4 Find the particular solution of
y00 � 4y0 C 5y D 0

for which y.0/ D 1 and y0.0/ D 5.
Solution Completion of the square in the characteristic equation yields

r2 � 4r C 5 D .r � 2/2 C 1 D 0;

so r � 2 D ˙
p
�1 D ˙i . Thus we obtain the complex conjugate roots 2˙ i (which could

also be found directly using the quadratic formula). Hence Theorem 3 with a D 2 and b D 1
gives the general solution

y.x/ D e2x.c1 cos x C c2 sin x/:

Then
y0.x/ D 2e2x.c1 cos x C c2 sin x/C e2x.�c1 sin x C c2 cos x/;

so the initial conditions give

y.0/ D c1 D 1 and y0.0/ D 2c1 C c2 D 5:

It follows that c2 D 3, and so the desired particular solution is

y.x/ D e2x.cos x C 3 sin x/:
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In Example 5 below we employ the polar form

´ D x C iy D rei� (22)

of the complex number ´. This form follows from Euler’s formula upon writing

´ D r
�x
r
C i y

r

�
D r.cos � C i sin �/ D rei�

in terms of the modulus r D
p
x2 C y2 > 0 of the number ´ and its argument �

indicated in Fig. 3.3.1. For instance, the imaginary number i has modulus 1 and
argument �=2, so i D ei�=2. Similarly, �i D e3�=2. Another consequence is the fact
that the nonzero complex number ´ D rei� has the two square roots

x

y

θ

(x, y)

r

FIGURE 3.3.1. Modulus and
argument of the complex number
x C iy.

p
´ D ˙.rei� /1=2 D ˙prei�=2; (23)

where
p
r denotes (as usual for a positive real number) the positive square root of

the modulus of ´.

Example 5 Find a general solution of y.4/ C 4y D 0.
Solution The characteristic equation is

r4 C 4 D .r2/2 � .2i/2 D .r2 C 2i/.r2 � 2i/ D 0;

and its four roots are ˙
p
˙2i . Since i D ei�=2 and �i D ei3�=2, we find that

p
2i D �2ei�=2

	1=2 D
p
2ei�=4 D

p
2
�

cos
�

4
C i sin

�

4

�
D 1C i

and

p
�2i D �2ei3�=2

	1=2 D
p
2ei3�=4 D

p
2

�
cos

3�

4
C i sin

3�

4

�
D �1C i:

Thus the four (distinct) roots of the characteristic equation are r D ˙.˙1C i/. These two
pairs of complex conjugate roots, 1˙ i and �1˙ i , give a general solution

y.x/ D ex.c1 cos x C c2 sin x/C e�x.c3 cos x C c4 sin x/

of the differential equation y.4/ C 4y D 0.

Repeated Complex Roots
Theorem 2 holds for repeated complex roots. If the conjugate pair a˙ bi has mul-
tiplicity k, then the corresponding part of the general solution has the form

.A1 C A2x C � � � C Akx
k�1/e.aCbi/x C .B1 C B2x C � � � C Bkx

k�1/e.a�bi/x

D
k�1X
pD0

xpeax.cp cos bx C dp sin bx/: (24)

It can be shown that the 2k functions

xpeax cos bx; xpeax sin bx; 0 5 p 5 k � 1

that appear in Eq. (24) are linearly independent.
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Example 6 Find a general solution of .D2 C 6D C 13/2y D 0.
Solution By completing the square, we see that the characteristic equation

.r2 C 6r C 13/2 D Œ.r C 3/2 C 4�2 D 0

has as its roots the conjugate pair �3˙ 2i of multiplicity k D 2. Hence Eq. (24) gives the
general solution

y.x/ D e�3x.c1 cos 2x C d1 sin 2x/C xe�3x.c2 cos 2x C d2 sin 2x/:

In applications we are seldom presented in advance with a factorization as
convenient as the one in Example 6. Often the most difficult part of solving a homo-
geneous linear equation is finding the roots of its characteristic equation. Example 7
illustrates an approach that may succeed when a root of the characteristic equation
can be found by inspection. The project material for this section illustrates other
possibilities.

Example 7 The characteristic equation of the differential equation

y.3/ C y0 � 10y D 0

is the cubic equation
r3 C r � 10 D 0:

By a standard theorem of elementary algebra, the only possible rational roots are the factors
˙1, ˙2, ˙5, and ˙10 of the constant term 10. By trial and error (if not by inspection) we
discover the root 2. The factor theorem of elementary algebra implies that r � 2 is a factor
of r3 C r � 10, and division of the former into the latter produces as quotient the quadratic
polynomial

r2 C 2r C 5 D .r C 1/2 C 4:
The roots of this quotient are the complex conjugates �1˙ 2i . The three roots we have found
now yield the general solution

y.x/ D c1e
2x C e�x.c2 cos 2x C c3 sin 2x/:

Example 8 The roots of the characteristic equation of a certain differential equation are 3, �5, 0, 0, 0, 0,
�5, 2˙ 3i , and 2˙ 3i . Write a general solution of this homogeneous differential equation.

Solution The solution can be read directly from the list of roots. It is

y.x/ D c1 C c2x C c3x
2 C c4x

3 C c5e3x C c6e
�5x C c7xe

�5x

C e2x.c8 cos 3x C c9 sin 3x/C xe2x.c10 cos 3x C c11 sin 3x/:

3.3 Problems
Find the general solutions of the differential equations in Prob-
lems 1 through 20.

1. y00 � 4y D 0 2. 2y00 � 3y0 D 0
3. y00 C 3y0 � 10y D 0 4. 2y00 � 7y0 C 3y D 0
5. y00 C 6y0 C 9y D 0 6. y00 C 5y0 C 5y D 0
7. 4y00 � 12y0 C 9y D 0 8. y00 � 6y0 C 13y D 0
9. y00 C 8y0 C 25y D 0 10. 5y.4/ C 3y.3/ D 0

11. y.4/ � 8y.3/ C 16y00 D 0
12. y.4/ � 3y.3/ C 3y00 � y0 D 0
13. 9y.3/ C 12y00 C 4y0 D 0 14. y.4/ C 3y00 � 4y D 0
15. y.4/ � 8y00 C 16y D 0 16. y.4/ C 18y00 C 81y D 0
17. 6y.4/ C 11y00 C 4y D 0 18. y.4/ D 16y

19. y.3/ C y00 � y0 � y D 0
20. y.4/ C 2y.3/ C 3y00 C 2y0 C y D 0 (Suggestion: Expand

.r2 C r C 1/2.)

Solve the initial value problems given in Problems 21 through
26.

21. y00 � 4y0 C 3y D 0; y.0/ D 7, y0.0/ D 11
22. 9y00 C 6y0 C 4y D 0; y.0/ D 3, y0.0/ D 4
23. y00 � 6y0 C 25y D 0; y.0/ D 3, y0.0/ D 1
24. 2y.3/ � 3y00 � 2y0 D 0; y.0/ D 1, y0.0/ D �1, y00.0/ D 3
25. 3y.3/ C 2y00 D 0; y.0/ D �1, y0.0/ D 0, y00.0/ D 1
26. y.3/ C 10y00 C 25y0 D 0; y.0/ D 3, y0.0/ D 4, y00.0/ D 5
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Find general solutions of the equations in Problems 27 through
32. First find a small integral root of the characteristic equa-
tion by inspection; then factor by division.

27. y.3/ C 3y00 � 4y D 0
28. 2y.3/ � y00 � 5y0 � 2y D 0
29. y.3/ C 27y D 0
30. y.4/ � y.3/ C y00 � 3y0 � 6y D 0
31. y.3/ C 3y00 C 4y0 � 8y D 0
32. y.4/ C y.3/ � 3y00 � 5y0 � 2y D 0

In Problems 33 through 36, one solution of the differential
equation is given. Find the general solution.

33. y.3/ C 3y00 � 54y D 0; y D e3x

34. 3y.3/ � 2y00 C 12y0 � 8y D 0; y D e2x=3

35. 6y.4/ C 5y.3/ C 25y00 C 20y0 C 4y D 0; y D cos 2x
36. 9y.3/ C 11y00 C 4y0 � 14y D 0; y D e�x sin x
37. Find a function y.x/ such that y.4/.x/ D y.3/.x/ for all x

and y.0/ D 18, y0.0/ D 12, y00.0/ D 13, and y.3/.0/ D 7.
38. Solve the initial value problem

y.3/ � 5y00 C 100y0 � 500y D 0I
y.0/ D 0; y0.0/ D 10; y00.0/ D 250

given that y1.x/ D e5x is one particular solution of the
differential equation.

In Problems 39 through 42, find a linear homogeneous
constant-coefficient equation with the given general solution.

39. y.x/ D .AC Bx C Cx2/e2x

40. y.x/ D Ae2x C B cos 2x C C sin 2x
41. y.x/ D A cos 2x C B sin 2x C C cosh 2x CD sinh 2x
42. y.x/D .ACBxCCx2/ cos 2xC .DCExCFx2/ sin 2x

Problems 43 through 47 pertain to the solution of differential
equations with complex coefficients.

43. (a) Use Euler’s formula to show that every complex num-
ber can be written in the form rei� , where r = 0 and
�� < � 5 � . (b) Express the numbers 4, �2, 3i , 1C i ,
and �1C i

p
3 in the form rei� . (c) The two square roots

of rei� are ˙prei�=2. Find the square roots of the num-
bers 2 � 2i

p
3 and �2C 2i

p
3.

44. Use the quadratic formula to solve the following equa-
tions. Note in each case that the roots are not complex
conjugates.

(a) x2 C ix C 2 D 0 (b) x2 � 2ix C 3 D 0
45. Find a general solution of y00 � 2iy0 C 3y D 0.
46. Find a general solution of y00 � iy0 C 6y D 0.
47. Find a general solution of y00 D ��2C 2ip3 	y.
48. Solve the initial value problem

y.3/ D yI y.0/ D 1; y0.0/ D y00.0/ D 0:
(Suggestion: Impose the given initial conditions on the
general solution

y.x/ D Aex C Be˛x C Ceˇx ;

where ˛ and ˇ are the complex conjugate roots of r3�1D
0, to discover that

y.x/ D 1

3

 
ex C 2e�x=2 cos

x
p
3

2

!

is a solution.)

49. Solve the initial value problem

y.4/ D y.3/ C y00 C y0 C 2yI
y.0/ D y0.0/ D y00.0/ D 0; 2y.3/.0/ D 30:

50. The differential equation

y00 C .sgn x/y D 0 (25)

has the discontinuous coefficient function

sgn x D
(
C1 if x > 0,

�1 if x < 0.

Show that Eq. (25) nevertheless has two linearly indepen-
dent solutions y1.x/ and y2.x/ defined for all x such that

� Each satisfies Eq. (25) at each point x ¤ 0;
� Each has a continuous derivative at x D 0;
� y1.0/ D y0

2.0/ D 1 and y2.0/ D y0
1.0/ D 0.

(Suggestion: Each yi .x/ will be defined by one formula
for x < 0 and by another for x = 0.) The graphs of these
two solutions are shown in Fig. 3.3.2.

2

4

x

y

2 4 6 8 10 12

–2

–4

–2

y1(x)

y2(x)

FIGURE 3.3.2. Graphs of y1.x/ and y2.x/
in Problem 50.

51. According to Problem 51 in Section 3.1, the substitution
v D ln x (x > 0) transforms the second-order Euler equa-
tion ax2y00 C bxy0 C cy D 0 to a constant-coefficient ho-
mogeneous linear equation. Show similarly that this same
substitution transforms the third-order Euler equation

ax3y000 C bx2y00 C cxy0 C dy D 0

(where a, b, c, d are constants) into the constant-
coefficient equation

a
d3y

dv3
C .b � 3a/d

2y

dv2
C .c � b C 2a/dy

dv
C dy D 0:
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Make the substitution v D ln x of Problem 51 to find general
solutions (for x > 0) of the Euler equations in Problems 52
through 58.

52. x2y00 C xy0 C 9y D 0
53. x2y00 C 7xy0 C 25y D 0

54. x3y000 C 6x2y00 C 4xy0 D 0
55. x3y000 � x2y00 C xy0 D 0
56. x3y000 C 3x2y00 C xy0 D 0
57. x3y000 � 3x2y00 C xy0 D 0
58. x3y000 C 6x2y00 C 7xy0 C y D 0

3.3 Application Approximate Solutions of Linear Equations
To meet the needs of applications such as those of this section, polynomial-solving
utilities are now a common feature of calculator and computer systems and can be
used to solve a characteristic equation numerically even when no simple factoriza-
tion is evident or even possible. For instance, suppose that we want to solve the
homogeneous linear differential equation

y.3/ � 3y00 C y D 0 (1)

with characteristic equation

r3 � 3r2 C 1 D 0: (2)

A typical graphing calculator has a solve command that can be used to find the
approximate roots of a polynomial equation. As indicated in Figs. 3.3.3 and 3.3.4,
we find that the roots of Eq. (2) are given by r ��0:5321, 0:6527, and 2:8794. Some
analogous computer algebra system commands are

FIGURE 3.3.3. Solving the equation
r3 � 3r2 C 1 D 0 with a TI-84 Plus
calculator that requires an estimate of
each root.

fsolve(r^3 -- 3*r^2 + 1 = 0, r); (Maple)
NSolve[r^3 -- 3*r^2 + 1 == 0, r] (Mathematica)
r^3 -- 3r^2 + 1 = 0 (WolframjAlpha)
roots([1 --3 0 1]) (MATLAB)

(In the MATLAB command, one enters the polynomial’s vector [1 --3 0 1]

FIGURE 3.3.4. Solving the
characteristic equation with a
TI-Nspire CX CAS handheld. Without
the approx command, the computer
algebra system returns an exact
symbolic solution derived from the
theory of cubic polynomial equations.

of coefficients, listed in descending order.) However we find these approximate
roots, it follows that a general solution of the differential equation in (1) is given
(approximately) by

y.x/ D c1e
�.0:5321/x C c2e

.0:6527/x C c3e
.2:8794/x : (3)

Use calculator or computer methods like those indicated here to find general
solutions (in approximate numerical form) of the following differential equations.

1. y.3/ � 3y0 C y D 0
2. y.3/ C 3y00 � 3y D 0
3. y.3/ C y0 C y D 0
4. y.3/ C 3y0 C 5y D 0
5. y.4/ C 2y.3/ � 3y D 0
6. y.4/ C 3y0 � 4y D 0

3.4 Mechanical Vibrations
The motion of a mass attached to a spring serves as a relatively simple example
of the vibrations that occur in more complex mechanical systems. For many such
systems, the analysis of these vibrations is a problem in the solution of linear differ-
ential equations with constant coefficients.
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We consider a body of mass m attached to one end of an ordinary spring that
resists compression as well as stretching; the other end of the spring is attached to
a fixed wall, as shown in Fig. 3.4.1. Assume that the body rests on a frictionless
horizontal plane, so that it can move only back and forth as the spring compresses
and stretches. Denote by x the distance of the body from its equilibrium position—
its position when the spring is unstretched. We take x > 0 when the spring is

Equilibrium
position

m c

x

FIGURE 3.4.1. A mass–
spring–dashpot system.

stretched, and thus x < 0 when it is compressed.
According to Hooke’s law, the restorative force FS that the spring exerts on

the mass is proportional to the distance x that the spring has been stretched or com-
pressed. Because this is the same as the displacement x of the mass m from its
equilibrium position, it follows that

FS D �kx: (1)

The positive constant of proportionality k is called the spring constant. Note that
FS and x have opposite signs: FS < 0 when x > 0, FS > 0 when x < 0.

Figure 3.4.1 shows the mass attached to a dashpot—a device, like a shock
absorber, that provides a force directed opposite to the instantaneous direction of
motion of the mass m. We assume the dashpot is so designed that this force FR is
proportional to the velocity v D dx=dt of the mass; that is,

FR D �cv D �c
dx

dt
: (2)

The positive constant c is the damping constant of the dashpot. More generally,
we may regard Eq. (2) as specifying frictional forces in our system (including air
resistance to the motion of m).

If, in addition to the forces FS and FR, the mass is subjected to a given exter-
nal force FE D F.t/, then the total force acting on the mass is F D FS CFRCFE .
Using Newton’s law

F D ma D md
2x

dt2
D mx00;

we obtain the second-order linear differential equation

mx00 C cx0 C kx D F.t/ (3)

that governs the motion of the mass.
If there is no dashpot (and we ignore all frictional forces), then we set c D 0

in Eq. (3) and call the motion undamped; it is damped motion if c > 0. If there is
no external force, we replace F.t/ with 0 in Eq. (3). We refer to the motion as free
in this case and forced in the case F.t/ ¤ 0. Thus the homogeneous equation

mx00 C cx0 C kx D 0 (4)

describes free motion of a mass on a spring with dashpot but with no external forces
applied. We will defer discussion of forced motion until Section 3.6.

For an alternative example, we might attach the mass to the lower end of a
spring that is suspended vertically from a fixed support, as in Fig. 3.4.2. In this case
the weight W D mg of the mass would stretch the spring a distance s0 determined
by Eq. (1) with FS D �W and x D s0. That is, mg D ks0, so that s0 D mg=k. This
gives the static equilibrium position of the mass. If y denotes the displacement of
the mass in motion, measured downward from its static equilibrium position, then
we ask you to show in Problem 9 that y satisfies Eq. (3); specifically, that

m

Unstretched
spring

Static
equilibrium

System
in motion

s0

y

y = 0m

FIGURE 3.4.2. A mass suspended
vertically from a spring.

my00 C cy0 C ky D F.t/ (5)

if we include damping and external forces (meaning those other than gravity).
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The Simple Pendulum
The importance of the differential equation that appears in Eqs. (3) and (5) stems

θ

O

h m

L

FIGURE 3.4.3. The simple
pendulum.

from the fact that it describes the motion of many other simple mechanical systems.
For example, a simple pendulum consists of a mass m swinging back and forth on
the end of a string (or better, a massless rod) of length L, as shown in Fig. 3.4.3.
We may specify the position of the mass at time t by giving the counterclockwise
angle � D �.t/ that the string or rod makes with the vertical at time t . To analyze
the motion of the mass m, we will apply the law of the conservation of mechanical
energy, according to which the sum of the kinetic energy and the potential energy
of m remains constant.

The distance along the circular arc from 0 to m is s D L� , so the velocity of
the mass is v D ds=dt D L.d�=dt/, and therefore its kinetic energy is

T D 1

2
mv2 D 1

2
m

�
ds

dt

�2

D 1

2
mL2

�
d�

dt

�2

:

We next choose as reference point the lowest point O reached by the mass (see
Fig. 3.4.3). Then its potential energy V is the product of its weight mg and its
vertical height h D L.1 � cos �/ above O , so

V D mgL.1 � cos �/:

The fact that the sum of T and V is a constant C therefore gives

1

2
mL2

�
d�

dt

�2

CmgL.1 � cos �/ D C:

We differentiate both sides of this identity with respect to t to obtain

mL2

�
d�

dt

��
d2�

dt2

�
CmgL.sin �/

d�

dt
D 0;

so

d2�

dt2
C g

L
sin � D 0 (6)

after removal of the common factor mL2.d�=dt/. This differential equation can
be derived in a seemingly more elementary manner using the familiar second law
F Dma of Newton (applied to tangential components of the acceleration of the mass
and the force acting on it). However, derivations of differential equations based on
conservation of energy are often seen in more complex situations where Newton’s
law is not so directly applicable, and it may be instructive to see the energy method
in a simpler application like the pendulum.

Now recall that if � is small, then sin � � � (this approximation obtained by
retaining just the first term in the Taylor series for sin �). In fact, sin � and � agree
to two decimal places when j� j is at most �=12 (that is, 15ı). In a typical pendulum
clock, for example, � would never exceed 15ı. It therefore seems reasonable to
simplify our mathematical model of the simple pendulum by replacing sin � with �
in Eq. (6). If we also insert a term c� 0 to account for the frictional resistance of the
surrounding medium, the result is an equation in the form of Eq. (4):

� 00 C c� 0 C k� D 0; (7)
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where k D g=L. Note that this equation is independent of the mass m on the end
of the rod. We might, however, expect the effects of the discrepancy between � and
sin � to accumulate over a period of time, so that Eq. (7) will probably not describe
accurately the actual motion of the pendulum over a long period of time.

In the remainder of this section, we first analyze free undamped motion and
then free damped motion.

Free Undamped Motion
If we have only a mass on a spring, with neither damping nor external force, then
Eq. (3) takes the simpler form

mx00 C kx D 0: (8)

It is convenient to define

!0 D
r
k

m
(9)

and rewrite Eq. (8) as

x00 C !2
0x D 0: (80)

The general solution of Eq. (80) is

x.t/ D A cos!0t C B sin!0t: (10)

To analyze the motion described by this solution, we choose constants C and
˛ so that

C D
p
A2 C B2; cos˛ D A

C
; and sin˛ D B

C
; (11)

as indicated in Fig. 3.4.4. Note that, although tan˛ D B=A, the angle ˛ is not given

A

B
C

α

FIGURE 3.4.4. The angle ˛.

by the principal branch of the inverse tangent function (which gives values only in
the interval ��=2 < x < �=2). Instead, ˛ is the angle between 0 and 2� whose cosine
and sine have the signs given in (11), where either A or B or both may be negative.
Thus

˛ D

8̂<̂
:

tan�1.B=A/ if A > 0, B > 0 (first quadrant),
� C tan�1.B=A/ if A < 0 (second or third quadrant),
2� C tan�1.B=A/ if A > 0, B < 0 (fourth quadrant),

where tan�1.B=A/ is the angle in .��=2; �=2/ given by a calculator or computer.
In any event, from (10) and (11) we get

x.t/ D C
�
A

C
cos!0t C

B

C
sin!0t

�
D C.cos˛ cos!0t C sin˛ sin!0t /:

With the aid of the cosine addition formula, we find that

x.t/ D C cos.!0t � ˛/: (12)

Thus the mass oscillates to and fro about its equilibrium position with

1. Amplitude C ,
2. Circular frequency !0, and
3. Phase angle ˛.

Such motion is called simple harmonic motion.
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If time t is measured in seconds, the circular frequency !0 has dimensions of
radians per second (rad=s). The period of the motion is the time required for the
system to complete one full oscillation, so is given by

T D 2�

!0

(13)

seconds; its frequency is

� D 1

T
D !0

2�
(14)

in hertz (Hz), which measures the number of complete cycles per second. Note
that frequency is measured in cycles per second, whereas circular frequency has the
dimensions of radians per second.

A typical graph of a simple harmonic position function

x.t/ D C cos.!0t � ˛/ D C cos
�
!0

�
t � ˛

!0

��
D C cos.!0.t � ı//

is shown in Fig. 3.4.5, where the geometric significance of the amplitude C , the

t

C

x

T

x(t) = C cos(ω0t – α) 

δ

–C

FIGURE 3.4.5. Simple harmonic
motion.

period T , and the time lag
ı D ˛

!0

are indicated.
If the initial position x.0/ D x0 and initial velocity x0.0/ D v0 of the mass are

given, we first determine the values of the coefficients A and B in Eq. (10), then find
the amplitude C and phase angle ˛ by carrying out the transformation of x.t/ to the
form in Eq. (12), as indicated previously.

Example 1 A body with mass m D 1
2 kilogram (kg) is attached to the end of a spring that is stretched 2

meters (m) by a force of 100 newtons (N). It is set in motion with initial position x0 D 1 (m)
and initial velocity v0 D �5 (m/s). (Note that these initial conditions indicate that the body
is displaced to the right and is moving to the left at time t D 0.) Find the position function of
the body as well as the amplitude, frequency, period of oscillation, and time lag of its motion.

Solution The spring constant is k D .100 N/=.2 m/ D 50 (N=m), so Eq. (8) yields 1
2x

00 C 50x D 0;
that is,

x00 C 100x D 0:
Consequently, the circular frequency of the resulting simple harmonic motion of the body
will be !0 D

p
100 D 10 (rad/s). Hence it will oscillate with period

T D 2�

!0
D 2�

10
� 0.6283 s

and with frequency

� D 1

T
D !0

2�
D 10

2�
� 1.5915 Hz.

We now impose the initial conditions x.0/D 1 and x0.0/D�5 on the position function

x.t/ D A cos 10t C B sin 10t with x0.t/ D �10A sin 10t C 10B cos 10t:

It follows readily that A D 1 and B D �1
2 , so the position function of the body is

x.t/ D cos 10t � 1
2

sin 10t:

Hence its amplitude of motion is

C D
q
.1/2 C .�1

2 /
2 D 1

2

p
5 m.
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To find the time lag, we write

x.t/ D
p
5

2

�
2p
5

cos 10t � 1p
5

sin 10t
�
D
p
5

2
cos.10t � ˛/;

where the phase angle ˛ satisfies

cos˛ D 2p
5
> 0 and sin˛ D � 1p

5
< 0:

Hence ˛ is the fourth-quadrant angle

˛ D 2� C tan�1

 
�1=
p
5

2=
p
5

!
D 2� � tan�1.1

2 / � 5:8195;

and the time lag of the motion is

ı D ˛

!0
� 0.5820 s.

With the amplitude and approximate phase angle shown explicitly, the position function of
the body takes the form

x.t/ � 1
2

p
5 cos.10t � 5:8195/;

and its graph is shown in Fig. 3.4.6.

1 2.5 3
t

0.5

1

x

C

T

0.5 1.5 2

–0.5

–1

δ

FIGURE 3.4.6. Graph of the position function
x.t/ D C cos.!0t � ˛/ in Example 1, with amplitude C � 1:118,
period T � 0:628, and time lag ı � 0:582.

Free Damped Motion
With damping but no external force, the differential equation we have been studying
takes the form mx00 C cx0 C kx D 0; alternatively,

x00 C 2px0 C !2
0x D 0; (15)

where !0 D
p
k=m is the corresponding undamped circular frequency and

p D c

2m
> 0: (16)
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The characteristic equation r2 C 2pr C !2
0 D 0 of Eq. (15) has roots

r1; r2 D �p ˙ .p2 � !2
0/

1=2 (17)

that depend on the sign of

p2 � !2
0 D

c2

4m2
� k

m
D c2 � 4km

4m2
: (18)

The critical damping ccr is given by ccr D
p
4km, and we distinguish three cases,

according as c > ccr, c D ccr, or c < ccr.

OVERDAMPED CASE: c > ccr (c2 > 4km). Because c is relatively large in this
case, we are dealing with a strong resistance in comparison with a relatively weak
spring or a small mass. Then (17) gives distinct real roots r1 and r2, both of which
are negative. The position function has the form

x.t/ D c1e
r1t C c2e

r2t : (19)

It is easy to see that x.t/! 0 as t !C1 and that the body settles to its equilibrium
position without any oscillations (Problem 29). Figure 3.4.7 shows some typical
graphs of the position function for the overdamped case; we chose x0 a fixed positive
number and illustrated the effects of changing the initial velocity v0. In every case
the would-be oscillations are damped out.

0
t

x

0

(0, x0)

FIGURE 3.4.7. Overdamped
motion: x.t/ D c1er1t C c2er2t with
r1 < 0 and r2 < 0. Solution curves are
graphed with the same initial position
x0 and different initial velocities.

CRITICALLY DAMPED CASE: c D ccr (c2
D 4km). In this case, (17) gives equal

roots r1 D r2 D �p of the characteristic equation, so the general solution is

x.t/ D e�pt .c1 C c2t /: (20)

Because e�pt > 0 and c1 C c2t has at most one positive zero, the body passes

0
t

x

0

(0, x0)

FIGURE 3.4.8. Critically damped
motion: x.t/ D .c1 C c2t/e�pt with
p > 0. Solution curves are graphed
with the same initial position x0 and
different initial velocities.

through its equilibrium position at most once, and it is clear that x.t/ ! 0 as
t ! C1. Some graphs of the motion in the critically damped case appear in
Fig. 3.4.8, and they resemble those of the overdamped case (Fig. 3.4.7). In the
critically damped case, the resistance of the dashpot is just large enough to damp
out any oscillations, but even a slight reduction in resistance will bring us to the
remaining case, the one that shows the most dramatic behavior.

UNDERDAMPED CASE: c < ccr (c2 < 4km). The characteristic equation now
has two complex conjugate roots �p ˙ i

p
!2

0 � p2, and the general solution is

x.t/ D e�pt .A cos!1t C B sin!1t /; (21)

where

!1 D
q
!2

0 � p2 D
p
4km � c2

2m
: (22)

Using the cosine addition formula as in the derivation of Eq. (12), we may rewrite
Eq. (20) as

x.t/ D Ce�pt

�
A

C
cos!1t C

B

C
sin!1t

�
;
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so

x.t/ D Ce�pt cos.!1t � ˛/ (23)

where

C D
p
A2 C B2; cos˛ D A

C
; and sin˛ D B

C
:

The solution in (21) represents exponentially damped oscillations of the bodyα

ω1ω

α

x = Ce–pt cos( 1t –  )ω α

x = +Ce–pt

x = –Ce–pt

0
t

2π

ω1ω

πT1 =

x 0

FIGURE 3.4.9. Underdamped
oscillations:
x.t/ D Ce�pt cos.!1t � ˛/.

around its equilibrium position. The graph of x.t/ lies between the “amplitude
envelope” curves x D �Ce�pt and x D Ce�pt and touches them when !1t � ˛ is
an integral multiple of � . The motion is not actually periodic, but it is nevertheless
useful to call !1 its circular frequency (more properly, its pseudofrequency), T1D
2�=!1 its pseudoperiod of oscillation, and Ce�pt its time-varying amplitude.
Most of these quantities are shown in the typical graph of underdamped motion in
Fig. 3.4.9. Note from Eq. (22) that in this case !1 is less than the undamped circular
frequency !0, so T1 is larger than the period T of oscillation of the same mass
without damping on the same spring. Thus the action of the dashpot has at least two
effects:

1. It exponentially damps the oscillations, in accord with the time-varying
amplitude.

2. It slows the motion; that is, the dashpot decreases the frequency of the motion.

As the following example illustrates, damping typically also delays the motion
further—that is, increases the time lag—as compared with undamped motion with
the same initial conditions.

Example 2 The mass and spring of Example 1 are now attached also to a dashpot that provides 1 N of
resistance for each meter per second of velocity. The mass is set in motion with the same
initial position x.0/ D 1 and initial velocity x0.0/ D �5 as in Example 1. Now find the
position function of the mass, its new frequency and pseudoperiod of motion, its new time
lag, and the times of its first four passages through the initial position x D 0.

Solution Rather than memorizing the various formulas given in the preceding discussion, it is better
practice in a particular case to set up the differential equation and then solve it directly.
Recall that m D 1

2 and k D 50; we are now given c D 1 in mks units. Hence Eq. (4) is
1
2x

00 C x0 C 50x D 0; that is,
x00 C 2x0 C 100x D 0:

The characteristic equation r2C 2rC 100D .rC 1/2C 99D 0 has roots r1, r2 D�1˙
p
99 i ,

so the general solution is

x.t/ D e�t .A cos
p
99 t C B sin

p
99 t/: (24)

Consequently, the new circular (pseudo)frequency is !1 D
p
99 � 9:9499 (as compared with

!0 D 10 in Example 1). The new (pseudo)period and frequency are

T1 D
2�

!1
D 2�p

99
� 0.6315 s

and

�1 D
1

T1
D !1

2�
D
p
99

2�
� 1.5836 Hz

(as compared with T � 0:6283 < T1 and � � 1:5915 > �1 in Example 1).



180 Chapter 3 Linear Equations of Higher Order

We now impose the initial conditions x.0/D 1 and x0.0/D�5 on the position function
in (23) and the resulting velocity function

x0.t/ D �e�t .A cos
p
99 t C B sin

p
99 t/C

p
99 e�t .�A sin

p
99 t C B cos

p
99 t/:

It follows that
x.0/ D A D 1 and x0.0/ D �AC B

p
99 D �5;

whence we find that A D 1 and B D �4=
p
99. Thus the new position function of the body is

x.t/ D e�t

�
cos
p
99 t � 4p

99
sin
p
99 t

�
:

Hence its time-varying amplitude of motion is

C1e
�t D

s
.1/2 C

�
� 4p

99

�2

e�t D
r
115

99
e�t :

We therefore write

x.t/ D
p
115p
99
e�t

 p
99p
115

cos
p
99 t � 4p

115
sin
p
99 t

!

D
r
115

99
e�t cos.

p
99 t � ˛1/;

where the phase angle ˛1 satisfies

cos˛1 D
p
99p
115

> 0 and sin˛1 D �
4p
115

< 0:

Hence ˛1 is the fourth-quadrant angle

˛1 D 2� C tan�1

 
�4=
p
115p

99=
p
115

!
D 2� � tan�1

�
4p
99

�
� 5:9009;

and the time lag of the motion is

ı1 D
˛1

!1
� 0.5931 s

(as compared with ı � 0:5820 < ı1 in Example 1). With the time-varying amplitude and
approximate phase angle shown explicitly, the position function of the mass takes the form

x.t/ �
r
115

99
e�t cos.

p
99 t � 5:9009/; (25)

and its graph is the damped exponential that is shown in Fig. 3.4.10 (in comparison with the
undamped oscillations of Example 1).

From (24) we see that the mass passes through its equilibrium position x D 0 when
cos.!1t � ˛1/ D 0, and thus when

!1t � ˛1 D �
3�

2
; ��

2
;

�

2
;

3�

2
; : : : I

that is, when

t D ı1 �
3�

2!1
; ı1 �

�

2!1
; ı1 C

�

2!1
; ı1 C

3�

2!1
; : : : :

We see similarly that the undamped mass of Example 1 passes through equilibrium when

t D ı0 �
3�

2!0
; ı0 �

�

2!0
; ı0 C

�

2!0
; ı0 C

3�

2!0
; : : : :
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The following table compares the first four values t1; t2; t3; t4 we calculate for the undamped
and damped cases, respectively.

n 1 2 3 4

tn (undamped) 0.1107 0.4249 0.7390 1.0532

tn (damped) 0.1195 0.4352 0.7509 1.0667

Accordingly, in Fig. 3.4.11 (where only the first three equilibrium passages are shown) we
see the damped oscillations lagging slightly behind the undamped ones.

t

1

x

1 2 3

–1

x = C1e–t

FIGURE 3.4.10. Graphs of the position function x.t/ D
C1e�t cos.!1t � ˛1/ of Example 2 (damped oscillations), the
position function x.t/ D C cos.!0t � ˛/ of Example 1 (undamped
oscillations), and the envelope curves x.t/ D ˙C1e�t .

x(t) = C1e–t cos (ω1t – α1)

0.25 0.5
t

1

x

–1

x = C1e–t
x(t) = C cos (ω0t – α)

FIGURE 3.4.11. Graphs on the interval 0 � t � 0:8 illustrating the
additional delay associated with damping.

3.4 Problems
1. Determine the period and frequency of the simple har-

monic motion of a 4-kg mass on the end of a spring with
spring constant 16 N=m.

2. Determine the period and frequency of the simple har-
monic motion of a body of mass 0:75 kg on the end of
a spring with spring constant 48 N=m.

3. A mass of 3 kg is attached to the end of a spring that is
stretched 20 cm by a force of 15 N. It is set in motion with
initial position x0 D 0 and initial velocity v0 D �10 m=s.
Find the amplitude, period, and frequency of the resulting
motion.

4. A body with mass 250 g is attached to the end of a spring
that is stretched 25 cm by a force of 9 N. At time t D 0 the
body is pulled 1 m to the right, stretching the spring, and
set in motion with an initial velocity of 5 m=s to the left.
(a) Find x.t/ in the form C cos.!0t � ˛/. (b) Find the
amplitude and period of motion of the body.

In Problems 5 through 8, assume that the differential equation
of a simple pendulum of length L is L� 00 C g� D 0, where
g D GM=R2 is the gravitational acceleration at the location
of the pendulum (at distance R from the center of the earth; M

denotes the mass of the earth).

5. Two pendulums are of lengths L1 and L2 and—when lo-
cated at the respective distances R1 and R2 from the cen-
ter of the earth—have periods p1 and p2. Show that

p1

p2
D R1

p
L1

R2
p
L2
:

6. A certain pendulum keeps perfect time in Paris, where the
radius of the earth is R D 3956 (mi). But this clock loses
2 min 40 s per day at a location on the equator. Use the
result of Problem 5 to find the amount of the equatorial
bulge of the earth.

7. A pendulum of length 100:10 in., located at a point at
sea level where the radius of the earth is R D 3960 (mi),
has the same period as does a pendulum of length 100:00
in. atop a nearby mountain. Use the result of Problem 5 to
find the height of the mountain.

8. Most grandfather clocks have pendulums with adjustable
lengths. One such clock loses 10 min per day when the
length of its pendulum is 30 in. With what length pendu-
lum will this clock keep perfect time?
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9. Derive Eq. (5) describing the motion of a mass attached to
the bottom of a vertically suspended spring. (Suggestion:
First denote by x.t/ the displacement of the mass below
the unstretched position of the spring; set up the differ-
ential equation for x. Then substitute y D x � s0 in this
differential equation.)

10. Consider a floating cylindrical buoy with radius r , height
h, and uniform density � 5 0:5 (recall that the density of
water is 1 g=cm3). The buoy is initially suspended at rest
with its bottom at the top surface of the water and is re-
leased at time t D 0. Thereafter it is acted on by two
forces: a downward gravitational force equal to its weight
mg D ��r2hg and (by Archimedes’ principle of buoy-
ancy) an upward force equal to the weight �r2xg of wa-
ter displaced, where x D x.t/ is the depth of the bottom
of the buoy beneath the surface at time t (Fig. 3.4.12).
Assume that friction is negligible. Conclude that the buoy
undergoes simple harmonic motion around its equilibrium
position xe D �h with period p D 2�

p
�h=g. Compute p

and the amplitude of the motion if �D 0:5 g=cm3, hD 200
cm, and g D 980 cm=s2.

Waterline

r

x

h

FIGURE 3.4.12. The buoy of Problem 10.

11. A cylindrical buoy weighing 100 lb (thus of mass m D
3:125 slugs in ft-lb-s (fps) units) floats in water with its
axis vertical (as in Problem 10). When depressed slightly
and released, it oscillates up and down four times every 10
s. Find the radius of the buoy.

12. Assume that the earth is a solid sphere of uniform density,
with mass M and radius R D 3960 (mi). For a particle of
mass m within the earth at distance r from the center of
the earth, the gravitational force attracting m toward the
center is Fr D �GMrm=r

2, where Mr is the mass of the
part of the earth within a sphere of radius r (Fig. 3.4.13).
(a) Show that Fr D �GMmr=R3. (b) Now suppose
that a small hole is drilled straight through the center of
the earth, thus connecting two antipodal points on its sur-
face. Let a particle of mass m be dropped at time t D 0

into this hole with initial speed zero, and let r.t/ be its
distance from the center of the earth at time t , where we
take r < 0 when the mass is “below” the center of the
earth. Conclude from Newton’s second law and part (a)
that r 00.t/ D �k2r.t/, where k2 D GM=R3 D g=R.

R
r

m

FR

FIGURE 3.4.13. A mass m falling down a hole
through the center of the earth (Problem 12).

(c) Take g D 32:2 ft=s2, and conclude from part (b) that
the particle undergoes simple harmonic motion back and
forth between the ends of the hole, with a period of about
84 min. (d) Look up (or derive) the period of a satellite
that just skims the surface of the earth; compare with the
result in part (c). How do you explain the coincidence?
Or is it a coincidence? (e) With what speed (in miles
per hour) does the particle pass through the center of the
earth? (f) Look up (or derive) the orbital velocity of a
satellite that just skims the surface of the earth; compare
with the result in part (e). How do you explain the coinci-
dence? Or is it a coincidence?

13. Suppose that the mass in a mass–spring–dashpot system
with m D 10, c D 9, and k D 2 is set in motion with
x.0/ D 0 and x0.0/ D 5. (a) Find the position func-
tion x.t/ and show that its graph looks as indicated in
Fig. 3.4.14. (b) Find how far the mass moves to the
right before starting back toward the origin.

0 10 15 205
t

x

5

0

–2

1

2

3

4

–1

FIGURE 3.4.14. The position function x.t/
of Problem 13.

14. Suppose that the mass in a mass–spring–dashpot system
with m D 25, c D 10, and k D 226 is set in motion with
x.0/ D 20 and x0.0/ D 41. (a) Find the position func-
tion x.t/ and show that its graph looks as indicated in
Fig. 3.4.15. (b) Find the pseudoperiod of the oscilla-
tions and the equations of the “envelope curves” that are
dashed in the figure.
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FIGURE 3.4.15. The position function x.t/
of Problem 14.

The remaining problems in this section deal with free damped
motion. In Problems 15 through 21, a mass m is attached
to both a spring (with given spring constant k) and a dash-
pot (with given damping constant c). The mass is set in mo-
tion with initial position x0 and initial velocity v0. Find the
position function x.t/ and determine whether the motion is
overdamped, critically damped, or underdamped. If it is un-
derdamped, write the position function in the form x.t/ D
C1e

�pt cos.!1t � ˛1/. Also, find the undamped position
function u.t/ D C0 cos.!0t � ˛0/ that would result if the mass
on the spring were set in motion with the same initial position
and velocity, but with the dashpot disconnected (so c D 0). Fi-
nally, construct a figure that illustrates the effect of damping
by comparing the graphs of x.t/ and u.t/.

15. m D 1
2 , c D 3, k D 4; x0 D 2, v0 D 0

16. m D 3, c D 30, k D 63; x0 D 2, v0 D 2
17. m D 1, c D 8, k D 16; x0 D 5, v0 D �10
18. m D 2, c D 12, k D 50; x0 D 0, v0 D �8
19. m D 4, c D 20, k D 169; x0 D 4, v0 D 16
20. m D 2, c D 16, k D 40; x0 D 5, v0 D 4
21. m D 1, c D 10, k D 125; x0 D 6, v0 D 50
22. A 12-lb weight (mass m D 0:375 slugs in fps units)

is attached both to a vertically suspended spring that it
stretches 6 in. and to a dashpot that provides 3 lb of re-
sistance for every foot per second of velocity. (a) If the
weight is pulled down 1 ft below its static equilibrium po-
sition and then released from rest at time t D 0, find its po-
sition function x.t/. (b) Find the frequency, time-varying
amplitude, and phase angle of the motion.

23. This problem deals with a highly simplified model of a car
of weight 3200 lb (mass m D 100 slugs in fps units). As-
sume that the suspension system acts like a single spring
and its shock absorbers like a single dashpot, so that its
vertical vibrations satisfy Eq. (4) with appropriate values
of the coefficients. (a) Find the stiffness coefficient k
of the spring if the car undergoes free vibrations at 80 cy-
cles per minute (cycles=min) when its shock absorbers are
disconnected. (b) With the shock absorbers connected,
the car is set into vibration by driving it over a bump, and
the resulting damped vibrations have a frequency of 78
cycles=min. After how long will the time-varying ampli-
tude be 1% of its initial value?

Problems 24 through 34 deal with a mass–spring–dashpot sys-
tem having position function x.t/ satisfying Eq. (4). We write
x0 D x.0/ and v0 D x0.0/ and recall that p D c=.2m/, !2

0 D
k=m, and !2

1 D !2
0 � p2. The system is critically damped,

overdamped, or underdamped, as specified in each problem.

24. (Critically damped) Show in this case that

x.t/ D .x0 C v0t C px0t /e
�pt :

25. (Critically damped) Deduce from Problem 24 that the
mass passes through x D 0 at some instant t > 0 if and
only if x0 and v0 C px0 have opposite signs.

26. (Critically damped) Deduce from Problem 24 that x.t/ has
a local maximum or minimum at some instant t > 0 if and
only if v0 and v0 C px0 have the same sign.

27. (Overdamped) Show in this case that

x.t/ D 1

2�



.v0 � r2x0/e

r1t � .v0 � r1x0/e
r2t
�
;

where r1; r2 D �p ˙
p
p2 � !2

0 and � D .r1 � r2/=2 > 0.
28. (Overdamped) If x0 D 0, deduce from Problem 27 that

x.t/ D v0

�
e�pt sinh � t:

29. (Overdamped) Prove that in this case the mass can pass
through its equilibrium position x D 0 at most once.

30. (Underdamped) Show that in this case

x.t/ D e�pt

�
x0 cos!1t C

v0 C px0

!1
sin!1t

�
:

31. (Underdamped) If the damping constant c is small in com-
parison with

p
8mk, apply the binomial series to show that

!1 � !0

 
1 � c2

8mk

!
:

32. (Underdamped) Show that the local maxima and minima
of

x.t/ D Ce�pt cos.!1t � ˛/
occur where

tan.!1t � ˛/ D �
p

!1
:

Conclude that t2 � t1 D 2�=!1 if two consecutive maxima
occur at times t1 and t2.

33. (Underdamped) Let x1 and x2 be two consecutive local
maximum values of x.t/. Deduce from the result of Prob-
lem 32 that

ln
x1

x2
D 2�p

!1
:

The constant�D 2�p=!1 is called the logarithmic decre-
ment of the oscillation. Note also that c D m!1�=� be-
cause p D c=.2m/.
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Note: The result of Problem 33 provides an accurate method
for measuring the viscosity of a fluid, which is an important
parameter in fluid dynamics but is not easy to measure directly.
According to Stokes’s drag law, a spherical body of radius a
moving at a (relatively slow) speed through a fluid of viscosity
 experiences a resistive force FR D 6�av. Thus if a spheri-
cal mass on a spring is immersed in the fluid and set in motion,
this drag resistance damps its oscillations with damping con-
stant c D 6�a. The frequency !1 and logarithmic decrement
� of the oscillations can be measured by direct observation.
The final formula in Problem 33 then gives c and hence the
viscosity of the fluid.

34. (Underdamped) A body weighing 100 lb (massmD 3:125
slugs in fps units) is oscillating attached to a spring and
a dashpot. Its first two maximum displacements of 6:73
in. and 1:46 in. are observed to occur at times 0:34 s and
1:17 s, respectively. Compute the damping constant (in
pound-seconds per foot) and spring constant (in pounds
per foot).

Differential Equations and Determinism
Given a mass m, a dashpot constant c, and a spring constant
k, Theorem 2 of Section 3.1 implies that the equation

mx00 C cx0 C kx D 0 (26)

has a unique solution for t = 0 satisfying given initial condi-
tions x.0/D x0, x0.0/D v0. Thus the future motion of an ideal
mass–spring–dashpot system is completely determined by the
differential equation and the initial conditions. Of course in

a real physical system it is impossible to measure the param-
eters m, c, and k precisely. Problems 35 through 38 explore
the resulting uncertainty in predicting the future behavior of a
physical system.

35. Suppose that m D 1, c D 2, and k D 1 in Eq. (26). Show
that the solution with x.0/ D 0 and x0.0/ D 1 is

x1.t/ D te�t :

36. Suppose that m D 1 and c D 2 but k D 1 � 10�2n. Show
that the solution of Eq. (26) with x.0/ D 0 and x0.0/ D 1

is
x2.t/ D 10ne�t sinh 10�nt:

37. Suppose that m D 1 and c D 2 but that k D 1C 10�2n.
Show that the solution of Eq. (26) with x.0/ D 0 and
x0.0/ D 1 is

x3.t/ D 10ne�t sin 10�nt:

38. Whereas the graphs of x1.t/ and x2.t/ resemble those
shown in Figs. 3.4.7 and 3.4.8, the graph of x3.t/ exhibits
damped oscillations like those illustrated in Fig. 3.4.9, but
with a very long pseudoperiod. Nevertheless, show that
for each fixed t > 0 it is true that

lim
n!1 x2.t/ D lim

n!1 x3.t/ D x1.t/:

Conclude that on a given finite time interval the three solu-
tions are in “practical” agreement if n is sufficiently large.

3.5 Nonhomogeneous Equations and Undetermined Coefficients
We learned in Section 3.3 how to solve homogeneous linear equations with constant
coefficients, but we saw in Section 3.4 that an external force in a simple mechanical
system contributes a nonhomogeneous term to its differential equation. The general
nonhomogeneous nth-order linear equation with constant coefficients has the form

any
.n/ C an�1y

.n�1/ C � � � C a1y
0 C a0y D f .x/: (1)

By Theorem 5 of Section 3.2, a general solution of Eq. (1) has the form

y D yc C yp (2)

where the complementary function yc.x/ is a general solution of the associated
homogeneous equation

any
.n/ C an�1y

.n�1/ C � � � C a1y
0 C a0y D 0; (3)

and yp.x/ is a particular solution of Eq. (1). Thus our remaining task is to find yp .
The method of undetermined coefficients is a straightforward way of doing

this when the given function f .x/ in Eq. (1) is sufficiently simple that we can make
an intelligent guess as to the general form of yp . For example, suppose that f .x/
is a polynomial of degree m. Then, because the derivatives of a polynomial are
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themselves polynomials of lower degree, it is reasonable to suspect a particular
solution

yp.x/ D Amx
m C Am�1x

m�1 C � � � C A1x C A0

that is also a polynomial of degreem, but with as yet undetermined coefficients. We
may, therefore, substitute this expression for yp into Eq. (1), and then—by equating
coefficients of like powers of x on the two sides of the resulting equation—attempt
to determine the coefficients A0, A1, : : : ; Am so that yp will, indeed, be a particular
solution of Eq. (1).

Similarly, suppose that

f .x/ D a cos kx C b sin kx:

Then it is reasonable to expect a particular solution of the same form:

yp.x/ D A cos kx C B sin kx;

a linear combination with undetermined coefficients A and B . The reason is that
any derivative of such a linear combination of cos kx and sin kx has the same form.
We may therefore substitute this form of yp in Eq. (1), and then—by equating co-
efficients of cos kx and sin kx on both sides of the resulting equation—attempt to
determine the coefficients A and B so that yp will, indeed, be a particular solution.

It turns out that this approach does succeed whenever all the derivatives of
f .x/ have the same form as f .x/ itself. Before describing the method in full gener-
ality, we illustrate it with several preliminary examples.

Example 1 Find a particular solution of y00 C 3y0 C 4y D 3x C 2.
Solution Here f .x/ D 3x C 2 is a polynomial of degree 1, so our guess is that

yp.x/ D Ax C B:

Then y0
p D A and y00

p D 0, so yp will satisfy the differential equation provided that

.0/C 3.A/C 4.Ax C B/ D 3x C 2;

that is,
.4A/x C .3AC 4B/ D 3x C 2

for all x. This will be true if the x-terms and constant terms on the two sides of this equation
agree. It therefore suffices for A and B to satisfy the two linear equations 4A D 3 and
3A C 4B D 2 that we readily solve for A D 3

4 and B D � 1
16 . Thus we have found the

particular solution

yp.x/ D 3
4x � 1

16 :

Example 2 Find a particular solution of y00 � 4y D 2e3x .

Solution Any derivative of e3x is a constant multiple of e3x , so it is reasonable to try

yp.x/ D Ae3x :

Then y00
p D 9Ae3x , so the given differential equation will be satisfied provided that

9Ae3x � 4.Ae3x/ D 2e3x I

that is, 5A D 2, so that A D 2
5 . Thus our particular solution is yp.x/ D 2

5e
3x .
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Example 3 Find a particular solution of 3y00 C y0 � 2y D 2 cos x.

Solution A first guess might be yp.x/ D A cos x, but the presence of y0 on the left-hand side signals
that we probably need a term involving sin x as well. So we try

yp.x/ D A cos x C B sin x;

y0
p.x/ D �A sin x C B cos x;

y00
p.x/ D �A cos x � B sin x:

Then substitution of yp and its derivatives into the given differential equation yields

3.�A cos x � B sin x/C .�A sin x C B cos x/ � 2.A cos x C B sin x/ D 2 cos x;

that is (collecting coefficients on the left),

.�5AC B/ cos x C .�A � 5B/ sin x D 2 cos x:

This will be true for all x provided that the cosine and sine terms on the two sides of this
equation agree. It therefore suffices for A and B to satisfy the two linear equations

�5A C B D 2,
�A � 5B D 0

with readily found solution A D � 5
13 , B D 1

13 . Hence a particular solution is

yp.x/ D � 5
13 cos x C 1

13 sin x:

The following example, which superficially resembles Example 2, indicates
that the method of undetermined coefficients is not always quite so simple as we
have made it appear.

Example 4 Find a particular solution of y00 � 4y D 2e2x .

Solution If we try yp.x/ D Ae2x , we find that

y00
p � 4yp D 4Ae2x � 4Ae2x D 0 ¤ 2e2x :

Thus, no matter how A is chosen, Ae2x cannot satisfy the given nonhomogeneous equation.
In fact, the preceding computation shows that Ae2x satisfies instead the associated homo-
geneous equation. Therefore, we should begin with a trial function yp.x/ whose derivative
involves both e2x and something else that can cancel upon substitution into the differential
equation to leave the e2x term that we need. A reasonable guess is

yp.x/ D Axe2x ;

for which

y0
p.x/ D Ae2x C 2Axe2x and y00

p.x/ D 4Ae2x C 4Axe2x :

Substitution into the original differential equation yields

.4Ae2x C 4Axe2x/ � 4.Axe2x/ D 2e2x :

The terms involving xe2x obligingly cancel, leaving only 4Ae2x D 2e2x , so that A D 1
2 .

Consequently, a particular solution is

yp.x/ D 1
2xe

2x :
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The General Approach
Our initial difficulty in Example 4 resulted from the fact that f .x/ D 2e2x satisfies
the associated homogeneous equation. Rule 1, given shortly, tells what to do when
we do not have this difficulty, and Rule 2 tells what to do when we do have it.

The method of undetermined coefficients applies whenever the function f .x/
in Eq. (1) is a linear combination of (finite) products of functions of the following
three types:

1. A polynomial in x;
2. An exponential function erx; (4)
3. cos kx or sin kx.

Any such function, for example,

f .x/ D .3 � 4x2/e5x � 4x3 cos 10x;

has the crucial property that only finitely many linearly independent functions ap-
pear as terms (summands) in f .x/ and its derivatives of all orders. In Rules 1 and
2 we assume that Ly D f .x/ is a nonhomogeneous linear equation with constant
coefficients and that f .x/ is a function of this kind.

RULE 1 Method of Undetermined Coefficients

Suppose that no term appearing either in f .x/ or in any of its derivatives satisfies
the associated homogeneous equation Ly D 0. Then take as a trial solution for
yp a linear combination of all linearly independent such terms and their deriva-
tives. Then determine the coefficients by substitution of this trial solution into
the nonhomogeneous equation Ly D f .x/.

Note that this rule is not a theorem requiring proof; it is merely a procedure to
be followed in searching for a particular solution yp. If we succeed in finding yp ,
then nothing more need be said. (It can be proved, however, that this procedure will
always succeed under the conditions specified here.)

In practice we check the supposition made in Rule 1 by first using the charac-
teristic equation to find the complementary function yc , and then write a list of all
the terms appearing in f .x/ and its successive derivatives. If none of the terms in
this list duplicates a term in yc , then we proceed with Rule 1.

Example 5 Find a particular solution of

y00 C 4y D 3x3: (5)

Solution The (familiar) complementary solution of Eq. (5) is

yc.x/ D c1 cos 2x C c2 sin 2x:

The function f .x/D 3x3 and its derivatives are constant multiples of the linearly independent
functions x3, x2, x, and 1. Because none of these appears in yc , we try

yp D Ax3 C Bx2 C Cx CD;
y0

p D 3Ax2 C 2Bx C C;
y00

p D 6Ax C 2B:
Substitution in Eq. (5) gives

y00
p C 4yp D .6Ax C 2B/C 4.Ax3 C Bx2 C Cx CD/

D 4Ax3 C 4Bx2 C .6AC 4C/x C .2B C 4D/ D 3x3:
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We equate coefficients of like powers of x in the last equation to get

4A D 3; 4B D 0;
6AC 4C D 0; 2B C 4D D 0

with solution A D 3
4 , B D 0, C D �9

8 , and D D 0. Hence a particular solution of Eq. (5) is

yp.x/ D 3
4x

3 � 9
8x:

Example 6 Solve the initial value problem

y00 � 3y0 C 2y D 3e�x � 10 cos 3xI
y.0/ D 1; y0.0/ D 2: (6)

Solution The characteristic equation r2 � 3r C 2D 0 has roots r D 1 and r D 2, so the complementary
function is

yc.x/ D c1e
x C c2e

2x :

The terms involved in f .x/D 3e�x �10 cos 3x and its derivatives are e�x , cos 3x, and sin 3x.
Because none of these appears in yc , we try

yp D Ae�x C B cos 3x C C sin 3x;

y0
p D �Ae�x � 3B sin 3x C 3C cos 3x;

y00
p D Ae�x � 9B cos 3x � 9C sin 3x:

After we substitute these expressions into the differential equation in (6) and collect coeffi-
cients, we get

y00
p � 3y0

p C 2yp D 6Ae�x C .�7B � 9C/ cos 3x C .9B � 7C/ sin 3x

D 3e�x � 10 cos 3x:

We equate the coefficients of the terms involving e�x , those involving cos 3x, and those
involving sin 3x. The result is the system

6A D 3,

�7B � 9C D �10,
9B � 7C D 0

with solution A D 1
2 , B D 7

13 , and C D 9
13 . This gives the particular solution

yp.x/ D 1
2e

�x C 7
13 cos 3x C 9

13 sin 3x;

which, however, does not have the required initial values in (6).
To satisfy those initial conditions, we begin with the general solution

y.x/ D yc.x/C yp.x/

D c1e
x C c2e

2x C 1
2e

�x C 7
13 cos 3x C 9

13 sin 3x;

with derivative

y0.x/ D c1ex C 2c2e
2x � 1

2e
�x � 21

13 sin 3x C 27
13 cos 3x:

The initial conditions in (6) lead to the equations

y.0/ D c1 C c2 C 1
2 C 7

13 D 1;

y0.0/ D c1 C 2c2 � 1
2 C 27

13 D 2

with solution c1 D �1
2 , c2 D 6

13 . The desired particular solution is therefore

y.x/ D �1
2e

x C 6
13 e

2x C 1
2e

�x C 7
13 cos 3x C 9

13 sin 3x:
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Example 7 Find the general form of a particular solution of

y.3/ C 9y0 D x sin x C x2e2x : (7)

Solution The characteristic equation r3 C 9r D 0 has roots r D 0, r D �3i , and r D 3i . So the
complementary function is

yc.x/ D c1 C c2 cos 3x C c3 sin 3x:

The derivatives of the right-hand side in Eq. (7) involve the terms

cos x; sin x; x cos x; x sin x;

e2x ; xe2x ; and x2e2x :

Because there is no duplication with the terms of the complementary function, the trial solu-
tion takes the form

yp.x/ D A cos x C B sin x C Cx cos x CDx sin x C Ee2x C Fxe2x CGx2e2x :

Upon substituting yp in Eq. (7) and equating coefficients of like terms, we get seven equations
determining the seven coefficients A, B , C , D, E, F , and G.

The Case of Duplication
Now we turn our attention to the situation in which Rule 1 does not apply: Some of
the terms involved in f .x/ and its derivatives satisfy the associated homogeneous
equation. For instance, suppose that we want to find a particular solution of the
differential equation

.D � r/3y D .2x � 3/erx : (8)

Proceeding as in Rule 1, our first guess would be

yp.x/ D Aerx C Bxerx : (9)

This form of yp.x/ will not be adequate because the complementary function of
Eq. (8) is

yc.x/ D c1e
rx C c2xe

rx C c3x
2erx ; (10)

so substitution of (9) in the left-hand side of (8) would yield zero rather than
.2x � 3/erx .

To see how to amend our first guess, we observe that

.D � r/2Œ.2x � 3/erx � D ŒD2.2x � 3/�erx D 0

by Eq. (13) of Section 3.3. If y.x/ is any solution of Eq. (8) and we apply the
operator .D � r/2 to both sides, we see that y.x/ is also a solution of the equation
.D � r/5y D 0. The general solution of this homogeneous equation can be written
as

y.x/ D c1e
rx C c2xe

rx C c3x
2erx„ ƒ‚ …

yc

CAx3erx C Bx4erx„ ƒ‚ …
yp

:

Thus every solution of our original equation in (8) is the sum of a complementary
function and a particular solution of the form

yp.x/ D Ax3erx C Bx4erx : (11)
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Note that the right-hand side in Eq. (11) can be obtained by multiplying each term
of our first guess in (9) by the least positive integral power of x (in this case, x3)
that suffices to eliminate duplication between the terms of the resulting trial solution
yp.x/ and the complementary function yc.x/ given in (10). This procedure succeeds
in the general case.

To simplify the general statement of Rule 2, we observe that to find a particular
solution of the nonhomogeneous linear differential equation

Ly D f1.x/C f2.x/; (12)

it suffices to find separately particular solutions Y1.x/ and Y2.x/ of the two equa-
tions

Ly D f1.x/ and Ly D f2.x/; (13)

respectively. For linearity then gives

LŒY1 C Y2� D LY1 C LY2 D f1.x/C f2.x/;

and therefore yp D Y1 C Y2 is a particular solution of Eq. (12). (This is a type of
“superposition principle” for nonhomogeneous linear equations.)

Now our problem is to find a particular solution of the equation Ly D f .x/,
where f .x/ is a linear combination of products of the elementary functions listed in
(4). Thus f .x/ can be written as a sum of terms each of the form

Pm.x/e
rx cos kx or Pm.x/e

rx sin kx; (14)

where Pm.x/ is a polynomial in x of degree m. Note that any derivative of such
a term is of the same form but with both sines and cosines appearing. The proce-
dure by which we arrived earlier at the particular solution in (11) of Eq. (8) can be
generalized to show that the following procedure is always successful.

RULE 2 Method of Undetermined Coefficients

If the function f .x/ is of either form in (14), take as the trial solution

yp.x/ D xsŒ.A0 C A1x C A2x
2 C � � � C Amx

m/erx cos kx

C .B0 C B1x C B2x
2 C � � � C Bmx

m/erx sin kx�; (15)

where s is the smallest nonnegative integer such that no term in yp duplicates
a term in the complementary function yc . Then determine the coefficients in
Eq. (15) by substituting yp into the nonhomogeneous equation.

In practice we seldom need to deal with a function f .x/ exhibiting the full
generality in (14). The table in Fig. 3.5.1 lists the form of yp in various common
cases, corresponding to the possibilities m D 0, r D 0, and k D 0.

On the other hand, it is common to have

f .x/ D f1.x/C f2.x/;

where f1.x/ and f2.x/ are different functions of the sort listed in the table in
Fig. 3.5.1. In this event we take as yp the sum of the trial solutions for f1.x/

and f2.x/, choosing s separately for each part to eliminate duplication with the
complementary function. This procedure is illustrated in Examples 8 through 10.
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f .x/ yp

Pm.x/ D b0 C b1x C b2x
2 C � � � C bmx

m

a cos kx C b sin kx

erx.a cos kx C b sin kx/

Pm.x/e
rx

Pm.x/.a cos kx C b sin kx/

xs.A0 C A1x C A2x
2 C � � � C Amx

m/

xs.A cos kx C B sin kx/

xserx.A cos kx C B sin kx/

xs.A0 C A1x C A2x
2 C � � � C Amx

m/erx

xs Œ.A0 C A1x C � � � C Amx
m/ cos kx

C .B0 C B1x C � � � C Bmx
m/ sin kx�

FIGURE 3.5.1. Substitutions in the method of undetermined coefficients.

Example 8 Find a particular solution of

y.3/ C y00 D 3ex C 4x2: (16)

Solution The characteristic equation r3 C r2 D 0 has roots r1 D r2 D 0 and r3 D �1, so the comple-
mentary function is

yc.x/ D c1 C c2x C c3e
�x :

As a first step toward our particular solution, we form the sum

.Aex/C .B C Cx CDx2/:

The part Aex corresponding to 3ex does not duplicate any part of the complementary func-
tion, but the part B C Cx CDx2 must be multiplied by x2 to eliminate duplication. Hence
we take

yp D Aex C Bx2 C Cx3 CDx4;

y0
p D Aex C 2Bx C 3Cx2 C 4Dx3;

y00
p D Aex C 2B C 6Cx C 12Dx2; and

y
.3/
p D Aex C 6C C 24Dx:

Substitution of these derivatives in Eq. (16) yields

2Aex C .2B C 6C/C .6C C 24D/x C 12Dx2 D 3ex C 4x2:

The system of equations

2A D 3; 2B C 6C D 0;
6C C 24D D 0; 12D D 4

has the solution A D 3
2 , B D 4, C D �4

3 , and D D 1
3 . Hence the desired particular solution

is

yp.x/ D 3
2e

x C 4x2 � 4
3x

3 C 1
3x

4:

Example 9 Determine the appropriate form for a particular solution of

y00 C 6y0 C 13y D e�3x cos 2x:

Solution The characteristic equation r2C 6r C 13D 0 has roots �3˙ 2i , so the complementary func-
tion is

yc.x/ D e�3x.c1 cos 2x C c2 sin 2x/:

This is the same form as a first attempt e�3x.A cos 2x C B sin 2x/ at a particular solution, so
we must multiply by x to eliminate duplication. Hence we would take

yp.x/ D e�3x.Ax cos 2x C Bx sin 2x/:
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Example 10 Determine the appropriate form for a particular solution of the fifth-order equation

.D � 2/3.D2 C 9/y D x2e2x C x sin 3x:

Solution The characteristic equation .r � 2/3.r2 C 9/ D 0 has roots r D 2, 2, 2, 3i , and �3i , so the
complementary function is

yc.x/ D c1e2x C c2xe2x C c3x2e2x C c4 cos 3x C c5 sin 3x:

As a first step toward the form of a particular solution, we examine the sum

Œ.AC Bx C Cx2/e2x �C Œ.D CEx/ cos 3x C .F CGx/ sin 3x�:

To eliminate duplication with terms of yc.x/, the first part—corresponding to
x2e2x—must be multiplied by x3, and the second part—corresponding to x sin 3x—must
be multiplied by x. Hence we would take

yp.x/ D .Ax3 C Bx4 C Cx5/e2x C .Dx CEx2/ cos 3x C .F x CGx2/ sin 3x:

Variation of Parameters
Finally, let us point out the kind of situation in which the method of undetermined
coefficients cannot be used. Consider, for example, the equation

y00 C y D tan x; (17)

which at first glance may appear similar to those considered in the preceding ex-
amples. Not so; the function f .x/ D tan x has infinitely many linearly independent
derivatives

sec2 x; 2 sec2 x tan x; 4 sec2 x tan2 x C 2 sec4 x; : : : :

Therefore, we do not have available a finite linear combination to use as a trial
solution.

We discuss here the method of variation of parameters, which—in principle
(that is, if the integrals that appear can be evaluated)—can always be used to find a
particular solution of the nonhomogeneous linear differential equation

y.n/ C pn�1.x/y
.n�1/ C � � � C p1.x/y

0 C p0.x/y D f .x/; (18)

provided that we already know the general solution

yc D c1y1 C c2y2 C � � � C cnyn (19)

of the associated homogeneous equation

y.n/ C pn�1.x/y
.n�1/ C � � � C p1.x/y

0 C p0.x/y D 0: (20)

Here, in brief, is the basic idea of the method of variation of parameters. Sup-
pose that we replace the constants, or parameters, c1, c2, : : : ; cn in the complemen-
tary function in Eq. (19) with variables: functions u1, u2, : : : ; un of x. We ask
whether it is possible to choose these functions in such a way that the combination

yp.x/ D u1.x/y1.x/C u2.x/y2.x/C � � � C un.x/yn.x/ (21)
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is a particular solution of the nonhomogeneous equation in (18). It turns out that
this is always possible.

The method is essentially the same for all orders n = 2, but we will describe
it in detail only for the case n D 2. So we begin with the second-order nonhomoge-
neous equation

LŒy� D y00 C P.x/y0 CQ.x/y D f .x/ (22)

with complementary function

yc.x/ D c1y1.x/C c2y2.x/ (23)

on some open interval I where the functions P and Q are continuous. We want to
find functions u1 and u2 such that

yp.x/ D u1.x/y1.x/C u2.x/y2.x/ (24)

is a particular solution of Eq. (22).
One condition on the two functions u1 and u2 is that LŒyp� D f .x/. Because

two conditions are required to determine two functions, we are free to impose an
additional condition of our choice. We will do so in a way that simplifies the com-
putations as much as possible. But first, to impose the condition LŒyp� D f .x/, we
must compute the derivatives y0

p and y00
p . The product rule gives

y0
p D .u1y

0
1 C u2y

0
2/C .u0

1y1 C u0
2y2/:

To avoid the appearance of the second derivatives u00
1 and u00

2, the additional condition
that we now impose is that the second sum here must vanish:

u0
1y1 C u0

2y2 D 0: (25)

Then

y0
p D u1y

0
1 C u2y

0
2; (26)

and the product rule gives

y00
p D .u1y

00
1 C u2y

00
2 /C .u0

1y
0
1 C u0

2y
0
2/: (27)

But both y1 and y2 satisfy the homogeneous equation

y00 C Py0 CQy D 0

associated with the nonhomogeneous equation in (22), so

y00
i D �Py0

i �Qyi (28)

for i D 1, 2. It therefore follows from Eq. (27) that

y00
p D .u0

1y
0
1 C u0

2y
0
2/ � P � .u1y

0
1 C u2y

0
2/ �Q � .u1y1 C u2y2/:

In view of Eqs. (24) and (26), this means that

y00
p D .u0

1y
0
1 C u0

2y
0
2/ � Py0

p �QypI
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hence

LŒyp� D u0
1y

0
1 C u0

2y
0
2: (29)

The requirement that yp satisfy the nonhomogeneous equation in (22)—that is, that
LŒyp� D f .x/—therefore implies that

u0
1y

0
1 C u0

2y
0
2 D f .x/: (30)

Finally, Eqs. (25) and (30) determine the functions u1 and u2 that we need.
Collecting these equations, we obtain a system

u0
1y1 C u0

2y2 D 0;
u0

1y
0
1 C u0

2y
0
2 D f .x/

(31)

of two linear equations in the two derivatives u0
1 and u0

2. Note that the determinant
of coefficients in (31) is simply the Wronskian W.y1; y2/. Once we have solved
the equations in (31) for the derivatives u0

1 and u0
2, we integrate each to obtain the

functions u1 and u2 such that

yp D u1y1 C u2y2 (32)

is the desired particular solution of Eq. (22). In Problem 63 we ask you to carry
out this process explicitly and thereby verify the formula for yp.x/ in the following
theorem.

THEOREM 1 Variation of Parameters

If the nonhomogeneous equation y00CP.x/y0CQ.x/y D f .x/ has complemen-
tary function yc.x/ D c1y1.x/C c2y2.x/, then a particular solution is given by

yp.x/ D �y1.x/

Z
y2.x/f .x/

W.x/
dx C y2.x/

Z
y1.x/f .x/

W.x/
dx; (33)

where W D W.y1; y2/ is the Wronskian of the two independent solutions y1 and
y2 of the associated homogeneous equation.

Example 11 Find a particular solution of the equation y00 C y D tan x.
Solution The complementary function is yc.x/ D c1 cos x C c2 sin x, and we could simply substitute

directly in Eq. (33). But it is more instructive to set up the equations in (31) and solve for u0
1

and u0
2, so we begin with

y1 D cos x; y2 D sin x;

y0
1 D � sin x; y0

2 D cos x:

Hence the equations in (31) are

.u0
1/.cos x/C .u0

2/.sin x/ D 0;
.u0

1/.� sin x/C .u0
2/.cos x/ D tan x:

We easily solve these equations for

u0
1 D � sin x tan x D � sin2 x

cos x
D cos x � sec x;

u0
2 D cos x tan x D sin x:
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Hence we take

u1 D
Z
.cos x � sec x/ dx D sin x � ln j sec x C tan xj

and

u2 D
Z

sin x dx D � cos x:

(Do you see why we choose the constants of integration to be zero?) Thus our particular
solution is

yp.x/ D u1.x/y1.x/C u2.x/y2.x/

D .sin x � ln jsec x C tan xj/ cos x C .� cos x/.sin x/I

that is,

yp.x/ D �.cos x/ ln jsec x C tan xj :

3.5 Problems
In Problems 1 through 20, find a particular solution yp of the
given equation. In all these problems, primes denote deriva-
tives with respect to x.

1. y00 C 16y D e3x 2. y00 � y0 � 2y D 3x C 4
3. y00 � y0 � 6y D 2 sin 3x 4. 4y00 C 4y0 C y D 3xex

5. y00 C y0 C y D sin2 x 6. 2y00 C 4y0 C 7y D x2

7. y00 � 4y D sinh x 8. y00 � 4y D cosh 2x
9. y00 C 2y0 � 3y D 1C xex

10. y00 C 9y D 2 cos 3x C 3 sin 3x
11. y.3/ C 4y0 D 3x � 1 12. y.3/ C y0 D 2 � sin x
13. y00 C 2y0 C 5y D ex sin x 14. y.4/ � 2y00 C y D xex

15. y.5/ C 5y.4/ � y D 17 16. y00 C 9y D 2x2e3x C 5
17. y00 C y D sin x C x cos x
18. y.4/ � 5y00 C 4y D ex � xe2x

19. y.5/ C 2y.3/ C 2y00 D 3x2 � 1
20. y.3/ � y D ex C 7

In Problems 21 through 30, set up the appropriate form of a
particular solution yp , but do not determine the values of the
coefficients.

21. y00 � 2y0 C 2y D ex sin x
22. y.5/ � y.3/ D ex C 2x2 � 5
23. y00 C 4y D 3x cos 2x
24. y.3/ � y00 � 12y0 D x � 2xe�3x

25. y00 C 3y0 C 2y D x.e�x � e�2x/

26. y00 � 6y0 C 13y D xe3x sin 2x
27. y.4/ C 5y00 C 4y D sin x C cos 2x
28. y.4/ C 9y00 D .x2 C 1/ sin 3x
29. .D � 1/3.D2 � 4/y D xex C e2x C e�2x

30. y.4/ � 2y00 C y D x2 cos x

Solve the initial value problems in Problems 31 through 40.

31. y00 C 4y D 2x; y.0/ D 1, y0.0/ D 2
32. y00 C 3y0 C 2y D ex ; y.0/ D 0, y0.0/ D 3

33. y00 C 9y D sin 2x; y.0/ D 1, y0.0/ D 0
34. y00 C y D cos x; y.0/ D 1, y0.0/ D �1
35. y00 � 2y0 C 2y D x C 1; y.0/ D 3, y0.0/ D 0
36. y.4/ � 4y00 D x2; y.0/D y0.0/D 1, y00.0/D y.3/.0/D�1
37. y.3/ � 2y00 C y0 D 1C xex ; y.0/ D y0.0/ D 0, y00.0/ D 1
38. y00 C 2y0 C 2y D sin 3x; y.0/ D 2, y0.0/ D 0
39. y.3/ C y00 D x C e�x ; y.0/ D 1, y0.0/ D 0, y00.0/ D 1
40. y.4/ � y D 5; y.0/ D y0.0/ D y00.0/ D y.3/.0/ D 0
41. Find a particular solution of the equation

y.4/ � y.3/ � y00 � y0 � 2y D 8x5:

42. Find the solution of the initial value problem consisting
of the differential equation of Problem 41 and the initial
conditions

y.0/ D y0.0/ D y00.0/ D y.3/.0/ D 0:
43. (a) Write

cos 3x C i sin 3x D e3ix D .cos x C i sin x/3

by Euler’s formula, expand, and equate real and imag-
inary parts to derive the identities

cos3 x D 3
4 cos x C 1

4 cos 3x;

sin3 x D 3
4 sin x � 1

4 sin 3x:

(b) Use the result of part (a) to find a general solution of

y00 C 4y D cos3 x:

Use trigonometric identities to find general solutions of the
equations in Problems 44 through 46.

44. y00 C y0 C y D sin x sin 3x
45. y00 C 9y D sin4 x

46. y00 C y D x cos3 x

In Problems 47 through 56, use the method of variation of pa-
rameters to find a particular solution of the given differential
equation.
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47. y00 C 3y0 C 2y D 4ex 48. y00�2y0�8y D 3e�2x

49. y00 � 4y0 C 4y D 2e2x 50. y00 � 4y D sinh 2x
51. y00 C 4y D cos 3x 52. y00 C 9y D sin 3x
53. y00 C 9y D 2 sec 3x 54. y00 C y D csc2 x

55. y00 C 4y D sin2 x 56. y00 � 4y D xex

57. You can verify by substitution that yc D c1x C c2x
�1 is a

complementary function for the nonhomogeneous second-
order equation

x2y00 C xy0 � y D 72x5:

But before applying the method of variation of parame-
ters, you must first divide this equation by its leading co-
efficient x2 to rewrite it in the standard form

y00 C 1

x
y0 � 1

x2
y D 72x3:

Thus f .x/ D 72x3 in Eq. (22). Now proceed to solve the
equations in (31) and thereby derive the particular solution
yp D 3x5.

In Problems 58 through 62, a nonhomogeneous second-order
linear equation and a complementary function yc are given.
Apply the method of Problem 57 to find a particular solution
of the equation.

58. x2y00 � 4xy0 C 6y D x3; yc D c1x
2 C c2x

3

59. x2y00 � 3xy0 C 4y D x4; yc D x2.c1 C c2 ln x/

60. 4x2y00 � 4xy0 C 3y D 8x4=3; yc D c1x C c2x
3=4

61. x2y00 C xy0 C y D ln x; yc D c1 cos.ln x/C c2 sin.ln x/

62. .x2 � 1/y00 � 2xy0 C 2y D x2 � 1; yc D c1xC c2.1C x2/

63. Carry out the solution process indicated in the text to
derive the variation of parameters formula in (33) from
Eqs. (31) and (32).

64. Apply the variation of parameters formula in (33) to find
the particular solution yp.x/ D �x cos x of the nonhomo-
geneous equation y00 C y D 2 sin x.

3.5 Application Automated Variation of Parameters
The variation of parameters formula in (33) is especially amenable to implementa-
tion in a computer algebra system when the indicated integrals would be too tedious
or inconvenient for manual evaluation. For example, suppose that we want to find a
particular solution of the nonhomogeneous equation

y00 C y D tan x

of Example 11, with complementary function yc.x/ D c1 cos x C c2 sin x. Then the
Maple commands

y1 := cos(x):
y2 := sin(x):
f := tan(x):
W := y1*diff(y2,x) -- y2*diff(y1,x):
W := simplify(W):
yp := --y1*int(y2*f/W,x) + y2*int(y1*f/W,x):
simplify(yp);

implement (33) and produce the result

yp.x/ D �.cos x/ ln
�
1C sin x

cos x

�

equivalent to the result yp.x/ D �.cos x/ ln.secx C tan x/ found in Example 11.
The analogous Mathematica commands

y1 = Cos[x];
y2 = Sin[x];
f = Tan[x];
W = y1*D[y2,x] -- y2*D[y1,x] // Simplify
yp = --y1*Integrate[y2*f/W,x] + y2*Integrate[y1*f/W,x];
Simplify[yp]
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produce the result

yp.x/ D �.cos x/ ln
�

cos.x=2/C sin.x=2/
cos.x=2/ � sin.x=2/

�
;

which (by the usual difference-of-squares technique) also is equivalent to the result
found in Example 11.

To solve similarly a second-order linear equation y00 C P.x/y0 C Q.x/y D
f .x/whose complementary function yc.x/D c1y1.x/C c2y2.x/ is known, we need
only insert the corresponding definitions of y1.x/, y2.x/, and f .x/ in the initial
lines shown here. Find in this way the indicated particular solution yp.x/ of the
nonhomogeneous equations in Problems 1 through 6.

1. y00 C y D 2 sin x yp.x/ D �x cos x
2. y00 C y D 4x sin x yp.x/ D x sin x � x2 cos x
3. y00 C y D 12x2 sin x yp.x/ D 3x2 sin x C .3x � 2x3/ cos x
4. y00 � 2y0 C 2y D 2ex sin x yp.x/ D �xex cos x
5. y00 � 2y0 C 2y D 4xex sin x yp.x/ D ex.x sin x � x2 cos x/
6. y00 � 2y0 C 2y D 12x2ex sin x yp.x/ D ex



3x2 sin x C .3x � 2x3/ cos x

�

3.6 Forced Oscillations and Resonance
In Section 3.4 we derived the differential equation

mx00 C cx0 C kx D F.t/ (1)

that governs the one-dimensional motion of a mass m that is attached to a spring
(with constant k) and a dashpot (with constant c) and is also acted on by an external
force F.t/. Machines with rotating components commonly involve mass-spring
systems (or their equivalents) in which the external force is simple harmonic:

F.t/ D F0 cos!t or F.t/ D F0 sin!t; (2)

where the constant F0 is the amplitude of the periodic force and ! is its circular
frequency.

For an example of how a rotating machine component can provide a sim-
ple harmonic force, consider the cart with a rotating vertical flywheel shown in
Fig. 3.6.1. The cart has mass m �m0, not including the flywheel of mass m0. The
centroid of the flywheel is off center at a distance a from its center, and its angular
speed is ! radians per second. The cart is attached to a spring (with constant k)

Equilibrium
position

x

k

m0a
ω t

FIGURE 3.6.1. The cart-with-
flywheel system.

as shown. Assume that the centroid of the cart itself is directly beneath the center
of the flywheel, and denote by x.t/ its displacement from its equilibrium position
(where the spring is unstretched). Figure 3.6.1 helps us to see that the displacement
x of the centroid of the combined cart plus flywheel is given by

x D .m �m0/x Cm0.x C a cos!t/
m

D x C m0a

m
cos!t:

Let us ignore friction and apply Newton’s second law mx00 D �kx, because the
force exerted by the spring is �kx. We substitute for x in the last equation to obtain

mx00 �m0a!
2 cos!t D �kxI
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that is,

mx00 C kx D m0a!
2 cos!t: (3)

Thus the cart with its rotating flywheel acts like a mass on a spring under the in-
fluence of a simple harmonic external force with amplitude F0 D m0a!

2. Such a
system is a reasonable model of a front-loading washing machine with the clothes
being washed loaded off center. This illustrates the practical importance of analyz-
ing solutions of Eq. (1) with external forces as in (2).

Undamped Forced Oscillations
To study undamped oscillations under the influence of the external force F.t/ D
F0 cos!t , we set c D 0 in Eq. (1), and thereby begin with the equation

mx00 C kx D F0 cos!t (4)

whose complementary function is xc D c1 cos!0t C c2 sin!0t . Here

!0 D
r
k

m

(as in Eq. (9) of Section 3.4) is the (circular) natural frequency of the mass–spring
system. The fact that the angle !0t is measured in (dimensionless) radians reminds
us that if t is measured in seconds (s), then !0 is measured in radians per second—
that is, in inverse seconds (s�1). Also recall from Eq. (14) in Section 3.4 that di-
vision of a circular frequency ! by the number 2� of radians in a cycle gives the
corresponding (ordinary) frequency � D !=2� in Hz (hertz D cycles per second).

Let us assume initially that the external and natural frequencies are unequal:
! 6D !0. We substitute xp D A cos!t in Eq. (4) to find a particular solution. (No
sine term is needed in xp because there is no term involving x0 on the left-hand side
in Eq. (4).) This gives

�m!2A cos!t C kA cos!t D F0 cos!t;

so

A D F0

k �m!2
D F0=m

!2
0 � !2

; (5)

and thus

xp.t/ D
F0=m

!2
0 � !2

cos!t: (6)

Therefore, the general solution x D xc C xp is given by

x.t/ D c1 cos!0t C c2 sin!0t C
F0=m

!2
0 � !2

cos!t; (7)

where the constants c1 and c2 are determined by the initial values x.0/ and x0.0/.
Equivalently, as in Eq. (12) of Section 3.4, we can rewrite Eq. (7) as

x.t/ D C cos.!0t � ˛/C
F0=m

!2
0 � !2

cos!t; (8)

so we see that the resulting motion is a superposition of two oscillations, one with
natural circular frequency !0, the other with the frequency ! of the external force.
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Example 1 Suppose that m D 1, k D 9, F0 D 80, and ! D 5, so the differential equation in (4) is

x00 C 9x D 80 cos 5t:

Find x.t/ if x.0/ D x0.0/ D 0.
Solution Here the natural frequency !0 D 3 and the frequency ! D 5 of the external force are unequal,

as in the preceding discussion. First we substitute xp D A cos 5t in the differential equation
and find that �25AC 9A D 80, so that A D �5. Thus a particular solution is

xp.t/ D �5 cos 5t:

The complementary function is xc D c1 cos 3t C c2 sin 3t , so the general solution of the given

6π3π 5π4ππ 2π

Period = 2π

0
t

x

15

0

–15

5

–10

10

–5

FIGURE 3.6.2. The response
x.t/ D 5 cos 3t � 5 cos 5t in Example
1.

nonhomogeneous equation is

x.t/ D c1 cos 3t C c2 sin 3t � 5 cos 5t;

with derivative
x0.t/ D �3c1 sin 3t C 3c2 cos 3t C 25 sin 5t:

The initial conditions x.0/ D 0 and x0.0/ D 0 now yield c1 D 5 and c2 D 0, so the desired
particular solution is

x.t/ D 5 cos 3t � 5 cos 5t:

As indicated in Fig. 3.6.2, the period of x.t/ is the least common multiple 2� of the periods
2�=3 and 2�=5 of the two cosine terms.

Beats
If we impose the initial conditions x.0/ D x0.0/ D 0 on the solution in (7), we find
that

c1 D �
F0

m.!2
0 � !2/

and c2 D 0;

so the particular solution is

x.t/ D F0

m.!2
0 � !2/

.cos!t � cos!0t /: (9)

The trigonometric identity 2 sinA sinB D cos.A � B/ � cos.AC B/, applied with
A D 1

2
.!0 C !/t and B D 1

2
.!0 � !/t , enables us to rewrite Eq. (9) in the form

x.t/ D 2F0

m.!2
0 � !2/

sin 1
2
.!0 � !/t sin 1

2
.!0 C !/t: (10)

Suppose now that ! � !0, so that !0C! is very large in comparison with j!0 �!j.
Then sin 1

2
.!0C!/t is a rapidly varying function, whereas sin 1

2
.!0�!/t is a slowly

varying function. We may therefore interpret Eq. (10) as a rapid oscillation with
circular frequency 1

2
.!0 C !/,

x.t/ D A.t/ sin 1
2
.!0 C !/t;

but with a slowly varying amplitude

A.t/ D 2F0

m.!2
0 � !2/

sin 1
2
.!0 � !/t:
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Example 2 With m D 0:1, F0 D 50, !0 D 55, and ! D 45, Eq. (10) gives

x.t/ D sin 5t sin 50t:

Figure 3.6.3 shows the corresponding oscillation of frequency 1
2 .!0 C !/ D 50 that is “mod-

3.02.52.01.51.00.5
t

x = sin 5t

x = sin 5t sin 50t

x

0.0

–1.0

–1.5

1.5

1.0

0.5

0.0

–0.5

FIGURE 3.6.3. The phenomenon of
beats.

ulated” by the amplitude function A.t/ D sin 5t of frequency 1
2 .!0 � !/ D 5.

A rapid oscillation with a (comparatively) slowly varying periodic amplitude
exhibits the phenomenon of beats. For example, if two horns not exactly attuned
to one another simultaneously play their middle C, one at !0=.2�/ D 258 Hz and
the other at !=.2�/ D 254 Hz, then one hears a beat—an audible variation in the
amplitude of the combined sound—with a frequency of

.!0 � !/=2
2�

D 258 � 254
2

D 2 (Hz):

Resonance
Looking at Eq. (6), we see that the amplitude A of xp is large when the natural and
external frequencies !0 and ! are approximately equal. It is sometimes useful to
rewrite Eq. (5) in the form

A D F0

k �m!2
D F0=k

1 � .!=!0/2
D ˙�F0

k
; (11)

where F0=k is the static displacement of a spring with constant k due to a constant
force F0, and the amplification factor � is defined to be

� D 1

j1 � .!=!0/2j
: (12)

It is clear that � ! C1 as ! ! !0. This is the phenomenon of resonance—the
increase without bound (as !! !0) in the amplitude of oscillations of an undamped
system with natural frequency !0 in response to an external force with frequency
! � !0.

We have been assuming that ! ¤ !0. What sort of catastrophe should one
expect if ! and !0 are precisely equal? Then Eq. (4), upon division of each term by
m, becomes

x00 C !2
0x D

F0

m
cos!0t: (13)

Because cos!0t is a term of the complementary function, the method of undeter-
mined coefficients calls for us to try

xp.t/ D t .A cos!0t C B sin!0t /:

We substitute this in Eq. (13) and thereby find that A D 0 and B D F0=.2m!0/.
Hence the particular solution is

xp.t/ D
F0

2m!0

t sin!0t: (14)

The graph of xp.t/ in Fig. 3.6.4 (in which m D 1, F0 D 100, and !0 D 50) shows
vividly how the amplitude of the oscillation theoretically would increase without
bound in this case of pure resonance, ! D !0. We may interpret this phenomenon
as reinforcement of the natural vibrations of the system by externally impressed

1.501.251.000.750.500.25
t

x = t

x = t sin 50t

x

0.00
–1.5

–1.0

–0.5

1.5

1.0

0.5

0.0

FIGURE 3.6.4. The phenomenon of
resonance.

vibrations at the same frequency.
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Example 3 Suppose that m D 5 kg and k D 500 N=m in the cart with the flywheel of Fig. 3.6.1. Then
the natural frequency is !0 D

p
k=m D 10 rad=s; that is, 10=.2�/ � 1:59 Hz. We would

therefore expect oscillations of very large amplitude to occur if the flywheel revolves at about
.1:59/.60/ � 95 revolutions per minute (rpm).

In practice, a mechanical system with very little damping can be destroyed by
resonance vibrations. A spectacular example can occur when a column of soldiers
marches in step over a bridge. Any complicated structure such as a bridge has many
natural frequencies of vibration. If the frequency of the soldiers’ cadence is approx-
imately equal to one of the natural frequencies of the structure, then—just as in our
simple example of a mass on a spring—resonance will occur. Indeed, the resulting
resonance vibrations can be of such large amplitude that the bridge will collapse.
This has actually happened—for example, the collapse of Broughton Bridge near
Manchester, England, in 1831—and it is the reason for the now-standard practice
of breaking cadence when crossing a bridge. Resonance may have been involved
in the 1981 Kansas City disaster in which a hotel balcony (called a skywalk) col-
lapsed with dancers on it. The collapse of a building in an earthquake is sometimes
due to resonance vibrations caused by the ground oscillating at one of the natural
frequencies of the structure; this happened to many buildings in the Mexico City
earthquake of September 19, 1985. On occasion an airplane has crashed because of
resonant wing oscillations caused by vibrations of the engines. It is reported that
for some of the first commercial jet aircraft, the natural frequency of the vertical
vibrations of the airplane during turbulence was almost exactly that of the mass–
spring system consisting of the pilot’s head (mass) and spine (spring). Resonance
occurred, causing pilots to have difficulty in reading the instruments. Large modern
commercial jets have different natural frequencies, so that this resonance problem
no longer occurs.

Modeling Mechanical Systems
The avoidance of destructive resonance vibrations is an ever-present consideration
in the design of mechanical structures and systems of all types. Often the most
important step in determining the natural frequency of vibration of a system is the
formulation of its differential equation. In addition to Newton’s law F D ma, the
principle of conservation of energy is sometimes useful for this purpose (as in the
derivation of the pendulum equation in Section 3.4). The following kinetic and
potential energy formulas are often useful.

1. Kinetic energy: T D 1
2
mv2 for translation of a mass m with velocity v;

2. Kinetic energy: T D 1
2
I!2 for rotation of a body of a moment of inertia I

with angular velocity !;
3. Potential energy: V D 1

2
kx2 for a spring with constant k stretched or com-

pressed a distance x;
4. Potential energy: V D mgh for the gravitational potential energy of a mass m

at height h above the reference level (the level at which V D 0), provided that
g may be regarded as essentially constant.

Equilibrium
position

x

a

x = 0

FIGURE 3.6.5. The rolling disk.

Example 4 Find the natural frequency of a mass m on a spring with constant k if, instead of sliding
without friction, it is a uniform disk of radius a that rolls without slipping, as shown in
Fig 3.6.5.

Solution With the preceding notation, the principle of conservation of energy gives

1
2mv

2 C 1
2I!

2 C 1
2kx

2 D E
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where E is a constant (the total mechanical energy of the system). We note that v D a! and
recall that I D ma2=2 for a uniform circular disk. Then we may simplify the last equation to

3
4mv

2 C 1
2kx

2 D E:
Because the right-hand side of this equation is constant, differentiation with respect to t (with
v D x0 and v0 D x00) now gives

3
2mx

0x00 C kxx0 D 0:

We divide each term by 3
2mx

0 to obtain

x00 C 2k

3m
x D 0:

Thus the natural frequency of horizontal back-and-forth oscillation of our rolling disk isp
2k=3m, which is

p
2=3 � 0:8165 times the familiar natural frequency

p
k=m of a mass

on a spring that is sliding without friction rather than rolling without sliding. It is interesting
(and perhaps surprising) that this natural frequency does not depend on the radius of the disk.
It could be either a dime or a large disk with a radius of one meter (but of the same mass).

Example 5 Suppose that a car oscillates vertically as if it were a massmD 800 kg on a single spring (with
constant k D 7 � 104 N=m), attached to a single dashpot (with constant c D 3000 N�s=m).
Suppose that this car with the dashpot disconnected is driven along a washboard road surface
with an amplitude of 5 cm and a wavelength of LD 10 m (Fig. 3.6.6). At what car speed will
resonance vibrations occur?

s

s = 0

y = a cos
L
π2 s

Surface

FIGURE 3.6.6. The washboard road
surface of Example 5.

Equilibrium
position

In motion

y = 0
s

x

k c

m

m

k c

y

y

FIGURE 3.6.7. The “unicycle
model” of a car.

Solution We think of the car as a unicycle, as pictured in Fig. 3.6.7. Let x.t/ denote the upward
displacement of the mass m from its equilibrium position; we ignore the force of gravity,
because it merely displaces the equilibrium position as in Problem 9 of Section 3.4. We write
the equation of the road surface as

y D a cos
2�s

L
(a D 0:05 m, L D 10 m). (15)

When the car is in motion, the spring is stretched by the amount x � y, so Newton’s second
law, F D ma, gives

mx00 D �k.x � y/I
that is,

mx00 C kx D ky: (16)

If the velocity of the car is v, then s D vt in Eq. (15), so Eq. (16) takes the form

mx00 C kx D ka cos
2�vt

L
: .160/
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This is the differential equation that governs the vertical oscillations of the car. In comparing
it with Eq. (4), we see that we have forced oscillations with circular frequency ! D 2�v=L.
Resonance will occur when ! D !0 D

p
k=m. We use our numerical data to find the speed of

the car at resonance:

v D L

2�

r
k

m
D 10

2�

s
7 � 104

800
� 14.89 (m=s)I

that is, about 33:3 mi=h (using the conversion factor of 2:237 mi=h per m=s).

Damped Forced Oscillations
In real physical systems there is always some damping, from frictional effects if
nothing else. The complementary function xc of the equation

mx00 C cx0 C kx D F0 cos!t (17)

is given by Eq. (19), (20), or (21) of Section 3.4, depending on whether c > ccr Dp
4km, cD ccr, or c < ccr. The specific form is not important here. What is important

is that, in any case, these formulas show that xc.t/ ! 0 as t ! C1. Thus xc is a
transient solution of Eq. (17)—one that dies out with the passage of time, leaving
only the particular solution xp.

The method of undetermined coefficients indicates that we should substitute

x.t/ D A cos!t C B sin!t

in Eq. (17). When we do this, collect terms, and equate coefficients of cos!t and
sin!t , we obtain the two equations

.k �m!2/AC c!B D F0; �c!AC .k �m!2/B D 0 (18)

that we solve without difficulty for

A D .k �m!2/F0

.k �m!2/2 C .c!/2 ; B D c!F0

.k �m!2/2 C .c!/2 : (19)

If we write

A cos!t C B sin!t D C.cos!t cos˛ C sin!t sin˛/ D C cos.!t � ˛/

as usual, we see that the resulting steady periodic oscillation

xp.t/ D C cos.!t � ˛/ (20)

has amplitude

C D
p
A2 C B2 D F0p

.k �m!2/2 C .c!/2
: (21)

Now (19) implies that sin˛ D B=C > 0, so it follows that the phase angle ˛ lies in
the first or second quadrant. Thus

tan˛ D B

A
D c!

k �m!2
with 0 < ˛ < �; (22)
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so

˛ D

8̂<̂
:

tan�1
c!

k �m!2
if k > m!2,

� C tan�1
c!

k �m!2
if k < m!2

(whereas ˛ D �=2 if k D m!2).
Note that if c > 0, then the “forced amplitude”—defined as a function C.!/ by

(21)—always remains finite, in contrast with the case of resonance in the undamped
case when the forcing frequency ! equals the critical frequency !0 D

p
k=m. But

the forced amplitude may attain a maximum for some value of !, in which case we
speak of practical resonance. To see if and when practical resonance occurs, we
need only graph C as a function of ! and look for a global maximum. It can be
shown (Problem 27) that C is a steadily decreasing function of ! if c =

p
2km. But

if c <
p
2km, then the amplitude of C attains a maximum value—and so practical

resonance occurs—at some value of ! less than !0, and then approaches zero as
! ! C1. It follows that an underdamped system typically will undergo forced
oscillations whose amplitude is

� Large if ! is close to the critical resonance frequency;
� Close to F0=k if ! is very small;
� Very small if ! is very large.

Example 6 Find the transient motion and steady periodic oscillations of a damped mass-and-spring sys-
tem with m D 1, c D 2, and k D 26 under the influence of an external force F.t/ D 82 cos 4t
with x.0/ D 6 and x0.0/ D 0. Also investigate the possibility of practical resonance for this
system.

Solution The resulting motion x.t/ D xtr.t/C xsp.t/ of the mass satisfies the initial value problem

x00 C 2x0 C 26x D 82 cos 4t I x.0/ D 6, x0.0/ D 0. (23)

Instead of applying the general formulas derived earlier in this section, it is better in a concrete
problem to work it directly. The roots of the characteristic equation

r2 C 2r C 26 D .r C 1/2 C 25 D 0

are r D �1˙ 5i , so the complementary function is

xc.t/ D e�t .c1 cos 5t C c2 sin 5t/:

When we substitute the trial solution

x.t/ D A cos 4t C B sin 4t

in the given equation, collect like terms, and equate coefficients of cos 4t and sin 4t , we get
the equations

10A C 8B D 82,
�8A C 10B D 0

with solution A D 5, B D 4. Hence the general solution of the equation in (23) is

x.t/ D e�t .c1 cos 5t C c2 sin 5t/C 5 cos 4t C 4 sin 4t:

At this point we impose the initial conditions x.0/ D 6, x0.0/ D 0 and find that c1 D 1 and
c2 D �3. Therefore, the transient motion and the steady periodic oscillation of the mass are
given by

xtr.t/ D e�t .cos 5t � 3 sin 5t/
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and

xsp.t/ D 5 cos 4t C 4 sin 4t D
p
41

�
5p
41

cos 4t C 4p
41

sin 4t
�

D
p
41 cos.4t � ˛/

where ˛ D tan�1
�

4
5

�
� 0:6747.

Figure 3.6.8 shows graphs of the solution x.t/ D xtr.t/ C xsp.t/ of the initial value
problem

x00 C 2x0 C 26x D 82 cos 4t; x.0/ D x0, x0.0/ D 0 (24)

for the different values x0 D �20, �10, 0, 10, and 20 of the initial position. Here we see
clearly what it means for the transient solution xtr.t/ to “die out with the passage of time,”
leaving only the steady periodic motion xsp.t/. Indeed, because xtr.t/ ! 0 exponentially,
within a very few cycles the full solution x.t/ and the steady periodic solution xsp.t/ are
virtually indistinguishable (whatever the initial position x0).

1 2 3 4 5
t

10

20

x

–10

–20

x0 = 20

x = xsp(t)

FIGURE 3.6.8. Solutions of the initial value problem in (24) with
x0 D �20, �10, 0, 10, and 20.

To investigate the possibility of practical resonance in the given system, we substitute
the values m D 1, c D 2, and k D 26 in (21) and find that the forced amplitude at frequency
! is

C.!/ D 82p
676 � 48!2 C !4

:

The graph of C.!/ is shown in Fig. 3.6.9. The maximum amplitude occurs when

C 0.!/ D �41.4!3 � 96!/
.676 � 48!2 C !4/3=2

D �164!.!2 � 24/
.676 � 48!2 C !4/3=2

D 0:

Thus practical resonance occurs when the external frequency is ! D
p
24 (a bit less than the

mass-and-spring’s undamped critical frequency of !0 D
p
k=m D

p
26 ).

200 5 10 15
ω

C

10
9
8
7
6
5

4
3
2
1
0

Practical resonance

FIGURE 3.6.9. Plot of amplitude C
versus external frequency !.
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3.6 Problems
In Problems 1 through 6, express the solution of the given ini-
tial value problem as a sum of two oscillations as in Eq. (8).
Throughout, primes denote derivatives with respect to time t .
In Problems 1–4, graph the solution function x.t/ in such a
way that you can identify and label (as in Fig. 3.6.2) its pe-
riod.

1. x00 C 9x D 10 cos 2t ; x.0/ D x0.0/ D 0
2. x00 C 4x D 5 sin 3t ; x.0/ D x0.0/ D 0
3. x00C100xD 225 cos 5tC300 sin 5t ; x.0/D 375, x0.0/D 0
4. x00 C 25x D 90 cos 4t ; x.0/ D 0, x0.0/ D 90
5. mx00C kx D F0 cos!t with ! ¤ !0; x.0/D x0, x0.0/D 0
6. mx00C kx D F0 cos!t with ! D !0; x.0/D 0, x0.0/D v0

In each of Problems 7 through 10, find the steady periodic so-
lution xsp.t/ D C cos.!t � ˛/ of the given equation mx00 C
cx0 C kx D F.t/ with periodic forcing function F.t/ of fre-
quency !. Then graph xsp.t/ together with (for comparison)
the adjusted forcing function F1.t/ D F.t/=m!.

7. x00 C 4x0 C 4x D 10 cos 3t
8. x00 C 3x0 C 5x D �4 cos 5t
9. 2x00 C 2x0 C x D 3 sin 10t

10. x00 C 3x0 C 3x D 8 cos 10t C 6 sin 10t

In each of Problems 11 through 14, find and plot both the
steady periodic solution xsp.t/ D C cos.!t � ˛/ of the given
differential equation and the actual solution x.t/ D xsp.t/ C
xtr.t/ that satisfies the given initial conditions.

11. x00 C 4x0 C 5x D 10 cos 3t ; x.0/ D x0.0/ D 0
12. x00 C 6x0 C 13x D 10 sin 5t ; x.0/ D x0.0/ D 0
13. x00 C 2x0 C 26x D 600 cos 10t ; x.0/ D 10, x0.0/ D 0
14. x00 C 8x0 C 25x D 200 cos t C 520 sin t ; x.0/ D �30,

x0.0/ D �10

Each of Problems 15 through 18 gives the parameters for
a forced mass–spring–dashpot system with equation mx00 C
cx0 C kx D F0 cos!t . Investigate the possibility of practi-
cal resonance of this system. In particular, find the amplitude
C.!/ of steady periodic forced oscillations with frequency !.
Sketch the graph of C.!/ and find the practical resonance fre-
quency ! (if any).

15. m D 1, c D 2, k D 2, F0 D 2
16. m D 1, c D 4, k D 5, F0 D 10
17. m D 1, c D 6, k D 45, F0 D 50
18. m D 1, c D 10, k D 650, F0 D 100
19. A mass weighing 100 lb (mass m D 3:125 slugs in fps

units) is attached to the end of a spring that is stretched
1 in. by a force of 100 lb. A force F0 cos!t acts on the
mass. At what frequency (in hertz) will resonance oscilla-
tions occur? Neglect damping.

20. A front-loading washing machine is mounted on a thick
rubber pad that acts like a spring; the weight W D mg

(with g D 9:8 m=s2) of the machine depresses the pad ex-
actly 0:5 cm. When its rotor spins at ! radians per second,

the rotor exerts a vertical force F0 cos!t newtons on the
machine. At what speed (in revolutions per minute) will
resonance vibrations occur? Neglect friction.

21. Figure 3.6.10 shows a mass m on the end of a pendulum
(of length L) also attached to a horizontal spring (with
constant k). Assume small oscillations of m so that the
spring remains essentially horizontal and neglect damp-
ing. Find the natural circular frequency !0 of motion of
the mass in terms of L, k, m, and the gravitational con-
stant g.

m

L

k

FIGURE 3.6.10. The pendulum-
and-spring system of Problem 21.

22. A mass m hangs on the end of a cord around a pulley of
radius a and moment of inertia I , as shown in Fig. 3.6.11.
The rim of the pulley is attached to a spring (with constant
k). Assume small oscillations so that the spring remains
essentially horizontal and neglect friction. Find the natu-
ral circular frequency of the system in terms of m, a, k, I ,
and g.

k

m

I

a

FIGURE 3.6.11. The mass–spring–
pulley system of Problem 22.

23. A building consists of two floors. The first floor is attached
rigidly to the ground, and the second floor is of mass
mD 1000 slugs (fps units) and weighs 16 tons (32,000 lb).
The elastic frame of the building behaves as a spring that
resists horizontal displacements of the second floor; it re-
quires a horizontal force of 5 tons to displace the second
floor a distance of 1 ft. Assume that in an earthquake the
ground oscillates horizontally with amplitude A0 and cir-
cular frequency !, resulting in an external horizontal force
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F.t/ D mA0!
2 sin!t on the second floor. (a) What is

the natural frequency (in hertz) of oscillations of the sec-
ond floor? (b) If the ground undergoes one oscillation
every 2:25 s with an amplitude of 3 in., what is the am-
plitude of the resulting forced oscillations of the second
floor?

24. A mass on a spring without damping is acted on by the
external force F.t/ D F0 cos3 !t . Show that there are two
values of ! for which resonance occurs, and find both.

25. Derive the steady periodic solution of

mx00 C cx0 C kx D F0 sin!t:

In particular, show that it is what one would expect—the
same as the formula in (20) with the same values of C and
!, except with sin.!t � ˛/ in place of cos.!t � ˛/.

26. Given the differential equation

mx00 C cx0 C kx D E0 cos!t C F0 sin!t

—with both cosine and sine forcing terms—derive the
steady periodic solution

xsp.t/ D

q
E2

0 C F 2
0p

.k �m!2/2 C .c!/2
cos.!t � ˛ � ˇ/;

where ˛ is defined in Eq. (22) and ˇ D tan�1.F0=E0/.
(Suggestion: Add the steady periodic solutions separately
corresponding to E0 cos!t and F0 sin!t (see Problem
25).)

27. According to Eq. (21), the amplitude of forced steady
periodic oscillations for the system mx00 C cx0 C kx D
F0 cos!t is given by

C.!/ D F0p
.k �m!2/2 C .c!/2

:

(a) If c = ccr=
p
2, where ccr D

p
4km, show that C

steadily decreases as ! increases. (b) If c < ccr=
p
2,

show that C attains a maximum value (practical reso-
nance) when

! D !m D
s
k

m
� c2

2m2
< !0 D

r
k

m
:

28. As indicated by the cart-with-flywheel example discussed
in this section, an unbalanced rotating machine part typ-
ically results in a force having amplitude proportional to
the square of the frequency !. (a) Show that the am-
plitude of the steady periodic solution of the differential
equation

mx00 C cx0 C kx D mA!2 cos!t

(with a forcing term similar to that in Eq. (17)) is given by

C.!/ D mA!2p
.k �m!2/2 C .c!/2

:

(b) Suppose that c2 < 2mk. Show that the maximum
amplitude occurs at the frequency !m given by

!m D
s
k

m

�
2mk

2mk � c2

�
:

Thus the resonance frequency in this case is larger (in
contrast with the result of Problem 27) than the natural fre-
quency !0 D

p
k=m. (Suggestion: Maximize the square

of C .)

Automobile Vibrations

Problems 29 and 30 deal further with the car of Example
5. Its upward displacement function satisfies the equation
mx00 C cx0 C kx D cy0 C ky when the shock absorber is con-
nected (so that c > 0). With y D a sin!t for the road surface,
this differential equation becomes

mx00 C cx0 C kx D E0 cos!t C F0 sin!t

where E0 D c!a and F0 D ka.

29. Apply the result of Problem 26 to show that the amplitude
C of the resulting steady periodic oscillation for the car is
given by

C D a
p
k2 C .c!/2p

.k �m!2/2 C .c!/2
:

Because ! D 2�v=L when the car is moving with velocity
v, this gives C as a function of v.

30. Figure 3.6.12 shows the graph of the amplitude function
C.!/ using the numerical data given in Example 5 (in-
cluding c D 3000 N�s=m). It indicates that, as the car
accelerates gradually from rest, it initially oscillates with
amplitude slightly over 5 cm. Maximum resonance vibra-
tions with amplitude about 14 cm occur around 32 mi=h,
but then subside to more tolerable levels at high speeds.
Verify these graphically based conclusions by analyzing
the function C.!/. In particular, find the practical reso-
nance frequency and the corresponding amplitude.

10080604020
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FIGURE 3.6.12. Amplitude of vibrations of the car
on a washboard surface.
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3.6 Application Forced Vibrations
Here we investigate forced vibrations of the mass–spring–dashpot system with equa-
tion

mx00 C cx0 C kx D F.t/: (1)

To simplify the notation, let’s take mD p2, c D 2p, and k D p2q2C 1, where p > 0
and q > 0. Then the complementary function of Eq. (1) is

xc.t/ D e�t=p.c1 cos qt C c2 sin qt/: (2)

We will take p D 5, q D 3, and thus investigate the transient and steady periodic
solutions corresponding to

25x00 C 10x0 C 226x D F.t/; x.0/ D 0; x0.0/ D 0 (3)

with several illustrative possibilities for the external force F.t/. For your personal
investigations to carry out similarly, you might select integers p and q with 65p5 9

and 2 5 q 5 5.

INVESTIGATION 1: With periodic external force F.t/D 901 cos 3t , the MATLAB

commands

x = dsolve(’25*D2x+10*Dx+226*x=901*cos(3*t)’,
’x(0)=0, Dx(0)=0’);

x = simple(x);
syms t, xsp = cos(3*t) + 30*sin(3*t);
ezplot(x, [0 6*pi]),hold on
ezplot(xsp, [0 6*pi])

produce the plot shown in Fig. 3.6.13. We see the (transient plus steady periodic)

50 1510
t

x

40

20

–40

–20

0

xsp(t)

x(t)

FIGURE 3.6.13. The solution
x.t/ D xtr.t/ C xsp.t/ and the steady
periodic solution x.t/ D xsp.t/ with
periodic external force
F .t/ D 901 cos 3t .

solution
x.t/ D cos 3t C 30 sin 3t C e�t=5

�� cos 3t � 451
15

sin 3t
	

rapidly “building up” to the steady periodic oscillation xsp.t/ D cos 3t C 30 sin 3t .

INVESTIGATION 2: With damped oscillatory external force

F.t/ D 900e�t=5 cos 3t;

we have duplication with the complementary function in (2). The Maple commands

de2 := 25*diff(x(t),t,t)+10*diff(x(t),t)+226*x(t) =
900*exp(--t/5)*cos(3*t);

dsolve({de2,x(0)=0,D(x)(0)=0}, x(t));
x := simplify(combine(rhs(%),trig));
C := 6*t*exp(--t/5);
plot({x,C,--C},t=0..8*Pi);

produce the plot shown in Fig. 3.6.14. We see the solution

x.t/ D 6te�t=5 sin 3t

oscillating up and down between the envelope curves x D ˙6te�t=5. (Note the
factor of t that signals a resonance situation.)

2520151050
t

x

15

–15

0

–10

5

–5

10 x = +6te–t/5

x = –6te– t/5

FIGURE 3.6.14. The solution
x.t/ D 6te�t=5 sin 3t and the
envelope curves x.t/ D ˙6te�t=5

with damped oscillatory force
F .t/ D 900e�t=5 cos 3t .
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INVESTIGATION 3: With damped oscillatory external force

300 15 205 10 25
t

x

200

–200

0

–150

50

–100

100

–50

150

FIGURE 3.6.15. The solution
x.t/ D
e�t=5Œ3t cos t C .9t2 � 1/ sin 3t� and
the envelope curves
x.t/ D ˙e�t=5

p
.3t/2 C .9t2 � 1/2

with external force
F .t/ D 2700te�t=5 cos 3t .

F.t/ D 2700te�t=5 cos 3t;

we have a still more complicated resonance situation. The Mathematica commands

de3 = 25 x’’[t] + 10 x’[t] + 226 x[t] ==
2700 t Exp[--t/5] Cos[3t]

soln = DSolve[{de3, x[0] == 0, x’[0] == 0}, x[t], t]
x = First[x[t] /. soln]
amp = Exp[--t/5] Sqrt[(3t)^2 + (9t^2 -- 1)^2]
Plot[{x, amp, --amp}, {t, 0, 10 Pi}]

produce the plot shown in Fig. 3.6.15. We see the solution

x.t/ D e�t=5


3t cos 3t C .9t2 � 1/ sin 3t

�
oscillating up and down between the envelope curves

x D ˙e�t=5
p
.3t/2 C .9t2 � 1/2:

3.7 Electrical Circuits
Here we examine the RLC circuit that is a basic building block in more complicated

E L

C

R

Switch

FIGURE 3.7.1. The series RLC
circuit.

electrical circuits and networks. As shown in Fig. 3.7.1, it consists of

A resistor with a resistance of R ohms,
An inductor with an inductance of L henries, and
A capacitor with a capacitance of C farads

in series with a source of electromotive force (such as a battery or a generator)
that supplies a voltage of E.t/ volts at time t . If the switch shown in the circuit
of Fig. 3.7.1 is closed, this results in a current of I.t/ amperes in the circuit and
a charge of Q.t/ coulombs on the capacitor at time t . The relation between the
functions Q and I is

dQ

dt
D I.t/: (1)

We will always use mks electric units, in which time is measured in seconds.
According to elementary principles of electricity, the voltage drops across

Circuit Voltage
Element Drop

Inductor

Resistor

Capacitor

L
dI

dt

RI

1

C
Q

FIGURE 3.7.2. Table of voltage
drops.

the three circuit elements are those shown in the table in Fig. 3.7.2. We can analyze
the behavior of the series circuit of Fig. 3.7.1 with the aid of this table and one of
Kirchhoff’s laws:

The (algebraic) sum of the voltage drops across the elements in a
simple loop of an electrical circuit is equal to the applied voltage.

As a consequence, the current and charge in the simple RLC circuit of Fig. 3.7.1
satisfy the basic circuit equation

L
dI

dt
CRI C 1

C
Q D E.t/: (2)
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If we substitute (1) in Eq. (2), we get the second-order linear differential equation

LQ00 CRQ0 C 1

C
Q D E.t/ (3)

for the charge Q.t/, under the assumption that the voltage E.t/ is known.
In most practical problems it is the current I rather than the charge Q that is

of primary interest, so we differentiate both sides of Eq. (3) and substitute I for Q0
to obtain

LI 00 CRI 0 C 1

C
I D E 0.t/: (4)

We do not assume here a prior familiarity with electrical circuits. It suffices to
regard the resistor, inductor, and capacitor in an electrical circuit as “black boxes”
that are calibrated by the constants R, L, and C . A battery or generator is described
by the voltage E.t/ that it supplies. When the switch is open, no current flows in the
circuit; when the switch is closed, there is a current I.t/ in the circuit and a charge
Q.t/ on the capacitor. All we need to know about these constants and functions is
that they satisfy Eqs. (1) through (4), our mathematical model for the RLC circuit.
We can then learn a good deal about electricity by studying this mathematical model.

The Mechanical–Electrical Analogy
It is striking that Eqs. (3) and (4) have precisely the same form as the equation

mx00 C cx0 C kx D F.t/ (5)

of a mass–spring–dashpot system with external force F.t/. The table in Fig. 3.7.3
details this important mechanical–electrical analogy. As a consequence, most of
the results derived in Section 3.6 for mechanical systems can be applied at once to
electrical circuits. The fact that the same differential equation serves as a mathemat-
ical model for such different physical systems is a powerful illustration of the unify-
ing role of mathematics in the investigation of natural phenomena. More concretely,
the correspondences in Fig. 3.7.3 can be used to construct an electrical model of a
given mechanical system, using inexpensive and readily available circuit elements.
The performance of the mechanical system can then be predicted by means of ac-
curate but simple measurements in the electrical model. This is especially useful
when the actual mechanical system would be expensive to construct or when mea-
surements of displacements and velocities would be inconvenient, inaccurate, or
even dangerous. This idea is the basis of analog computers—electrical models of
mechanical systems. Analog computers modeled the first nuclear reactors for com-
mercial power and submarine propulsion before the reactors themselves were built.

Mechanical System Electrical System

Mass m

Damping constant c

Spring constant k

Position x

Force F

Inductance L

Resistance R

Reciprocal capacitance 1=C

Charge Q (using (3) (or current I using (4)))

Electromotive force E (or its derivative E0)

FIGURE 3.7.3. Mechanical–electrical analogies.
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In the typical case of an alternating current voltage E.t/ D E0 sin!t , Eq. (4)
takes the form

LI 00 CRI 0 C 1

C
I D !E0 cos!t: (6)

As in a mass–spring–dashpot system with a simple harmonic external force, the
solution of Eq. (6) is the sum of a transient current Itr that approaches zero as
t ! C1 (under the assumption that the coefficients in Eq. (6) are all positive,
so the roots of the characteristic equation have negative real parts), and a steady
periodic current Isp; thus

I D Itr C Isp: (7)

Recall from Section 3.6 (Eqs. (19) through (22) there) that the steady periodic solu-
tion of Eq. (5) with F.t/ D F0 cos!t is

xsp.t/ D
F0 cos.!t � ˛/p
.k �m!2/2 C .c!/2

;

where
˛ D tan�1 c!

k �m!2
; 0 5 ˛ 5 �:

If we make the substitutions L for m, R for c, 1=C for k, and !E0 for F0, we get
the steady periodic current

Isp.t/ D
E0 cos.!t � ˛/s
R2 C

�
!L � 1

!C

�2
(8)

with the phase angle

˛ D tan�1 !RC

1 � LC!2
; 0 5 ˛ 5 �: (9)

Reactance and Impedance
The quantity in the denominator in (8),

Z D
s
R2 C

�
!L � 1

!C

�2

(ohms); (10)

is called the impedance of the circuit. Then the steady periodic current

Isp.t/ D
E0

Z
cos.!t � ˛/ (11)

has amplitude

I0 D
E0

Z
; (12)

reminiscent of Ohm’s law, I D E=R.
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Equation (11) gives the steady periodic current as a cosine function, whereas

R

S
Z

δ

–S

R
Z

α

δ = α – π

2
π

αδ

FIGURE 3.7.4. Reactance and delay
angle.

the input voltage E.t/ D E0 sin!t was a sine function. To convert Isp to a sine
function, we first introduce the reactance

S D !L � 1

!C
: (13)

Then Z D
p
R2 C S2, and we see from Eq. (9) that ˛ is as in Fig. 3.7.4, with delay

angle ı D ˛ � 1
2
� . Equation (11) now yields

Isp.t/ D
E0

Z
.cos˛ cos!t C sin˛ sin!t/

D E0

Z

�
� S
Z

cos!t C R

Z
sin!t

�

D E0

Z
.cos ı sin!t � sin ı cos!t/:

Therefore,

Isp.t/ D
E0

Z
sin.!t � ı/; (14)

where

t

E Isp

δ

ω

δ

ω

Time
lag

FIGURE 3.7.5. Time lag of current
behind imposed voltage.

ı D tan�1 S

R
D tan�1 LC!

2 � 1
!RC

: (15)

This finally gives the time lag ı=! (in seconds) of the steady periodic current Isp

behind the input voltage (Fig. 3.7.5).

Initial Value Problems
When we want to find the transient current, we are usually given the initial values
I.0/ and Q.0/. So we must first find I 0.0/. To do so, we substitute t D 0 in Eq. (2)
to obtain the equation

LI 0.0/CRI.0/C 1

C
Q.0/ D E.0/ (16)

to determine I 0.0/ in terms of the initial values of current, charge, and voltage.

Example 1 Consider an RLC circuit with R D 50 ohms (�), L D 0:1 henry (H), and C D 5� 10�4 farad
(F). At time t D 0, when both I.0/ and Q.0/ are zero, the circuit is connected to a 110-V,
60-Hz alternating current generator. Find the current in the circuit and the time lag of the
steady periodic current behind the voltage.

Solution A frequency of 60 Hz means that ! D .2�/.60/ rad=s, approximately 377 rad=s. So we take
E.t/ D 110 sin 377t and use equality in place of the symbol for approximate equality in this
discussion. The differential equation in (6) takes the form

.0:1/I 00 C 50I 0 C 2000I D .377/.110/ cos 377t:

We substitute the given values of R, L, C , and ! D 377 in Eq. (10) to find that the impedance
is Z D 59:58 �, so the steady periodic amplitude is

I0 D
110 (volts)

59.58 (ohms)
D 1.846 amperes (A):
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With the same data, Eq. (15) gives the sine phase angle:

ı D tan�1.0:648/ D 0:575:

Thus the time lag of current behind voltage is

ı

!
D 0:575

377
D 0.0015 s;

and the steady periodic current is

Isp D .1:846/ sin.377t � 0:575/:

The characteristic equation .0:1/r2 C 50r C 2000 D 0 has the two roots r1 � �44 and
r2 � �456. With these approximations, the general solution is

I.t/ D c1e�44t C c2e�456t C .1:846/ sin.377t � 0:575/;

with derivative

I 0.t/ D �44c1e
�44t � 456c2e

�456t C 696 cos.377t � 0:575/:

Because I.0/ D Q.0/ D 0, Eq. (16) gives I 0.0/ D 0 as well. With these initial values substi-
tuted, we obtain the equations

I.0/ D c1 C c2 � 1:004 D 0;
I 0.0/ D �44c1 � 456c2 C 584 D 0I

their solution is c1 D �0:307, c2 D 1:311. Thus the transient solution is

Itr.t/ D .�0:307/e�44t C .1:311/e�456t :

The observation that after one-fifth of a second we have jItr.0:2/j < 0:000047 A (comparable
to the current in a single human nerve fiber) indicates that the transient solution dies out very
rapidly, indeed.

Example 2 Suppose that the RLC circuit of Example 1, still with I.0/ D Q.0/ D 0, is connected at time
t D 0 to a battery supplying a constant 110 V. Now find the current in the circuit.

Solution We now have E.t/ � 110, so Eq. (16) gives

I 0.0/ D E.0/

L
D 110

0:1
D 1100 (A/s);

and the differential equation is

.0:1/I 00 C 50I 0 C 2000I D E0.t/ D 0:

Its general solution is the complementary function we found in Example 1:

I.t/ D c1e
�44t C c2e

�456t :

We solve the equations

I.0/ D c1 C c2 D 0;
I 0.0/ D �44c1 � 456c2 D 1100

for c1 D �c2 D 2:670. Therefore,

I.t/ D .2:670/.e�44t � e�456t /:

Note that I.t/! 0 as t !C1 even though the voltage is constant.
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Electrical Resonance
Consider again the current differential equation in (6) corresponding to a sinusoidal
input voltage E.t/ D E0 sin!t . We have seen that the amplitude of its steady peri-
odic current is

I0 D
E0

Z
D E0s

R2 C
�
!L � 1

!C

�2
: (17)

For typical values of the constantsR,L, C , andE0, the graph of I0 as a function of !
resembles the one shown in Fig. 3.7.6. It reaches a maximum value at !m D 1=

p
LC

and then approaches zero as ! ! C1; the critical frequency !m is the resonance
frequency of the circuit.

ωωm

I0

( )
I0 =

ωL –R2 + 21
ωCω

E0

ω

ω

FIGURE 3.7.6. The effect of
frequency on I0.

In Section 3.6 we emphasized the importance of avoiding resonance in most
mechanical systems (the cello is an example of a mechanical system in which reso-
nance is sought). By contrast, many common electrical devices could not function
properly without taking advantage of the phenomenon of resonance. The radio is a
familiar example. A highly simplified model of its tuning circuit is the RLC circuit
we have discussed. Its inductance L and resistance R are constant, but its capaci-
tance C is varied as one operates the tuning dial.

Suppose that we wanted to pick up a particular radio station that is broad-
casting at frequency !, and thereby (in effect) provides an input voltage E.t/ D
E0 sin!t to the tuning circuit of the radio. The resulting steady periodic current Isp

in the tuning circuit drives its amplifier, and in turn its loudspeaker, with the volume
of sound we hear roughly proportional to the amplitude I0 of Isp. To hear our pre-
ferred station (of frequency !) the loudest—and simultaneously tune out stations
broadcasting at other frequencies—we therefore want to choose C to maximize I0.
But examine Eq. (17), thinking of ! as a constant with C the only variable. We see
at a glance—no calculus required—that I0 is maximal when

!L � 1

!C
D 0I

that is, when

C D 1

L!2
: (18)

So we merely turn the dial to set the capacitance to this value.
This is the way that old crystal radios worked, but modern AM radios have

a more sophisticated design. A pair of variable capacitors are used. The first con-
trols the frequency selected as described earlier; the second controls the frequency
of a signal that the radio itself generates, kept close to 455 kilohertz (kHz) above
the desired frequency. The resulting beat frequency of 455 kHz, known as the in-
termediate frequency, is then amplified in several stages. This technique has the
advantage that the several RLC circuits used in the amplification stages easily can
be designed to resonate at 455 kHz and reject other frequencies, resulting in far more
selectivity of the receiver as well as better amplification of the desired signal.
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3.7 Problems
Problems 1 through 6 deal with the RL circuit of Fig. 3.7.7, a
series circuit containing an inductor with an inductance of L
henries, a resistor with a resistance of R ohms, and a source of
electromotive force (emf), but no capacitor. In this case Eq. (2)
reduces to the linear first-order equation

LI 0 CRI D E.t/:

E

R

1

2

Switch

L

FIGURE 3.7.7. The circuit for
Problems 1 through 6.

1. In the circuit of Fig. 3.7.7, suppose that L D 5 H, R D 25
�, and the source E of emf is a battery supplying 100 V
to the circuit. Suppose also that the switch has been in po-
sition 1 for a long time, so that a steady current of 4 A is
flowing in the circuit. At time t D 0, the switch is thrown
to position 2, so that I.0/ D 4 and E D 0 for t = 0. Find
I.t/.

2. Given the same circuit as in Problem 1, suppose that the
switch is initially in position 2, but is thrown to position 1
at time t D 0, so that I.0/D 0 and E D 100 for t = 0. Find
I.t/ and show that I.t/! 4 as t !C1.

3. Suppose that the battery in Problem 2 is replaced with
an alternating-current generator that supplies a voltage of
E.t/ D 100 cos 60t volts. With everything else the same,
now find I.t/.

4. In the circuit of Fig. 3.7.7, with the switch in position
1, suppose that L D 2, R D 40, E.t/ D 100e�10t , and
I.0/ D 0. Find the maximum current in the circuit for
t = 0.

5. In the circuit of Fig. 3.7.7, with the switch in position 1,
suppose that E.t/D 100e�10t cos 60t , RD 20, LD 2, and
I.0/ D 0. Find I.t/.

6. In the circuit of Fig. 3.7.7, with the switch in position 1,
take L D 1, R D 10, and E.t/ D 30 cos 60t C 40 sin 60t .
(a) Substitute Isp.t/ D A cos 60t CB sin 60t and then de-
termine A and B to find the steady-state current Isp in
the circuit. (b) Write the solution in the form Isp.t/ D
C cos.!t � ˛/.

Problems 7 through 10 deal with the RC circuit in Fig. 3.7.8,
containing a resistor (R ohms), a capacitor (C farads), a
switch, a source of emf, but no inductor. Substitution of L D 0
in Eq. (3) gives the linear first-order differential equation

R
dQ

dt
C 1

C
Q D E.t/

for the charge Q D Q.t/ on the capacitor at time t . Note that
I.t/ D Q0.t/.

E C

R

Switch

FIGURE 3.7.8. The circuit for
Problems 7 through 10.

7. (a) Find the chargeQ.t/ and current I.t/ in the RC circuit
ifE.t/�E0 (a constant voltage supplied by a battery) and
the switch is closed at time t D 0, so that Q.0/ D 0. (b)
Show that

lim
t!C1

Q.t/ D E0C and that lim
t!C1

I.t/ D 0:

8. Suppose that in the circuit of Fig. 3.7.8, we have R D 10,
C D 0:02, Q.0/ D 0, and E.t/ D 100e�5t (volts). (a)
Find Q.t/ and I.t/. (b) What is the maximum charge on
the capacitor for t = 0 and when does it occur?

9. Suppose that in the circuit of Fig. 3.7.8, R D 200,
C D 2:5 � 10�4, Q.0/ D 0, and E.t/ D 100 cos 120t .
(a) Find Q.t/ and I.t/. (b) What is the amplitude of
the steady-state current?

10. An emf of voltage E.t/ D E0 cos!t is applied to the RC
circuit of Fig. 3.7.8 at time t D 0 (with the switch closed),
and Q.0/ D 0. Substitute Qsp.t/ D A cos!t CB sin!t in
the differential equation to show that the steady periodic
charge on the capacitor is

Qsp.t/ D
E0Cp

1C !2R2C 2
cos.!t � ˇ/

where ˇ D tan�1.!RC/.

In Problems 11 through 16, the parameters of an RLC circuit
with input voltage E.t/ are given. Substitute

Isp.t/ D A cos!t C B sin!t

in Eq. (4), using the appropriate value of !, to find the steady
periodic current in the form Isp.t/ D I0 sin.!t � ı/.
11. R D 30 �, L D 10 H, C D 0:02 F; E.t/ D 50 sin 2t V
12. R D 200 �, L D 5 H, C D 0:001 F;

E.t/ D 100 sin 10t V
13. R D 20 �, L D 10 H, C D 0:01 F;

E.t/ D 200 cos 5t V
14. R D 50 �, L D 5 H, C D 0:005 F;

E.t/ D 300 cos 100t C 400 sin 100t V
15. R D 100 �, L D 2 H, C D 5 � 10�6 F;

E.t/ D 110 sin 60�t V
16. R D 25 �, L D 0:2 H, C D 5 � 10�4 F;

E.t/ D 120 cos 377t V
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In Problems 17 through 22, an RLC circuit with input volt-
age E.t/ is described. Find the current I.t/ using the given
initial current (in amperes) and charge on the capacitor (in
coulombs).

17. R D 16 �, L D 2 H, C D 0:02 F;
E.t/ D 100 V; I.0/ D 0, Q.0/ D 5

18. R D 60 �, L D 2 H, C D 0:0025 F;
E.t/ D 100e�t V; I.0/ D 0, Q.0/ D 0

19. R D 60 �, L D 2 H, C D 0:0025 F;
E.t/ D 100e�10t V; I.0/ D 0, Q.0/ D 1

In each of Problems 20 through 22, plot both the steady peri-
odic current Isp.t/ and the total current I.t/ D Isp.t/C Itr.t/.

20. The circuit and input voltage of Problem 11 with I.0/ D 0

and Q.0/ D 0
21. The circuit and input voltage of Problem 13 with I.0/ D 0

and Q.0/ D 3
22. The circuit and input voltage of Problem 15 with I.0/ D 0

and Q.0/ D 0
23. Consider an LC circuit—that is, an RLC circuit with R D

0—with input voltage E.t/ D E0 sin!t . Show that un-
bounded oscillations of current occur for a certain reso-
nance frequency; express this frequency in terms of L and
C .

24. It was stated in the text that, if R, L, and C are positive,
then any solution of LI 00 C RI 0 C I=C D 0 is a transient
solution—it approaches zero as t !C1. Prove this.

25. Prove that the amplitude I0 of the steady periodic solution
of Eq. (6) is maximal at frequency ! D 1=

p
LC .

3.8 Endpoint Problems and Eigenvalues
You are now familiar with the fact that a solution of a second-order linear differential
equation is uniquely determined by two initial conditions. In particular, the only
solution of the initial value problem

y00 C p.x/y0 C q.x/y D 0I y.a/ D 0; y0.a/ D 0 (1)

is the trivial solution y.x/ � 0. Most of Chapter 3 has been based, directly or indi-
rectly, on the uniqueness of solutions of linear initial value problems (as guaranteed
by Theorem 2 of Section 3.2).

In this section we will see that the situation is radically different for a problem
such as

y00 C p.x/y0 C q.x/y D 0I y.a/ D 0; y.b/ D 0: (2)

The difference between the problems in Eqs. (1) and (2) is that in (2) the two con-
ditions are imposed at two different points a and b with (say) a < b. In (2) we are
to find a solution of the differential equation on the interval .a; b/ that satisfies the
conditions y.a/ D 0 and y.b/ D 0 at the endpoints of the interval. Such a problem
is called an endpoint or boundary value problem. Examples 1 and 2 illustrate the
sorts of complications that can arise in endpoint problems.

Example 1 Consider the endpoint problem

y00 C 3y D 0I y.0/ D 0; y.�/ D 0: (3)

The general solution of the differential equation is

y.x/ D A cos x
p
3C B sin x

p
3:

Now y.0/ D A, so the condition y.0/ D 0 implies that A D 0. Therefore the only possible
solutions are of the form y.x/ D B sin x

p
3. But then

y.�/ D B sin�
p
3 � �0:7458B;

so the other condition y.�/ D 0 requires that B D 0 also. Graphically, Fig. 3.8.1 illustrates
the fact that no possible solution y.x/ D B sin x

p
3 with B 6D 0 hits the desired target value

y D 0 when x D � . Thus the only solution of the endpoint value problem in (3) is the trivial
solution y.x/ � 0 (which probably is no surprise).

y

xπ

B = 4

B = 3
B = 2
B = 1

B = –1
B = –2

B = –4

4
3
2
1

–1
–2
–3
–4

B = –3

FIGURE 3.8.1. Various possible
solutions y.x/ D B sin x

p
3 of the

endpoint value problem in Example 1.
For no B 6D 0 does the solution hit the
target value y D 0 for x D � .
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Example 2 Consider the endpoint problem

y00 C 4y D 0I y.0/ D 0; y.�/ D 0: (4)

The general solution of the differential equation is

y.x/ D A cos 2x C B sin 2x:

Again, y.0/ D A, so the condition y.0/ D 0 implies that A D 0. Therefore the only possible
solutions are of the form y.x/ D B sin 2x. But now y.�/ D B sin 2� D 0 no matter what the
value of the coefficient B is. Hence, as illustrated graphically in Fig. 3.8.2, every possible
solution y.x/D B sin 2x hits automatically the desired target value y D 0 when x D � (what-
ever the value of B). Thus the endpoint value problem in (4) has infinitely many different
nontrivial solutions. Perhaps this does seem a bit surprising.

Remark 1 Note that the big difference in the results of Examples 1 and 2 stems from
the seemingly small difference between the differential equations in (3) and (4), with the
coefficient 3 in one replaced by the coefficient 4 in the other. In mathematics as elsewhere,

y

x

B = 4

B = 3
B = 2
B = 1

B = –1
B = –2

B = –4

4
3
2
1

–1
–2
–3
–4

B = –3

π

FIGURE 3.8.2. Various possible
solutions y.x/ D B sin 2x of the
endoint value problem in Example 2.
No matter what the coefficient B is,
the solution automatically hits the
target value y D 0 for x D � .

sometimes “big doors turn on small hinges.”

Remark 2 The “shooting” terminology used in Examples 1 and 2 is often useful in dis-
cussing endpoint value problems. We consider a possible solution which starts at the left
endpoint value and ask whether it hits the “target” specified by the right endpoint value.

Eigenvalue Problems
Rather than being the exceptional cases, Examples 1 and 2 illustrate the typical
situation for an endpoint problem as in (2): It may have no nontrivial solutions, or
it may have infinitely many nontrivial solutions. Note that the problems in (3) and
(4) can both be written in the form

y00 C p.x/y0 C �q.x/y D 0I y.a/ D 0; y.b/ D 0; (5)

with p.x/ � 0, q.x/ � 1, a D 0, and b D � . The number � is a parameter in the
problem (nothing to do with the parameters that were varied in Section 3.5). If we
take � D 3, we get the equations in (3); with � D 4, we obtain the equations in
(4). Examples 1 and 2 show that the situation in an endpoint problem containing a
parameter can (and generally will) depend strongly on the specific numerical value
of the parameter.

An endpoint value problem such as the problem in (5)—one that contains an
unspecified parameter �—is called an eigenvalue problem. The question we ask in
an eigenvalue problem is this: For what values of the parameter � does there exist
a nontrivial (i.e., nonzero) solution of the endpoint value problem? Such a value
of � is called an eigenvalue of the problem. One might think of such a value as a
“proper” value of � for which there exist proper (nonzero) solutions of the problem.
Indeed, the prefix eigen is a German word that (in some contexts) may be translated
as the English word proper, so eigenvalues are sometimes called proper values (or
characteristic values).

Thus we saw in Example 2 that �D 4 is an eigenvalue of the endpoint problem

y00 C �y D 0; y.0/ D 0; y.�/ D 0; (6)

whereas Example 1 shows that � D 3 is not an eigenvalue of this problem.
Suppose that �? is an eigenvalue of the problem in (5) and that y?.x/ is a

nontrivial solution of the endpoint problem that results when the parameter � in (5)
is replaced by the specific numerical value �?, so

y00
? C p.x/y0

? C �?q.x/y? D 0 and y?.a/ D 0; y?.b/ D 0:
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Then we call y? an eigenfunction associated with the eigenvalue �?. Thus we saw
in Example 2 that y?.x/D sin 2x is an eigenfunction associated with the eigenvalue
�? D 4, as is any constant multiple of sin 2x.

More generally, note that the problem in (5) is homogeneous in the sense that
any constant multiple of an eigenfunction is again an eigenfunction—indeed, one
associated with the same eigenvalue. That is, if y D y?.x/ satisfies the problem in
(5) with � D �?, then so does any constant multiple cy?.x/. It can be proved (under
mild restrictions on the coefficient functions p and q) that any two eigenfunctions
associated with the same eigenvalue must be linearly dependent.

Example 3 Determine the eigenvalues and associated eigenfunctions for the endpoint problem

y00 C �y D 0I y.0/ D 0; y.L/ D 0 .L > 0/: (7)

Solution We must consider all possible (real) values of �—positive, zero, and negative.
If � D 0, then the equation is simply y00 D 0 and its general solution is

y.x/ D Ax C B:

Then the endpoint conditions y.0/D 0D y.L/ immediately imply that ADB D 0, so the only
solution in this case is the trivial function y.x/ � 0. Therefore, � D 0 is not an eigenvalue of
the problem in (7).

If � < 0, let us then write � D �˛2 (with ˛ > 0) to be specific. Then the differential
equation takes the form

y00 � ˛2y D 0;
and its general solution is

y.x/ D c1e
˛x C c2e

�˛x D A cosh˛x C B sinh˛x;

where A D c1 C c2 and B D c1 � c2. (Recall that cosh˛x D .e˛x C e�˛x/=2 and that

x

y

(0, 1)

y = cosh x

y = sinh x

FIGURE 3.8.3. The hyperbolic sine
and cosine graphs.

sinh˛x D .e˛x � e�˛x/=2.) The condition y.0/ D 0 then gives

y.0/ D A cosh 0C B sinh 0 D A D 0;

so that y.x/ D B sinh˛x. But now the second endpoint condition, y.L/ D 0, gives y.L/ D
B sinh˛L D 0. This implies that B D 0, because ˛ ¤ 0, and sinh x D 0 only for x D 0

(examine the graphs of y D sinh x and y D cosh x in Fig. 3.8.3.) Thus the only solution
of the problem in (7) in the case � < 0 is the trivial solution y � 0, and we may therefore
conclude that the problem has no negative eigenvalues.

The only remaining possibility is that �D ˛2 >0with ˛ >0. In this case the differential
equation is

y00 C ˛2y D 0;
with general solution

y.x/ D A cos˛x C B sin˛x:

The condition y.0/D 0 implies that AD 0, so y.x/D B sin˛x. The condition y.L/D 0 then
gives

y.L/ D B sin˛L D 0:
Can this occur if B ¤ 0? Yes, but only provided that ˛L is a (positive) integral multiple of �:

˛L D �; 2�; 3�; : : : ; n�; : : : I

that is, if

� D ˛2 D �2

L2
;

4�2

L2
;

9�2

L2
; : : : ;

n2�2

L2
; : : : :

Thus we have discovered that the problem in (7) has an infinite sequence of positive eigen-
values

�n D
n2�2

L2
; n D 1; 2; 3; : : : : (8)
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With B D 1, the eigenfunction associated with the eigenvalue �n is

yn.x/ D sin
n�x

L
; n D 1; 2; 3; : : : : (9)

Figure 3.8.4 shows graphs of the first several of these eigenfunctions. We see visibly howy

x

n = 4

n = 3

L

n = 2

n = 11

–1

FIGURE 3.8.4. The eigenfunctions

yn.x/ D sin
n�x

L
for n D 1, 2, 3, 4.

the endpoint conditions y.0/ D y.L/ D 0 serve to select just those sine functions that start a
period at x D 0 and wind up at x D L precisely at the end of a half-period.

Example 3 illustrates the general situation. According to a theorem whose
precise statement we will defer until Section 10.1, under the assumption that q.x/ >
0 on the interval Œa; b�, any eigenvalue of the form in (5) has a divergent increasing
sequence

�1 < �2 < �3 < � � � < �n < � � � ! C1
of eigenvalues, each with an associated eigenfunction. This is also true of the fol-
lowing more general type of eigenvalue problem, in which the endpoint conditions
involve values of the derivative y0 as well as values of y:

y00 C p.x/y0 C �q.x/y D 0I
a1y.a/C a2y

0.a/ D 0; b1y.b/C b2y
0.b/ D 0; (10)

where a1, a2, b1, and b2 are given constants. With a1 D 1D b2 and a2 D 0D b1, we
get the problem of Example 4 (in which p.x/ � 0 and q.x/ � 1, as in the previous
example).

Example 4 Determine the eigenvalues and eigenfunctions of the problem

y00 C �y D 0I y.0/ D 0; y0.L/ D 0: (11)

Solution Virtually the same argument as that used in Example 3 shows that the only possible eigenval-
ues are positive, so we take � D ˛2 > 0 (˛ > 0) to be specific. Then the differential equation
is

y00 C ˛2y D 0;
with general solution

y.x/ D A cos˛x C B sin˛x:

The condition y.0/ D 0 immediately gives A D 0, so

y.x/ D B sin˛x and y0.x/ D B˛ cos˛x:

The second endpoint condition y0.L/ D 0 now gives

y0.L/ D B˛ cos˛L D 0:

This will hold with B ¤ 0 provided that ˛L is an odd positive integral multiple of �=2:

˛L D �

2
;

3�

2
; : : : ;

.2n � 1/�
2

; : : : I

that is, if

� D �2

4L2
;

9�2

4L2
; : : : ;

.2n � 1/2�2

4L2
; : : : :

Thus the nth eigenvalue �n and associated eigenfunction of the problem in (11) are given by

�n D
.2n � 1/2�2

4L2
and yn.x/ D sin

.2n � 1/�x
2L

(12)

for n D 1, 2, 3, : : : . Figure 3.8.5 shows graphs of the first several of these eigenfunctions.
We see visibly how the endpoint conditions y.0/ D y0.L/ D 0 serve to select just those sine
functions that start a period at x D 0 but wind up at x D L precisely in the middle of a

y

x

n = 4 n = 3

L

n = 2 n = 1
1

–1

FIGURE 3.8.5. The eigenfunctions

yn.x/ D sin
.2n � 1/�x

2L
for n D 1, 2, 3, 4.

half-period.
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A general procedure for determining the eigenvalues of the problem in (10)
can be outlined as follows. We first write the general solution of the differential
equation in the form

y D Ay1.x; �/C By2.x; �/:

We write yi .x; �/ because y1 and y2 will depend on �, as in Examples 3 and 4, in
which

y1.x/ D cos˛x D cos x
p
� and y2.x/ D sin˛x D sin x

p
�:

Then we impose the two endpoint conditions, noting that each is linear in y and y0,
and hence also linear in A and B . When we collect coefficients of A and B in the
resulting pair of equations, we therefore get a system of the form

˛1.�/AC ˇ1.�/B D 0;
˛2.�/AC ˇ2.�/B D 0:

(13)

Now � is an eigenvalue if and only if the system in (13) has a nontrivial solution (one
with A and B not both zero). But such a homogeneous system of linear equations
has a nontrivial solution if and only if the determinant of its coefficients vanishes.
We therefore conclude that the eigenvalues of the problem in (10) are the (real)
solutions of the equation

D.�/ D ˛1.�/ˇ2.�/ � ˛2.�/ˇ1.�/ D 0: (14)

To illustrate Eq. (14) in a concrete problem, let’s revisit the eigenvalue prob-
lem of Example 3. If �>0, then the differential equation y00C�yD 0 has the general
solution y.x/ D A cos.

p
�x/C B sin.

p
�x/. The endpoint conditions y.0/ D 0 and

y.L/ D 0 then yield the equations

y.0/ D A � 1 C B � 0 D 0,
y.L/ D A cos.

p
�L/ C B sin.

p
�L/ D 0

(in the unknowns A and B) which correspond to the equations in (13). The de-
terminant equation D.�/ D 0 corresponding to (14) is then simply the equation
sin.
p
�L/ D 0, which implies that

p
�L D n� , or � D n2�2=L2 for n D 1, 2, 3, : : :

(as we saw in Example 3).
For more general problems, the solution of the equation D.�/D 0 in (14) may

present formidable difficulties and require a numerical approximation method (such
as Newton’s method) or recourse to a computer algebra system.

Most of the interest in eigenvalue problems is due to their very diverse physi-
cal applications. The remainder of this section is devoted to three such applications.
Numerous additional applications are included in Chapters 9 and 10 (on partial dif-
ferential equations and boundary value problems).

The Whirling String
Who of us has not wondered about the shape of a quickly spinning jump rope? Let
us consider the shape assumed by a tightly stretched flexible string of length L and
constant linear density � (mass per unit length) if it is rotated or whirled (like a jump
rope) with constant angular speed ! (in radians per second) around its equilibrium
position along the x-axis. We assume that the portion of the string to one side of
any point exerts a constant tension force T on the portion of the string to the other
side of the point, with the direction of T tangential to the string at that point. We
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further assume that, as the string whirls around the x-axis, each point moves in a

Vertical component:
T sin θ

T T

y

y

x

(x, y (x))

Equilibrium position

(a)

String

(c)

(x, y)

T

ω

θ θ

x = 0 x = L

x = 0 x = L

x

Whirling string

(b)

FIGURE 3.8.6. The whirling string.

circle centered at that point’s equilibrium position on the x-axis. Thus the string is
elastic, so that as it whirls it also stretches to assume a curved shape. Denote by
y.x/ the displacement of the string from the point x on the axis of rotation. Finally,
we assume that the deflection of the string is so slight that sin � � tan � D y0.x/ in
Fig. 3.8.6(c).

We plan to derive a differential equation for y.x/ by application of Newton’s
law F Dma to the piece of string of mass ��x corresponding to the interval Œx; xC
�x�. The only forces acting on this piece are the tension forces at its two ends. From
Fig. 3.8.7 we see that the net vertical force in the positive y-direction is

F D T sin.� C��/ � T sin � � T tan.� C��/ � T tan �;

so that

F � Ty0.x C�x/ � Ty0.x/: (15)

Next we recall from elementary calculus or physics the formula a D r!2 for the
(inward) centripetal acceleration of a body in uniform circular motion (r is the radius
of the circle and ! is the angular velocity of the body). Here we have r D y, so the
vertical acceleration of our piece of string is a D �!2y, the minus sign because the
inward direction is the negative y-direction. Because mD ��x, substitution of this
and (15) in F D ma yields

Ty0.x C�x/ � Ty0.x/ � ��!2y �x;

so that

T � y
0.x C�x/ � y0.x/

�x
� ��!2y:

We now take the limit as �x ! 0 to get the differential equation of motion of the

x

y

x x

(x, y)

T

θ

θ + Δθ

x + ΔxΔ

Δ

FIGURE 3.8.7. Forces on a short
segment of the whirling string.

string:

Ty00 C �!2y D 0: (16)

If we write

� D �!2

T
(17)

and impose the condition that the ends of the string are fixed, we finally get the
eigenvalue problem

y00 C �y D 0I y.0/ D 0; y.L/ D 0 (7)

that we considered in Example 3. We found there that the eigenvalues of the problem
in (7) are

�n D
n2�2

L2
; n D 1; 2; 3; : : : ; (8)

with the eigenfunction yn.x/ D sin.n�x=L/ associated with �n.
But what does all this mean in terms of the whirling string? It means that

unless � in (17) is one of the eigenvalues in (8), then the only solution of the problem
in (7) is the trivial solution y.x/� 0. In this case the string remains in its equilibrium
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position with zero deflection. But if we equate (17) and (8) and solve for the value
!n corresponding to �n,

!n D
s
�nT

�
D n�

L

s
T

�
(18)

for nD 1, 2, 3, : : : ; we get a sequence of critical speeds of angular rotation. Only at
these critical angular speeds can the string whirl up out of its equilibrium position.
At angular speed ! it assumes a shape of the form yn D cn sin.n�x=L/ illustrated
in Fig. 3.8.4 (where cn � 1). Our mathematical model is not sufficiently complete
(or realistic) to determine the coefficient cn, but it assumes much smaller deflections
than those observed in Fig. 3.8.4, so the numerical value of cn would necessarily be
significantly smaller than 1.

Suppose that we start the string rotating at speed

! < !1 D
�

L

s
T

�
;

then gradually increase its speed of rotation. So long as ! < !1, the string remains
in its undeflected position y � 0. But when ! D !1, the string pops into a whirling
position y D c1 sin.�x=L/. And when ! is increased still further, the string pops
back into its undeflected position along the axis of rotation!

The Deflection of a Uniform Beam
We include now an example of the use of a relatively simple endpoint value problem
to explain a complicated physical phenomenon—the shape of a horizontal beam on
which a vertical force is acting.

Consider the horizontal beam shown in Fig. 3.8.8, uniform both in cross sec-
tion and in material. If it is supported only at its ends, then the force of its own

FIGURE 3.8.8. Distortion of a
horizontal beam.

weight distorts its longitudinal axis of symmetry into the curve shown as a dashed
line in the figure. We want to investigate the shape yD y.x/ of this curve, the deflec-
tion curve of the beam. We will use the coordinate system indicated in Fig. 3.8.9,
with the positive y-axis directed downward.

A consequence of the theory of elasticity is that for relatively small deflections

Positive
y-values

x
L

FIGURE 3.8.9. The deflection curve.

of such a beam (so small that Œy0.x/�2 is negligible in comparison with unity), an
adequate mathematical model of the deflection curve is the fourth-order differential
equation

EIy.4/ D F.x/; (19)

where

� E is a constant known as the Young’s modulus of the material of the beam,
� I denotes the moment of inertia of the cross section of the beam around a

horizontal line through the centroid of the cross section, and
� F.x/ denotes the density of downward force acting vertically on the beam at

the point x.

Density of force? Yes; this means that the force acting downward on a very
short segment Œx; xC�x� of the beam is approximately F.x/�x. The units of F.x/
are those of force per unit length, such as pounds per foot. We will consider here the
case in which the only force distributed along the beam is its own weight, w pounds
per foot, so that F.x/ � w. Then Eq. (19) takes the form

EIy.4/ D w (20)

where E, I , and w are all constant.
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Note We assume no previous familiarity with the theory of elasticity or with Eq. (19) or (20)
here. It is important to be able to begin with a differential equation that arises in a specific
applied discipline and then analyze its implications; thus we develop an understanding of
the equation by examining its solutions. Observe that, in essence, Eq. (20) implies that the
fourth derivative y.4/ is proportional to the weight density w. This proportionality involves,
however, two constants: E, which depends only on the material of the beam, and I , which
depends only on the shape of the cross section of the beam. Values of the Young’s modulus
E of various materials can be found in handbooks of physical constants; I D 1

4�a
4 for a

circular cross section of radius a.

Although Eq. (20) is a fourth-order differential equation, its solution involves
only the solution of simple first-order equations by successive simple integrations.
One integration of Eq. (20) yields

EIy.3/ D wx C C1I

a second yields
EIy00 D 1

2
wx2 C C1x C C2I

another yields
EIy0 D 1

6
wx3 C 1

2
C1x

2 C C2x C C3I
a final integration gives

EIy D 1
24
wx4 C 1

6
C1x

3 C 1
2
C2x

2 C C3x C C4;

where C1, C2, C3, and C4 are arbitrary constants. Thus we obtain a solution of
Eq. (20) of the form

y.x/ D w

24EI
x4 C Ax3 C Bx2 C Cx CD; (21)

where A, B , C , and D are constants resulting from the four integrations.
These last four constants are determined by the way in which the beam is sup-

ported at its ends, where x D 0 and x D L. Figure 3.8.10 shows two common types

x = 0

Simply supported or hinged

Built in

x = L

x = 0 x = L

FIGURE 3.8.10. Two ways of
supporting a beam.

of support. A beam might also be supported one way at one end but another way at
the other end. For instance, Fig. 3.8.11 shows a cantilever—a beam firmly fastened
at x D 0 but free (no support whatsoever) at x D L. The following table shows the
boundary or endpoint conditions corresponding to the three most common cases.
We will see that these conditions are applied readily in beam problems, although a
discussion here of their origin would take us too far afield.

Support Endpoint Condition

Simply supported

Built-in or fixed end

Free end

y D y00 D 0
y D y0 D 0
y00 D y.3/ D 0

For example, the deflection curve of the cantilever in Fig. 3.8.11 would be
given by Eq. (21), with the coefficientsA, B , C , andD determined by the conditions

y.0/ D y0.0/ D 0 and y00.L/ D y.3/.L/ D 0; (22)

corresponding to the fixed end at x D 0 and the free end at x D L. The conditions
in (22) together with the differential equation in (21) constitute an endpoint value

Cantilever

FIGURE 3.8.11. The cantilever.

problem.
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Example 5 Determine the shape of the deflection curve of a uniform horizontal beam of length L and
weight w per unit length and simply supported at each end.

Solution We have the endpoint conditions

y.0/ D y00.0/ D 0 D y.L/ D y00.L/:

Rather than imposing them directly on Eq. (21), let us begin with the differential equation
EIy.4/ D w and determine the constants as we proceed with the four successive integrations.
The first two integrations yield

EIy.3/ D wx C AI EIy00 D 1
2wx

2 C Ax C B:

Hence y00.0/ D 0 implies that B D 0, and then y00.L/ D 0 gives

0 D 1
2wL

2 C AL:

It follows that A D �wL=2 and thus that

EIy00 D 1
2wx

2 � 1
2wLx:

Then two more integrations give

EIy0 D 1
6wx

3 � 1
4wLx

2 C C;

and finally,

EIy.x/ D 1
24wx

4 � 1
12wLx

3 C Cx CD: (23)

Now y.0/ D 0 implies that D D 0; then, because y.L/ D 0,

0 D 1
24wL

4 � 1
12wL

4 C CL:

It follows that C D wL3=24. Hence from Eq. (23) we obtain

y.x/ D w

24EI
.x4 � 2Lx3 C L3x/ (24)

as the shape of the simply supported beam. It is apparent from symmetry (see also Problem
17) that the maximum deflection ymax of the beam occurs at its midpoint x D L=2, and thus
has the value

ymax D y
�
L

2

�
D w

24EI

�
1

16
L4 � 2

8
L4 C 1

2
L4

�
I

that is,

ymax D
5wL4

384EI
: (25)

Example 6 For instance, suppose that we want to calculate the maximum deflection of a simply supported
steel rod 20 ft long with a circular cross section 1 in. in diameter. From a handbook we find
that typical steel has density ı D 7:75 g=cm3 and that its Young’s modulus is E D 2 � 1012

g=cm�s2, so it will be more convenient to work in cgs units. Thus our rod has

length: L D .20 ft/
�
30:48

cm
ft

�
D 609.60 cm

and

radius: a D
�
1

2
in.
��
2:54

cm
in.

�
D 1.27 cm:

Its linear mass density (that is, its mass per unit length) is

� D �a2ı D �.1:27/2.7:75/ � 39:27 g
cm

;
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so

w D �g D
�
39:27

g
cm

� �
980

cm
s2

�
� 38484:6 dyn

cm
:

The area moment of inertia of a circular disk of radius a around a diameter is I D 1
4�a

4, so

I D 1

4
�.1:27/4 � 2.04 cm4:

Therefore Eq. (25) yields

ymax �
.5/.38484:6/.609:60/4

.384/.2 � 1012/.2:04/
� 16.96 cm;

about 6:68 in., as the maximum deflection of the rod at its midpoint. It is interesting to note
that ymax is proportional to L4, so if the rod were only 10 ft long, its maximum deflection
would be only one-sixteenth as much—only about 0:42 in. Because I D 1

4�a
4, we see from

Eq. (25) that the same reduction in maximum deflection could be achieved by doubling the
radius a of the rod.

The Buckled Rod
Figure 3.8.12 shows a uniform rod of length L, hinged at each end, that has been

P

x = 0

y = y(x)

x = L

y

x
P

FIGURE 3.8.12. The buckled rod.

“buckled” by an axial force of compression P applied at one end. We assume this
buckling to be so slight that the deflection curve yD y.x/ of the rod may be regarded
as defined on the interval 0 5 x 5 L.

In the theory of elasticity the linear endpoint boundary value problem

EIy00 C Py D 0; y.0/ D y.L/ D 0 (26)

is used to model the actual (nonlinear) behavior of the rod. As in our discussion of
the deflection of a uniform beam, E denotes the Young’s modulus of the material
of the beam and I denotes the moment of inertia of each cross section of the beam
around a horizontal line through its centroid.

If we write

� D P

EI
; (27)

then the problem in (26) becomes the eigenvalue problem

y00 C �y D 0I y.0/ D y.L/ D 0 (7)

that we considered in Example 3. We found that its eigenvalues f�ng are given by

�n D
n2�2

L2
; n D 1; 2; 3; : : : (8)

with the eigenfunction yn D sin.n�x=L/ associated with �n. (Thus whirling strings
and buckled rods lead to the same eigenvalues and eigenfunctions.)

To interpret this result in terms of the buckled rod, recall from Eq. (27) that
P D �EI . The forces

Pn D �nEI D
n2�2EI

L2
; n D 1; 2; 3; : : : (28)



226 Chapter 3 Linear Equations of Higher Order

are the critical buckling forces of the rod. Only when the compressive force P is
one of these critical forces should the rod “buckle” out of its straight (undeflected)
shape. The smallest compressive force for which this occurs is

P1 D
�2EI

L2
: (29)

This smallest critical force P1 is called the Euler buckling force for the rod; it is the
upper bound for those compressive forces to which the rod can safely be subjected
without buckling. (In practice a rod may fail at a significantly smaller force due to a
contribution of factors not taken into account by the mathematical model discussed
here.)

Example 7 For instance, suppose that we want to compute the Euler buckling force for a steel rod 10 ft
long having a circular cross section 1 in. in diameter. In cgs units we have

E D 2 � 1012 g=cm�s2;

L D .10 ft/
�
30:48

cm
ft

�
D 304.8 cm; and

I D �

4

h
.0:5 in./

�
2:54

cm
in.

�i4
� 2.04 cm4:

Upon substituting these values in Eq. (29) we find that the critical force for this rod is

P1 � 4:34 � 108 dyn � 976 lb;

using the conversion factor 4:448 � 105 dyn=lb.

3.8 Problems
The eigenvalues in Problems 1 through 5 are all nonnegative.
First determine whether � D 0 is an eigenvalue; then find the
positive eigenvalues and associated eigenfunctions.

1. y00 C �y D 0; y0.0/ D 0, y.1/ D 0
2. y00 C �y D 0; y0.0/ D 0, y0.�/ D 0
3. y00 C �y D 0; y.��/ D 0, y.�/ D 0
4. y00 C �y D 0; y0.��/ D 0, y0.�/ D 0
5. y00 C �y D 0; y.�2/ D 0, y0.2/ D 0
6. Consider the eigenvalue problem

y00 C �y D 0I y0.0/ D 0; y.1/C y0.1/ D 0:

All the eigenvalues are nonnegative, so write � D ˛2

where ˛ = 0. (a) Show that � D 0 is not an eigen-
value. (b) Show that y D A cos˛x C B sin˛x satis-
fies the endpoint conditions if and only if B D 0 and ˛
is a positive root of the equation tan ´ D 1=́ . These roots
f˛ng11 are the abscissas of the points of intersection of the
curves y D tan ´ and y D 1=´, as indicated in Fig. 3.8.13.
Thus the eigenvalues and eigenfunctions of this problem
are the numbers f˛2

ng11 and the functions fcos˛nxg11 , re-
spectively.

zα1

α2

π 2π 3π

α3 α4

y = tan z

y = 1
z

y

FIGURE 3.8.13. The eigenvalues are determined by the
intersections of the graphs of y D tan ´ and y D 1=́
(Problem 6).

7. Consider the eigenvalue problem

y00 C �y D 0I y.0/ D 0; y.1/C y0.1/ D 0I
all its eigenvalues are nonnegative. (a) Show that � D 0

is not an eigenvalue. (b) Show that the eigenfunctions
are the functions fsin˛nxg11 , where ˛n is the nth positive
root of the equation tan ´ D �´. (c) Draw a sketch indi-
cating the roots f˛ng11 as the points of intersection of the
curves y D tan ´ and y D �´. Deduce from this sketch
that ˛n � .2n � 1/�=2 when n is large.

8. Consider the eigenvalue problem

y00 C �y D 0I y.0/ D 0; y.1/ D y0.1/I
all its eigenvalues are nonnegative. (a) Show that � D 0

is an eigenvalue with associated eigenfunction y0.x/ D x.
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(b) Show that the remaining eigenfunctions are given by
yn.x/ D sinˇnx, where ˇn is the nth positive root of the
equation tan ´ D ´. Draw a sketch showing these roots.
Deduce from this sketch that ˇn � .2nC 1/�=2 when n is
large.

9. Prove that the eigenvalue problem of Example 4 has no
negative eigenvalues.

10. Prove that the eigenvalue problem

y00 C �y D 0I y.0/ D 0; y.1/C y0.1/ D 0

has no negative eigenvalues. (Suggestion: Show graph-
ically that the only root of the equation tanh ´ D �´ is
´ D 0.)

11. Use a method similar to that suggested in Problem 10 to
show that the eigenvalue problem in Problem 6 has no neg-
ative eigenvalues.

12. Consider the eigenvalue problem

y00 C �y D 0I y.��/ D y.�/; y0.��/ D y0.�/;

which is not of the type in (10) because the two endpoint
conditions are not “separated” between the two endpoints.
(a) Show that �0 D 0 is an eigenvalue with associated
eigenfunction y0.x/� 1. (b) Show that there are no neg-
ative eigenvalues. (c) Show that the nth positive eigen-
value is n2 and that it has two linearly independent asso-
ciated eigenfunctions, cosnx and sinnx.

13. Consider the eigenvalue problem

y00 C 2y0 C �y D 0I y.0/ D y.1/ D 0:

(a) Show that � D 1 is not an eigenvalue. (b) Show that
there is no eigenvalue � such that �< 1. (c) Show that the
nth positive eigenvalue is �n D n2�2C 1, with associated
eigenfunction yn.x/ D e�x sinn�x.

14. Consider the eigenvalue problem

y00 C 2y0 C �y D 0I y.0/ D 0; y0.1/ D 0:

Show that the eigenvalues are all positive and that the nth
positive eigenvalue is �n D ˛2

n C 1 with associated eigen-
function yn.x/D e�x sin˛nx, where ˛n is the nth positive
root of tan ´ D ´.

15. (a) A uniform cantilever beam is fixed at x D 0 and free
at its other end, where x D L. Show that its shape is given
by

y.x/ D w

24EI
.x4 � 4Lx3 C 6L2x2/:

(b) Show that y0.x/D 0 only at x D 0, and thus that it fol-
lows (why?) that the maximum deflection of the cantilever
is ymax D y.L/ D wL4=.8EI/.

16. (a) Suppose that a beam is fixed at its ends x D 0 and
x D L. Show that its shape is given by

y.x/ D w

24EI
.x4 � 2Lx3 C L2x2/:

(b) Show that the roots of y0.x/D 0 are x D 0, x D L, and
x D L=2, so it follows (why?) that the maximum deflec-
tion of the beam is

ymax D y
�
L

2

�
D wL4

384EI
;

one-fifth that of a beam with simply supported ends.
17. For the simply supported beam whose deflection curve is

given by Eq. (24), show that the only root of y0.x/ D 0 in
Œ0; L� is x D L=2, so it follows (why?) that the maximum
deflection is indeed that given in Eq. (25).

18. (a) A beam is fixed at its left end x D 0 but is simply sup-
ported at the other end x D L. Show that its deflection
curve is

y.x/ D w

48EI
.2x4 � 5Lx3 C 3L2x2/:

(b) Show that its maximum deflection occurs where x D�
15 �

p
33
	
L=16 and is about 41:6% of the maximum de-

flection that would occur if the beam were simply sup-
ported at each end.



44 Introduction to
Systems of Differential
Equations

4.1 First-Order Systems and Applications

In the preceding chapters we have discussed methods for solving an ordinary dif-
ferential equation that involves only one dependent variable. Many applications,

however, require the use of two or more dependent variables, each a function of a
single independent variable (typically time). Such a problem leads naturally to a
system of simultaneous ordinary differential equations. We will usually denote the
independent variable by t and the dependent variables (the unknown functions of t)
by x1, x2, x3, : : : :or by x, y, ´, : : : : Primes will indicate derivatives with respect to
t .

We will restrict our attention to systems in which the number of equations is
the same as the number of dependent variables (unknown functions). For instance,
a system of two first-order equations in the dependent variables x and y has the
general form

f .t; x; y; x0; y0/ D 0;
g.t; x; y; x0; y0/ D 0; (1)

where the functions f and g are given. A solution of this system is a pair x.t/, y.t/
of functions of t that satisfy both equations identically over some interval of values
of t .

For an example of a second-order system, consider a particle of mass m that
moves in space under the influence of a force field F that depends on time t , the po-
sition .x.t/; y.t/; ´.t// of the particle, and its velocity .x0.t/; y0.t/; ´0.t//. Applying
Newton’s law ma D F componentwise, we get the system

mx00 D F1.t; x; y; ´; x
0; y0; ´0/;

my00 D F2.t; x; y; ´; x
0; y0; ´0/;

m´00 D F3.t; x; y; ´; x
0; y0; ´0/

(2)

of three second-order equations with independent variable t and dependent variables
x, y, ´; the three right-hand-side functions F1, F2, F3 are the components of the
vector-valued function F.

228
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Initial Applications
Examples 1 through 3 further illustrate how systems of differential equations arise
naturally in scientific problems.

Example 1 Consider the system of two masses and two springs shown in Fig. 4.1.1, with a given external
force f .t/ acting on the right-hand mass m2. We denote by x.t/ the displacement (to thek1 k2

m2m1

Equilibrium positions

y (t)

f (t)

x (t)

FIGURE 4.1.1. The mass-and-spring
system of Example 1.

f (t)

k1x k2(y – x)

k2(y – x)

m1

m2

FIGURE 4.1.2. The “free body
diagrams” for the system of Example 1.

right) of the mass m1 from its static equilibrium position (when the system is motionless and
in equilibrium and f .t/ D 0) and by y.t/ the displacement of the mass m2 from its static
position. Thus the two springs are neither stretched nor compressed when x and y are zero.

In the configuration in Fig. 4.1.1, the first spring is stretched x units and the second by
y � x units. We apply Newton’s law of motion to the two “free body diagrams” shown in
Fig. 4.1.2; we thereby obtain the system

m1x
00 D �k1x C k2.y � x/;

m2y
00 D �k2.y � x/C f .t/

(3)

of differential equations that the position functions x.t/ and y.t/ must satisfy. For instance,
if m1 D 2, m2 D 1, k1 D 4, k2 D 2, and f .t/ D 40 sin 3t in appropriate physical units, then
the system in (3) reduces to

2x00 D �6x C 2y;
y00 D 2x � 2y C 40 sin 3t:

(4)

Example 2 Consider two brine tanks connected as shown in Fig. 4.1.3. Tank 1 contains x.t/ pounds of
salt in 100 gal of brine and tank 2 contains y.t/ pounds of salt in 200 gal of brine. The brine in
each tank is kept uniform by stirring, and brine is pumped from each tank to the other at the
rates indicated in Fig. 4.1.3. In addition, fresh water flows into tank 1 at 20 gal=min, and the
brine in tank 2 flows out at 20 gal=min (so the total volume of brine in the two tanks remains20 gal/min

Fresh water

y (t ) lb
200 gal

20 gal/min

10 gal/min

30 gal/min
Tank 2Tank 1

x (t ) lb
100 gal

FIGURE 4.1.3. The two brine tanks
of Example 2.

constant). The salt concentrations in the two tanks are x=100 pounds per gallon and y=200
pounds per gallon, respectively. When we compute the rates of change of the amount of salt
in the two tanks, we therefore get the system of differential equations that x.t/ and y.t/ must
satisfy:

x0 D �30 � x
100
C 10 � y

200
D � 3

10
x C 1

20
y;

y0 D 30 � x
100
� 10 � y

200
� 20 � y

200
D 3

10
x � 3

20
yI

that is,

20x0 D �6x C y;
20y0 D 6x � 3y: (5)

Example 3 Consider the electrical network shown in Fig. 4.1.4, where I1.t/ denotes the current in the
indicated direction through the inductor L and I2.t/ denotes the current through the resistor
R2. The current through the resistor R1 is I D I1 � I2 in the direction indicated. We recall
Kirchhoff’s voltage law to the effect that the (algebraic) sum of the voltage drops around
any closed loop of such a network is zero. As in Section 3.7, the voltage drops across the
three types of circuit elements are those shown in Fig. 4.1.5. We apply Kirchhoff’s law to the
left-hand loop of the network to obtain

2
dI1

dt
C 50.I1 � I2/ � 100 D 0; (6)

because the voltage drop from the negative to the positive pole of the battery is �100. The
right-hand loop yields the equation

125Q2 C 25I2 C 50.I2 � I1/ D 0; (7)



230 Chapter 4 Introduction to Systems of Differential Equations

+

–

E0:
100 volts

R1:
50 ohms

I1 R2:
25 ohms

L : 2 henries C : 0.008 farads

I2

I

FIGURE 4.1.4. The electrical network of Example 3.

where Q2.t/ is the charge on the capacitor. Because dQ2=dt D I2, differentiation of each
Circuit Voltage

Element Drop

Inductor

Resistor

Capacitor

L
dI

dt

RI

1

C
Q

FIGURE 4.1.5. Voltage drops across
common circuit elements.

side of Eq. (7) yields

125I2 C 75
dI2

dt
� 50dI1

dt
D 0: (8)

After dividing Eqs. (6) and (8) by the factors 2 and �25, respectively, we get the system

dI1

dt
C 25I1 � 25I2 D 50;

2
dI1

dt
� 3dI2

dt
� 5I2 D 0

(9)

of differential equations that the currents I1.t/ and I2.t/ must satisfy.

First-Order Systems
Consider a system of differential equations that can be solved for the highest-order
derivatives of the dependent variables that appear, as explicit functions of t and
lower-order derivatives of the dependent variables. For instance, in the case of a
system of two second-order equations, our assumption is that it can be written in the
form

x00
1 D f1.t; x1; x2; x

0
1; x

0
2/;

x00
2 D f2.t; x1; x2; x

0
1; x

0
2/:

(10)

It is of both practical and theoretical importance that any such higher-order system
can be transformed into an equivalent system of first-order equations.

To describe how such a transformation is accomplished, we consider first the
“system” consisting of the single nth-order equation

x.n/ D f .t; x; x0; : : : ; x.n�1//: (11)

We introduce the dependent variables x1, x2, : : : ; xn defined as follows:

x1 D x; x2 D x0; x3 D x00; : : : ; xn D x.n�1/: (12)

Note that x0
1 D x0 D x2, x0

2 D x00 D x3, and so on. Hence the substitution of (12) in
Eq. (11) yields the system

x0
1 D x2;

x0
2 D x3;

:::

x0
n�1 D xn;

x0
n D f .t; x1; x2; : : : ; xn/

(13)
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of n first-order equations. Evidently, this system is equivalent to the original nth-
order equation in (11), in the sense that x.t/ is a solution of Eq. (11) if and only if
the functions x1.t/, x2.t/, : : : ; xn.t/ defined in (12) satisfy the system of equations
in (13).

Example 4 The third-order equation
x.3/ C 3x00 C 2x0 � 5x D sin 2t

is of the form in (11) with

f .t; x; x0; x00/ D 5x � 2x0 � 3x00 C sin 2t:

Hence the substitutions

x1 D x; x2 D x0 D x0
1; x3 D x00 D x0

2

yield the system

x0
1 D x2;

x0
2 D x3;

x0
3 D 5x1 � 2x2 � 3x3 C sin 2t

of three first-order equations.

It may appear that the first-order system obtained in Example 4 offers little
advantage because we could use the methods of Chapter 3 to solve the original (lin-
ear) third-order equation. But suppose that we were confronted with the nonlinear
equation

x00 D x3 C .x0/3;

to which none of our earlier methods can be applied. The corresponding first-order
system is

x0
1 D x2;

x0
2 D .x1/

3 C .x2/
3;

(14)

and we will see in Section 4.3 that there exist effective numerical techniques for
approximating the solution of essentially any first-order system. So in this case the
transformation to a first-order system is advantageous. From a practical viewpoint,
large systems of higher-order differential equations typically are solved numerically
with the aid of the computer, and the first step is to transform such a system into a
first-order system for which a standard computer program is available.

Example 5 The system

2x00 D �6x C 2y,

y00 D 2x � 2y C 40 sin 3t
(4)

of second-order equations was derived in Example 1. Transform this system into an equiva-
lent first-order system.

Solution Motivated by the equations in (12), we define

x1 D x; x2 D x0 D x0
1; y1 D y; y2 D y0 D y0

1:

Then the system in (4) yields the system

x0
1 D x2;

2x0
2 D �6x1 C 2y1;

y0
1 D y2;

y0
2 D 2x1 � 2y1 C 40 sin 3t

(15)

of four first-order equations in the dependent variables x1, x2, y1, and y2.
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Simple Two-Dimensional Systems
The linear second-order differential equation

x00 C px0 C qx D 0 (16)

(with constant coefficients and independent variable t) transforms via the substitu-
tions x0 D y, x00 D y0 into the two-dimensional linear system

x0 D y;
y0 D �qx � py:

(17)

Conversely, we can solve this system in (17) by solving the familiar single equation
in (16).

Example 6 To solve the two-dimensional system

x0 D �2y;
y0 D 1

2x;
(18)

we begin with the observation that

x00 D �2y0 D �2
�

1
2x
�
D �x:

This gives the single second-order equation x00 C x D 0 with general solution

x.t/ D A cos t C B sin t D C cos.t � ˛/
where A D C cos˛ and B D C sin˛. Then

y.t/ D �1
2x

0.t/ D �1
2 .�A sin t C B cos t /

D 1
2C sin.t � ˛/:

The identity cos2 �Csin2 � D 1 therefore implies that, for each value of t , the point .x.t/; y.t//
lies on the ellipse

x2

C 2
C y2

.C=2/2
D 1

with semiaxes C and C=2. Figure 4.1.6 shows several such ellipses in the xy-plane.

50–5 1–4 2–3 3–2 4–1
x

y

–5

5

0

–4

1

–3

2

–2

3

–1

4

FIGURE 4.1.6. Direction field and
solution curves for the system
x0 D �2y, y0 D 1

2
x of Example 6.

A solution .x.t/; y.t// of a two-dimensional system

x0 D f .t; x; y/;
y0 D g.t; x; y/

may be regarded as a parametrization of a solution curve or trajectory of the sys-
tem in the xy-plane. Thus the trajectories of the system in (18) are the ellipses of
Fig. 4.1.6. The choice of an initial point .x.0/; y.0// determines which one of these
trajectories a particular solution parametrizes.

The picture showing a system’s trajectories in the xy-plane—its so-called
phase plane portrait—fails to reveal precisely how the point .x.t/; y.t// moves
along its trajectory. If the functions f and g do not involve the independent variable
t , then a direction field—showing typical arrows representing vectors with compo-
nents (proportional to) the derivatives x0D f .x; y/ and y0D g.x; y/—can be plotted.
Because the moving point .x.t/; y.t// has velocity vector .x0.t/; y0.t//, this direc-
tion field indicates the point’s direction of motion along its trajectory. For instance,
the direction field plotted in Fig. 4.1.6 indicates that each such point moves coun-
terclockwise around its elliptical trajectory. Additional information can be shown
in the separate graphs of x.t/ and y.t/ as functions of t .
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Continued

Example 6 With initial values x.0/ D 2, y.0/ D 0, the general solution in Example 6 yields

x.0/ D A D 2; y.0/ D �1
2B D 0:

The resulting particular solution is given by

x.t/ D 2 cos t; y.t/ D sin t:

The graphs of the two functions are shown in Fig. 4.1.7. We see that x.t/ initially decreases
while y.t/ increases. It follows that, as t increases, the solution point .x.t/; y.t// traverses
the trajectory 1

4x
2 C y2 D 1 in the counterclockwise direction, as indicated by the direction

field vectors in Fig. 4.1.6.

151050
t

x,
 y

–4

–3

–2

–1

4

3

2

1

0

x = 2 cos t

y = sin t

FIGURE 4.1.7. x- and y-solution curves for the initial value
problem x0 D �2y, y0 D 1

2
x, x.0/ D 2, y.0/ D 0.

Example 7 To find a general solution of the system

x0 D y;
y0 D 2x C y; (19)

we begin with the observation that

x00 D y0 D 2x C y D x0 C 2x:

This gives the single linear second-order equation

x00 � x0 � 2x D 0

with characteristic equation

r2 � r � 2 D .r C 1/.r � 2/ D 0

and general solution

x.t/ D Ae�t C Be2t : (20)

Then

y.t/ D x0.t/ D �Ae�t C 2Be2t : (21)

Typical phase plane trajectories of the system in (19) parametrized by Eqs. (20) and (21) are
shown in Fig. 4.1.8. These trajectories may resemble hyperbolas sharing common asymp-

0–4 2 4–2 1–3 3–1
x

y 0

–4

1

–3

2

–2

3

4

–1

FIGURE 4.1.8. Direction field and
solution curves for the system x0 D y,
y0 D 2x C y of Example 7.

totes, but Problem 23 shows that their actual form is somewhat more complicated.
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Example 8 To solve the initial value problem

x0 D �y;
y0 D .1:01/x � .0:2/y;
x.0/ D 0; y.0/ D 1;

(22)

we begin with the observation that

x00 D �y0 D �Œ.1:01/x � .0:2/y� D .�1:01/x � .0:2/x0:

This gives the single linear second-order equation

x00 C .0:2/x0 C .1:01/x D 0

with characteristic equation

20–2 1–1
x

y

–2

2

0

–1

1

(0, −1)

FIGURE 4.1.9. Direction field and
solution curve for the system x0 D �y,
y0 D .1:01/x � .0:2/y of Example 8.

r2 C .0:2/r C 1:01 D .r C 0:1/2 C 1 D 0;

characteristic roots �0:1˙ i , and general solution

x.t/ D e�t=10.A cos t C B sin t /:

Then x.0/ D A D 0, so

x.t/ D Be�t=10 sin t;

y.t/ D �x0.t/ D 1
10Be

�t=10 sin t � Be�t=10 cos t:

Finally, y.0/ D �B D 1, so the desired solution of the system in (22) is

x.t/ D e�t=10 sin t;

y.t/ D 1
10 e

�t=10.sin t C 10 cos t /:
(23)

These equations parametrize the spiral trajectory in Fig. 4.1.9; the trajectory approaches the

x = x (t)

15105 3025200
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x,
 y
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–0.4

0.8

0.4
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–1.2

1.2

y = y (t)

FIGURE 4.1.10. x- and y-solution
curves for the initial value problem of
Example 8.

origin as t !C1. Figure 4.1.10 shows the x- and y-solution curves given in (23).

When we study linear systems in Chapter 5, we will learn why the superficially
similar systems in Examples 6 through 8 have the markedly different trajectories
shown in Figs. 4.1.6, 4.1.8, and 4.1.9.

Linear Systems
In addition to practical advantages for numerical computation, the general theory of
systems and systematic solution techniques are more easily and more concisely de-
scribed for first-order systems than for higher-order systems. For instance, consider
a linear first-order system of the form

x0
1 D p11.t/x1 C p12.t/x2 C � � � C p1nxn C f1.t/;

x0
2 D p21.t/x1 C p22.t/x2 C � � � C p2nxn C f2.t/;
:::

x0
n D pn1.t/x1 C pn2.t/x2 C � � � C pnnxn C fn.t/:

(24)

We say that this system is homogeneous if the functions f1; f2; : : : ; fn are all iden-
tically zero; otherwise, it is nonhomogeneous. Thus the linear system in (5) is
homogeneous, whereas the linear system in (15) is nonhomogeneous. The system
in (14) is nonlinear because the right-hand side of the second equation is not a linear
function of the dependent variables x1 and x2.
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A solution of the system in (24) is an n-tuple of functions x1.t/; x2.t/; : : : ;

xn.t/ that (on some interval) identically satisfy each of the equations in (24). We
will see that the general theory of a system of n linear first-order equations shares
many similarities with the general theory of a single nth-order linear differential
equation. Theorem 1 (proved in the Appendix) is analogous to Theorem 2 of Section
3.2. It tells us that if the coefficient functions pij and fj in (24) are continuous, then
the system has a unique solution satisfying given initial conditions.

THEOREM 1 Existence and Uniqueness for Linear Systems

Suppose that the functions p11; p12; : : : ; pnn and the functions f1; f2; : : : ; fn are
continuous on the open interval I containing the point a. Then, given the n
numbers b1; b2; : : : ; bn, the system in (24) has a unique solution on the entire
interval I that satisfies the n initial conditions

x1.a/ D b1; x2.a/ D b2; : : : ; xn.a/ D bn: (25)

Thus n initial conditions are needed to determine a solution of a system of
n linear first-order equations, and we therefore expect a general solution of such a
system to involve n arbitrary constants. For instance, we saw in Example 5 that the
second-order linear system

2x00 D � 6x C 2y,
y00 D 2x � 2y C 40 sin 3t;

which describes the position functions x.t/ and y.t/ of Example 1, is equivalent to
the system of four first-order linear equations in (15). Hence four initial conditions
would be needed to determine the subsequent motions of the two masses in Example
1. Typical initial values would be the initial positions x.0/ and y.0/ and the initial
velocities x0.0/ and y0.0/. On the other hand, we found that the amounts x.t/ and
y.t/ of salt in the two tanks of Example 2 are described by the system

20x0 D � 6x C y,
20y0 D 6x � 3y

of two first-order linear equations. Hence the two initial values x.0/ and y.0/ should
suffice to determine the solution. Given a higher-order system, we often must trans-
form it into an equivalent first-order system to discover how many initial conditions
are needed to determine a unique solution. Theorem 1 tells us that the number of
such conditions is precisely the same as the number of equations in the equivalent
first-order system.

4.1 Problems
In Problems 1 through 16, transform the given differential
equation or system into an equivalent system of first-order dif-
ferential equations.

1. x00 C 3x0 C 7x D t2
2. x00 C 4x � x3 D 0 (This equation is used in Section 6.4

to describe the motion of a mass connected to a “soft”
spring.)

3. x00 C 2x0 C 26x D 82 cos 4t (This equation was used in
Section 3.6 to model the oscillations of a mass-and-spring
system.)

4. x.3/ � 2x00 C x0 D 1C tet

5. x.4/ C 3x00 C x D et sin 2t
6. x.4/ C 6x00 � 3x0 C x D cos 3t
7. t2x00 C tx0 C .t2 � 1/x D 0
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8. t3x.3/ � 2t2x00 C 3tx0 C 5x D ln t
9. x.3/ D .x0/2 C cos x

10. x00 � 5x C 4y D 0, y00 C 4x � 5y D 0
11. x00 D� kx

.x2 C y2/3=2
, y00 D� ky

.x2 C y2/3=2
(These equa-

tions are used in Application 4.3 to describe the motion of
a satellite in elliptical orbit around a planet.)

12. 3x00 D 2y0, 3y00 D �2x0
13. x00 D �75x C 25y, y00 D 50x � 50y C 50 cos 5t (This sys-

tem of equations is used in Section 5.4 to describe the mo-
tions of a double mass-and-spring system.)

14. x00 C 3x0 C 4x � 2y D 0, y00 C 2y0 � 3x C y D cos t
15. x00 D 3x � y C 2´, y00 D x C y � 4´, ´00 D 5x � y � ´
16. x00 D .1 � y/x, y00 D .1 � x/y

Use the method of Examples 6, 7, and 8 to find general solu-
tions of the systems in Problems 17 through 26. If initial con-
ditions are given, find the corresponding particular solution.
For each problem, use a computer system or graphing calcu-
lator to construct a direction field and typical solution curves
for the given system.

17. x0 D y, y0 D �x
18. x0 D y, y0 D x
19. x0 D �2y, y0 D 2x; x.0/ D 1, y.0/ D 0
20. x0 D 10y, y0 D �10x; x.0/ D 3, y.0/ D 4
21. x0 D 1

2y, y0 D �8x
22. x0 D 8y, y0 D �2x
23. x0 D y, y0 D 6x � y; x.0/ D 1, y.0/ D 2
24. x0 D �y, y0 D 10x � 7y; x.0/ D 2, y.0/ D �7
25. x0 D �y, y0 D 13x C 4y; x.0/ D 0, y.0/ D 3
26. x0 D y, y0 D �9x C 6y
27. (a) Calculate Œx.t/�2C Œy.t/�2 to show that the trajectories

of the system x0 D y, y0 D �x of Problem 17 are circles.
(b) Calculate Œx.t/�2� Œy.t/�2 to show that the trajectories
of the system x0D y, y0D x of Problem 18 are hyperbolas.

28. (a) Beginning with the general solution of the system
x0 D �2y, y0 D 2x of Problem 19, calculate x2 C y2 to
show that the trajectories are circles. (b) Show similarly
that the trajectories of the system x0 D 1

2y, y0 D �8x
of Problem 21 are ellipses with equations of the form
16x2 C y2 D C 2.

29. First solve Eqs. (20) and (21) for e�t and e2t in terms of
x.t/, y.t/, and the constants A and B . Then substitute the
results in .e2t /.e�t /2 D 1 to show that the trajectories of
the system x0 D y, y0 D 2x C y in Example 7 satisfy an
equation of the form

4x3 � 3xy2 C y3 D C (constant):

Then show that C D 0 yields the straight lines y D�x and
y D 2x that are visible in Fig. 4.1.8.

30. Derive the equations

m1x
00
1 D �.k1 C k2/x1 C k2x2,

m2x
00
2 D k2x1 � .k2 C k3/x2

for the displacements (from equilibrium) of the two
masses shown in Fig. 4.1.11.

k1 k2 k3
m2

x2

m1

x1

FIGURE 4.1.11. The system of
Problem 30.

31. Two particles each of massm are attached to a string under
(constant) tension T , as indicated in Fig. 4.1.12. Assume
that the particles oscillate vertically (that is, parallel to the
y-axis) with amplitudes so small that the sines of the an-
gles shown are accurately approximated by their tangents.
Show that the displacements y1 and y2 satisfy the equa-
tions

ky00
1 D �2y1 C y2; ky00

2 D y1 � 2y2

where k D mL=T .

xL L L

y

m

m

θ1θ

θ1θ

θ2θ

θ2θ
θ3θ

θ3θ

FIGURE 4.1.12. The mechanical system of
Problem 31.

32. Three 100-gal fermentation vats are connected as indi-
cated in Fig. 4.1.13, and the mixture in each tank is kept
uniform by stirring. Denote by xi .t/ the amount (in
pounds) of alcohol in tank Ti at time t (i D 1, 2, 3). Sup-
pose that the mixture circulates between the tanks at the
rate of 10 gal=min. Derive the equations

10x0
1 D �x1 C x3

10x0
2 D x1 � x2

10x0
3 D x2 � x3.

T1 T3

T2

FIGURE 4.1.13. The fermentation tanks of
Problem 32.
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33. Set up a system of first-order differential equations for the
indicated currents I1 and I2 in the electrical circuit of
Fig. 4.1.14, which shows an inductor, two resistors, and
a generator which supplies an alternating voltage drop of
E.t/ D 100 sin 60t V in the direction of the current I1.

R1: 50 ohms

E (t ) = 100 sin 60 t

I1
R2:
25 ohms

L :
2 henries

I2

FIGURE 4.1.14. The electrical circuit of Problem 33.

34. Repeat Problem 33, except with the generator replaced
with a battery supplying an emf of 100 V and with the
inductor replaced with a 1-millifarad (mF) capacitor.

35. A particle of mass m moves in the plane with coordinates
.x.t/; y.t// under the influence of a force that is directed
toward the origin and has magnitude k=.x2 C y2/—an
inverse-square central force field. Show that

mx00 D �kx
r3

and my00 D �ky
r3
;

where r D
p
x2 C y2.

36. Suppose that a projectile of mass m moves in a vertical
plane in the atmosphere near the surface of the earth un-
der the influence of two forces: a downward gravitational

force of magnitude mg, and a resistive force FR that is
directed opposite to the velocity vector v and has mag-
nitude kv2 (where v D jvj is the speed of the projectile;
see Fig. 4.1.15). Show that the equations of motion of the
projectile are

mx00 D �kvx0; my00 D �kvy0 �mg;

where v D
p
.x0/2 C .y0/2.

x

y

m

mg

FR

FIGURE 4.1.15. The trajectory of the
projectile of Problem 36.

37. Suppose that a particle with massm and electrical charge q
moves in the xy-plane under the influence of the magnetic
field B D Bk (thus a uniform field parallel to the ´-axis),
so the force on the particle is F D qv � B if its velocity is
v. Show that the equations of motion of the particle are

mx00 D CqBy0; my00 D �qBx0:

4.1 Application Gravitation and Kepler’s Laws of Planetary Motion
Around the turn of the 17th century, Johannes Kepler analyzed a lifetime of plane-
tary observations by the astronomer Tycho Brahe. Kepler concluded that the motion
of the planets around the sun is described by the following three propositions, now
known as Kepler’s laws of planetary motion:

1. The orbit of each planet is an ellipse with the sun at one focus.
2. The radius vector from the sun to each planet sweeps out area at a constant

rate.
3. The square of the planet’s period of revolution is proportional to the cube of

the major semiaxis of its elliptical orbit.

In his Principia Mathematica (1687) Isaac Newton deduced the inverse-square
law of gravitation from Kepler’s laws. In this application we lead you (in the oppo-
site direction) through a derivation of Kepler’s first two laws from Newton’s law of
gravitation.

Assume that the sun is located at the origin in the plane of motion of a planet,
and write the position vector of the planet in the form

r.t/ D .x.t/; y.t// D xiC yj; (1)

where i D .1; 0/ and j D .0; 1/ denote the unit vectors in the positive x- and y-
directions. Then the inverse-square law of gravitation implies (Problem 29) that the
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acceleration vector r00.t/ of the planet is given by

r00 D �kr
r3
; (2)

where r D
p
x2 C y2 is the distance from the sun to the planet. If the polar co-

ordinates of the planet at time t are .r.t/; �.t//, then the radial and transverse unit
vectors shown in Fig. 4.1.16 are given by

ur D i cos � C j sin � and u� D �i sin � C j cos �: (3)

The radial unit vector ur (when located at the planet’s position) always points di-
rectly away from the origin, so ur D r=r , and the transverse unit vector u� is ob-
tained from ur by a 90ı counterclockwise rotation.

y

x

uq(t)

ur(t)

q(r(t), (t))

FIGURE 4.1.16. The radial and
transverse unit vectors ur and u� .

STEP 1: Differentiate the equations in (3) componentwise to show that

dur

dt
D u�

d�

dt
and

du�

dt
D �ur

d�

dt
: (4)

STEP 2: Use the equations in (4) to differentiate the planet’s position vector r D
rur and thereby show that its velocity vector is given by

v D dr
dt
D ur

dr

dt
C r d�

dt
u� : (5)

STEP 3: Differentiate again to show that the planet’s acceleration vector a D
dv=dt is given by

a D
"
d2r

dt2
� r

�
d�

dt

�2
#

ur C
�
1

r

d

dt

�
r2 d�

dt

��
u� : (6)

STEP 4: The radial and transverse components on the right-hand sides in Eqs. (2)
and (6) must agree. Equating the transverse components—that is, the coefficients
of u� —we get

1

r

d

dt

�
r2 d�

dt

�
D 0; (7)

so it follows that

r2 d�

dt
D h; (8)

where h is a constant. Because the polar-coordinate area element—for computation
of the area A.t/ in Fig. 4.1.17—is given by dA D 1

2
r2d� , Eq. (8) implies that the

derivative A0.t/ is constant, which is a statement of Kepler’s second law.

A(t)

θ(r(0), (0))

θ(r(t), (t))

FIGURE 4.1.17. Area swept out by
the radius vector.

STEP 5: Equate radial components in (2) and (6) and then use the result in (8)
to show that the planet’s radial coordinate function r.t/ satisfies the second-order
differential equation

d2r

dt2
� h

2

r3
D � k

r2
: (9)
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STEP 6: Although the differential equation in (9) is nonlinear, it can be trans-
formed to a linear equation by means of a simple substitution. For this purpose,
assume that the orbit can be written in the polar-coordinate form r D r.�/, and first
use the chain rule and Eq. (8) to show that if r D 1=́ , then

dr

dt
D �hd´

d�
:

Differentiate again to deduce from Eq. (9) that the function ´.�/ D 1=r.�/ satisfies

=θ α

y

x

r1

Sun

r2

L

FIGURE 4.1.18. The elliptical orbit

r D L

1 C e cos.� � ˛/

with perihelion distance
r1 D L=.1 C e/ and aphelion distance
r2 D L=.1 � e/.

the second-order equation

d2´

d�2
C ´ D k

h2
: (10)

STEP 7: Show that the general solution of Eq. (10) is

´.�/ D A cos � C B sin � C k

h2
: (11)

STEP 8: Finally, deduce from Eq. (11) that r.�/ D 1=́ .�/ is given by

r.�/ D L

1C e cos.� � ˛/ (12)

with e D Ch2=k, C cos˛ D A, C sin˛ D B , and L D h2=k. The polar-coordinate
graph of Eq. (12) is a conic section of eccentricity e—an ellipse if 0 5 e < 1, a
parabola if e D 1, and a hyperbola if e > 1—with focus at the origin. Planetary
orbits are bounded and therefore are ellipses with eccentricity e < 1. As indicated
in Fig. 4.1.18, the major axis of the ellipse lies along the radial line � D ˛.

STEP 9: Plot some typical elliptical orbits as described by (12) with different ec-
centricities, sizes, and orientations. In rectangular coordinates you can write

x.t/ D r.t/ cos t; y.t/ D r.t/ sin t; 0 5 t 5 2�

to plot an elliptical orbit with eccentricity e, semilatus rectum L (Fig. 4.1.18), and
rotation angle ˛. The eccentricity of the earth’s orbit is e � 0:0167, so close to
zero that the orbit looks nearly circular (though with the sun off center), and the
eccentricities of the other planetary orbits range from 0:0068 for Venus and 0:0933
for Mars to 0:2056 for Mercury and 0:2486 for Pluto. But many comets have highly
eccentric orbits, like Halley’s comet with e � 0:97 (Fig. 4.1.19).

Sun

FIGURE 4.1.19. The shape of the
orbit of Halley’s comet.

4.2 The Method of Elimination
The most elementary approach to linear systems of differential equations involves
the elimination of dependent variables by appropriately combining pairs of equa-
tions. The object of this procedure is to eliminate dependent variables in succession
until there remains only a single equation containing only one dependent variable.
This remaining equation will usually be a linear equation of high order and can fre-
quently be solved by the methods of Chapter 3. After its solution has been found, the
other dependent variables can be found in turn, using either the original differential
equations or those that have appeared in the elimination process.
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The method of elimination for linear differential systems is similar to the
solution of a linear system of algebraic equations by a process of eliminating the
unknowns one at a time until only a single equation with a single unknown remains.
It is most convenient in the case of manageably small systems: those containing
no more than two or three equations. For such systems the method of elimination
provides a simple and concrete approach that requires little preliminary theory or
formal machinery. But for larger systems of differential equations, as well as for
theoretical discussion, the matrix methods of Chapter 5 are preferable.

Example 1 Find the particular solution of the system

x0 D 4x � 3y; y0 D 6x � 7y (1)

that satisfies the initial conditions x.0/ D 2, y.0/ D �1.
Solution If we solve the second equation in (1) for x, we get

x D 1
6y

0 C 7
6y; (2)

so that

x0 D 1
6y

00 C 7
6y

0: (3)

We then substitute these expressions for x and x0 in the first equation of the system in (1);
this yields

1
6y

00 C 7
6y

0 D 4
�

1
6y

0 C 7
6y
�
� 3y;

which we simplify to
y00 C 3y0 � 10y D 0:

This second-order linear equation has characteristic equation

r2 C 3r � 10 D .r � 2/.r C 5/ D 0;

so its general solution is

y.t/ D c1e
2t C c2e

�5t : (4)

Next, substitution of (4) in (2) gives

x.t/ D 1
6

�
2c1e

2t � 5c2e
�5t

�
C 7

6

�
c1e

2t C c2e
�5t

�
I

that is,

x.t/ D 3
2c1e

2t C 1
3c2e

�5t : (5)

Thus Eqs. (4) and (5) constitute the general solution of the system in (1).
The given initial conditions imply that

x.0/ D 3
2c1 C 1

3c2 D 2

and that
y.0/ D c1 C c2 D �1I

these equations are readily solved for c1 D 2 and c2 D �3. Hence the desired solution is

x.t/ D 3e2t � e�5t ; y.t/ D 2e2t � 3e�5t :

Figure 4.2.1 shows this and other typical solution curves parametrized by the equations x.t/D
3
2c1e

2t C 1
3c2e

�5t , y.t/ D c1e
2t C c2e

�5t with different values of the arbitrary constants
c1 and c2. We see two families of curves resembling hyperbolas sharing the same pair of
(oblique) asymptotes.

50–5 1–4 2–3 3–2 4–1
x

y

–5

5

0

–4

1

–3

2

–2

3

–1

4

(2, –1)

FIGURE 4.2.1. Direction field and
solution curves for the system
x0 D 4x � 3y, y0 D 6x � 7y of
Example 1.
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Remark The general solution defined by Eqs. (4) and (5) may be regarded as the pair or
vector .x.t/; y.t//. Recalling the componentwise addition of vectors (and multiplication of
vectors by scalars), we can write the general solution in (4) and (5) in the form

.x.t/; y.t// D
�

3
2c1e

2t C 1
3c2e

�5t ; c1e
2t C c2e

�5t
�

D c1

�
3
2e

2t ; e2t
�
C c2

�
1
3e

�5t ; e�5t
�
:

This expression presents the general solution of the system in (1) as a linear combination of
the two particular solutions

.x1; y1/ D
�

3
2e

2t ; e2t
�

and .x2; y2/ D
�

1
3e

�5t ; e�5t
�
:

Polynomial Differential Operators
In Example 1 we used an ad hoc procedure to eliminate one of the independent
variables by expressing it in terms of the other. We now describe a systematic
elimination procedure. Operator notation is most convenient for these purposes.
Recall from Section 3.3 that a polynomial differential operator is one of the form

L D anD
n C an�1D

n�1 C � � � C a1D C a0; (6)

where D denotes differentiation with respect to the independent variable t .
If L1 and L2 are two such operators, then their product L1L2 is defined this

way:

L1L2Œx� D L1ŒL2x�: (7)

For instance, if L1 D D C a and L2 D D C b, then

L1L2Œx� D .D C a/Œ.D C b/x� D D.Dx C bx/C a.Dx C bx/
D ŒD2 C .aC b/D C ab�x:

This illustrates the fact that two polynomial operators with constant coefficients can
be multiplied as if they were ordinary polynomials in the “variable” D. Because the
multiplication of such polynomials is commutative, it follows that

L1L2Œx� D L2L1Œx� (8)

if the necessary derivatives of x.t/ exist. By contrast, this property of commutativity
generally fails for polynomial operators with variable coefficients—see Problems 21
and 22.

Any system of two linear differential equations with constant coefficients can
be written in the form

L1x C L2y D f1.t/;

L3x C L4y D f2.t/;
(9)

whereL1, L2, L3, andL4 are polynomial differential operators (perhaps of different
orders) as in Eq. (6), and f1.t/ and f2.t/ are given functions. For instance, the
system in (1) (Example 1) can be written in the form

.D � 4/x C 3y D 0,
�6x C .D C 7/y D 0, (10)

with L1 D D � 4, L2 D 3, L3 D �6, and L4 D D C 7.
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To eliminate the dependent variable x from the system in (9), we operate with
L3 on the first equation and with L1 on the second. Thus we obtain the system

L3L1x C L3L2y D L3f1.t/;

L1L3x C L1L4y D L1f2.t/:
(11)

Subtraction of the first from the second of these equations yields the single equation

.L1L4 � L2L3/y D L1f2.t/ � L3f1.t/ (12)

in the single dependent variable y. After solving for y D y.t/ we can substitute the
result into either of the original equations in (9) and then solve for x D x.t/.

Alternatively, we could eliminate in like manner the dependent variable y from
the original system in (9). If so, we would get the equation

.L1L4 � L2L3/x D L4f1.t/ � L2f2.t/; (13)

which can now be solved for x D x.t/.
Note that the same operator L1L4 � L2L3 appears on the left-hand side in

both Eq. (12) and Eq. (13). This is the operational determinantˇ̌̌̌
L1 L2

L3 L4

ˇ̌̌̌
D L1L4 � L2L3 (14)

of the system in (9). In determinant notation Eqs. (12) and (13) can be rewritten asˇ̌̌̌
L1 L2

L3 L4

ˇ̌̌̌
x D

ˇ̌̌̌
f1.t/ L2

f2.t/ L4

ˇ̌̌̌
;

ˇ̌̌̌
L1 L2

L3 L4

ˇ̌̌̌
y D

ˇ̌̌̌
L1 f1.t/

L3 f2.t/

ˇ̌̌̌
:

(15)

It is important to note that the determinants on the right-hand side in (15) are eval-
uated by means of the operators operating on the functions. The equations in (15)
are strongly reminiscent of Cramer’s rule for the solution of two linear equations in
two (algebraic) variables and are thereby easy to remember. Indeed, you can solve
a system of two linear differential equations either by carrying out the systematic
elimination procedure described here or by directly employing the determinant no-
tation in (15). Either process is especially simple if the system is homogeneous
(f1.t/ � 0 and f2.t/ � 0), because in this case the right-hand sides of the equations
in (12), (13), and (15) are zero.

Example 2 Find a general solution of the system

.D � 4/x C 3y D 0,
�6x C .D C 7/y D 0. (10)

Solution The operational determinant of this system is

.D � 4/.D C 7/ � 3 � .�6/ D D2 C 3D � 10: (16)

Hence Eqs. (13) and (12) are

x00 C 3x0 � 10x D 0;
y00 C 3y0 � 10y D 0:
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The characteristic equation of each is

r2 C 3r � 10 D .r � 2/.r C 5/ D 0;
so their (separate) general solutions are

x.t/ D a1e
2t C a2e

�5t ;

y.t/ D b1e
2t C b2e

�5t :
(17)

At this point we appear to have four arbitrary constants a1, a2, b1, and b2. But it
follows from Theorem 1 in Section 4.1 that the general solution of a system of two first-
order equations involves only two arbitrary constants. This apparent difficulty demands a
resolution.

The explanation is simple: There must be some hidden relations among our four con-
stants. We can discover them by substituting the solutions in (17) into either of the original
equations in (10). On substitution in the first equation, we get

0 D x0 � 4x C 3y
D .2a1e

2t � 5a2e
�5t / � 4.a1e

2t C a2e
�5t /C 3.b1e

2t C b2e
�5t /I

that is,
0 D .�2a1 C 3b1/e

2t C .�9a2 C 3b2/e
�5t :

But e2t and e�5t are linearly independent functions, so it follows that a1 D 3
2b1 and a2 D

1
3b2. Therefore, the desired general solution is given by

x.t/ D 3
2b1e

2t C 1
3b2e

�5t ; y.t/ D b1e
2t C b2e

�5t :

Note that this result is in accord with the general solution (Eqs. (4) and (5)) that we obtained
by a different method in Example 1.

As illustrated by Example 2, the elimination procedure used to solve a linear
system frequently will introduce a number of interdependent constants that may
appear to be arbitrary, but actually are not independent. The “extra” constants must
then be eliminated by substitution of the proposed general solution into one or more
of the original differential equations. The appropriate number of arbitrary constants
in a general solution of a linear system is determined by the following proposition:

If the operational determinant in (15) is not identically zero, then the
number of independent arbitrary constants in a general solution of the
system in (9) is equal to the order of its operational determinant—that
is, its degree as a polynomial in D.

(For a proof of this fact, see pages 144–150 of E. L. Ince’s Ordinary Differential
Equations (New York: Dover, 1956).) Thus the general solution of the system in
(10) of Example 2 involves two arbitrary constants, because its operational determi-
nant D2 C 3D � 10 is of order 2.

If the operational determinant is identically zero, then the system is said to be
degenerate. A degenerate system may have either no solution or infinitely many
independent solutions. For instance, the equations

Dx � Dy D 0,
2Dx � 2Dy D 1

with operational determinant zero are obviously inconsistent and thus have no solu-
tions. On the other hand, the equations

Dx C Dy D t ,
2Dx C 2Dy D 2t
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with operational determinant zero are obviously redundant; we can substitute any
(continuously differentiable) function for x.t/ and then integrate to obtain y.t/.
Roughly speaking, every degenerate system is equivalent to either an inconsistent
system or a redundant system.

Although the aforementioned procedures and results are described for the case
of a system of two equations, they can be generalized readily to systems of three or
more equations. For the system

L11x C L12y C L13´ D f1.t/,
L21x C L22y C L23´ D f2.t/,
L31x C L32y C L33´ D f3.t/

(18)

of three linear equations, the dependent variable x.t/ satisfies the single linear equa-
tion ˇ̌̌̌

ˇ̌ L11 L12 L13

L21 L22 L23

L31 L32 L33

ˇ̌̌̌
ˇ̌ x D

ˇ̌̌̌
ˇ̌ f1.t/ L12 L13

f2.t/ L22 L23

f3.t/ L32 L33

ˇ̌̌̌
ˇ̌ (19)

with analogous equations for y D y.t/ and ´D ´.t/. For most systems of more than
three equations, however, the method of operational determinants is too tedious to
be practical.

Mechanical Vibrations
A mechanical system typically vibrates or oscillates periodically in one or more spe-
cific ways. The methods of this section often can be applied to analyze the “natural
modes of oscillation” of a given system. Example 3 illustrates this approach. ‘

Example 3 In Example 1 of Section 4.1, we derived the equations

.D2 C 3/x C .�1/y D 0,
�2x C .D2 C 2/y D 0 (20)

for the displacements of the two masses in Fig. 4.2.2. Here f .t/ � 0 because we assume that
there is no external force. Find the general solution of the system in (20).

Solution The operational determinant of the system in (20) is

.D2 C 3/.D2 C 2/ � .�1/.�2/ D D4 C 5D2 C 4 D .D2 C 1/.D2 C 4/:
Hence the equations for x.t/ and y.t/ are

.D2 C 1/.D2 C 4/x D 0;

.D2 C 1/.D2 C 4/y D 0:
(21)

The characteristic equation .r2 C 1/.r2 C 4/ D 0 has roots i , �i , 2i , and �2i . So the general
solutions of the equations in (21) are

x.t/ D a1 cos t C a2 sin t C b1 cos 2t C b2 sin 2t;

y.t/ D c1 cos t C c2 sin t C d1 cos 2t C d2 sin 2t:
(22)

Because the operational determinant is of order 4, the general solution should contain
four (rather than eight) arbitrary constants. When we substitute x.t/ and y.t/ from (22) in

k1 = 4 k2 = 2
m2 = 1

Equilibrium positions

y (t)x (t)

m1 = 2

FIGURE 4.2.2. The mass–
and–spring system of Example 3.

the first equation in (20), we get

0 D x00 C 3x � y
D .�a1 cos t � a2 sin t � 4b1 cos 2t � 4b2 sin 2t/

C 3.a1 cos t C a2 sin t C b1 cos 2t C b2 sin 2t/

� .c1 cos t C c2 sin t C d1 cos 2t C d2 sin 2t/I
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thus
0 D .2a1 � c1/ cos t C .2a2 � c2/ sin t

C .�b1 � d1/ cos 2t C .�b2 � d2/ sin 2t:

Because cos t , cos 2t , sin t , and sin 2t are linearly independent, it follows that their coeffi-
cients in the last equation are zero. Thus

c1 D 2a1; c2 D 2a2; d1 D �b1; and d2 D �b2:

Therefore

x.t/ D a1 cos t C a2 sin t C b1 cos 2t C b2 sin 2t;

y.t/ D 2a1 cos t C 2a2 sin t � b1 cos 2t � b2 sin 2t
(23)

is the desired general solution of the system in (20).

The equations in (23) describe free oscillations of the mass-and-spring sys-
tem of Fig. 4.2.2—motion subject to no external forces. Four initial conditions
(typically, initial displacements and velocities) would be required to determine the
values of a1, a2, b1, and b2. The expression

.x.t/; y.t// D a1.cos t; 2 cos t /C a2.sin t; 2 sin t /

C b1.cos 2t;� cos 2t/C b2.sin 2t;� sin 2t/
(24)

then presents the general solution of the system in (20) as a linear combination
of four particular solutions. Moreover, the first two of these particular solutions
represent physically similar oscillations of the masses, as do the latter two.

Indeed, we can (by the usual trigonometric machinations) write

a1 cos t C a2 sin t D A cos.t � ˛/,
2a1 cos t C 2a2 sin t D 2A cos.t � ˛/

and
b1 cos 2t C b2 sin 2t D B cos.2t � ˇ/,
�b1 cos 2t � b2 sin 2t D �B cos.2t � ˇ/

with A D
p
a2

1 C a2
2, tan˛ D a2=a1, B D

p
b2

1 C b2
2 , and tanˇ D b2=b1. Then

Eq. (24) takes the form

.x; y/ D A.x1; y1/C B.x2; y2/; (25)

where the particular solutions

x1 = cos (t)

2π 4π0
t

x,
 y

–3

–2

–1

3

2

1

0

y1 = 2 cos (t)

FIGURE 4.2.3. The two masses
move in the same direction, each with
frequency !1 D 1.

.x1.t/; y1.t// D .cos.t � ˛/; 2 cos.t � ˛// (26)

and

.x2.t/; y2.t// D .cos.2t � ˇ/;� cos.2t � ˇ// (27)

describe the two natural modes of oscillation of the mass-and-spring system.
Moreover, they exhibit its two (circular) natural frequencies !1 D 1 and !2 D 2.

The linear combination in Eq. (25) represents an arbitrary free oscillation of
the mass-and-spring system as a superposition of its two natural modes of oscilla-
tion, with the constants A, ˛, B , and ˇ determined by the initial conditions. Figure
4.2.3 (where ˛D 0) illustrates the natural mode .x1; y1/ of Eq. (26), in which the two
masses move in synchrony in the same direction with the same frequency of oscilla-
tion !1 D 1, but with the amplitude of m2 twice that of m1 (because y1 D 2x1). Fig-
ure 4.2.4 (where ˇD 0) illustrates the natural mode .x2; y2/ of Eq. (27), in which the
masses move in synchrony in opposite directions, with the same frequency !2 D 2
and with equal amplitudes of oscillation (because y2 D �x2).

π 4π3π0
t

x,
 y

–3

–2

–1

3

2

1

0

2π

y2 = – cos (2t)

x2 = cos (2t)

FIGURE 4.2.4. The two masses
move in opposite directions with
frequency !2 D 2.
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4.2 Problems
Find general solutions of the linear systems in Problems 1
through 20. If initial conditions are given, find the particu-
lar solution that satisfies them. In Problems 1 through 6, use a
computer system or graphing calculator to construct a direc-
tion field and typical solution curves for the given system.

1. x0 D �x C 3y, y0 D 2y
2. x0 D x � 2y, y0 D 2x � 3y
3. x0 D �3x C 2y, y0 D �3x C 4y; x.0/ D 0, y.0/ D 2
4. x0 D 3x � y, y0 D 5x � 3y; x.0/ D 1, y.0/ D �1
5. x0 D �3x � 4y, y0 D 2x C y
6. x0 D x C 9y, y0 D �2x � 5y; x.0/ D 3, y.0/ D 2
7. x0 D 4x C y C 2t , y0 D �2x C y
8. x0 D 2x C y, y0 D x C 2y � e2t

9. x0 D 2x � 3y C 2 sin 2t , y0 D x � 2y � cos 2t
10. x0 C 2y0 D 4x C 5y; 2x0 � y0 D 3x; x.0/ D 1, y.0/ D �1
11. 2y0 � x0 D x C 3y C et , 3x0 � 4y0 D x � 15y C e�t

12. x00 D 6x C 2y, y00 D 3x C 7y
13. x00 D �5x C 2y, y00 D 2x � 8y
14. x00 D �4x C sin t , y00 D 4x � 8y
15. x00 � 3y0 � 2x D 0, y00 C 3x0 � 2y D 0
16. x00 C 13y0 � 4x D 6 sin t , y00 � 2x0 � 9y D 0
17. x00 C y00 � 3x0 � y0 � 2x C 2y D 0,

2x00 C 3y00 � 9x0 � 2y0 � 4x C 6y D 0
18. x0 D x C 2y C ´, y0 D 6x � y, ´0 D �x � 2y � ´
19. x0 D 4x � 2y, y0 D �4x C 4y � 2´, ´0 D �4y C 4´
20. x0 D y C ´C e�t , y0 D x C ´, ´0 D x C y (Suggestion:

Solve the characteristic equation by inspection.)
21. Suppose that L1 D a1D

2 C b1D C c1 and L2 D a2D
2 C

b2DC c2, where the coefficients are all constants, and that
x.t/ is a four times differentiable function. Verify that
L1L2x D L2L1x.

22. Suppose that L1x D tDx C x and that L2x D Dx C tx.
Show that L1L2x ¤ L2L1x. Thus linear operators with
variable coefficients generally do not commute.

Show that the systems in Problems 23 through 25 are degen-
erate. In each problem determine—by attempting to solve
the system—whether it has infinitely many solutions or no
solutions.

23. .D C 2/x C .D C 2/y D e�3t

.D C 3/x C .D C 3/y D e�2t

24. .D C 2/x C .D C 2/y D t
.D C 3/x C .D C 3/y D t2

25. .D2 C 5D C 6/x CD.D C 2/y D 0
.D C 3/x CDy D 0

In Problems 26 through 29, first calculate the operational de-
terminant of the given system in order to determine how many
arbitrary constants should appear in a general solution. Then
attempt to solve the system explicitly so as to find such a gen-
eral solution.

26. .D2 C 1/x CD2y D 2e�t

.D2 � 1/x CD2y D 0

27. .D2 C 1/x C .D2 C 2/y D 2e�t

.D2 � 1/x CD2y D 0
28. .D2 CD/x CD2y D 2e�t

.D2 � 1/x C .D2 �D/y D 0
29. .D2 C 1/x �D2y D 2e�t

.D2 � 1/x CD2y D 0
30. Suppose that the salt concentration in each of the two brine

tanks of Example 2 of Section 4.1 initially (t D 0) is 0:5
lb=gal. Then solve the system in Eq. (5) there to find the
amounts x.t/ and y.t/ of salt in the two tanks at time t .

31. Suppose that the electrical network of Example 3 of Sec-
tion 4.1 is initially open—no currents are flowing. As-
sume that it is closed at time t D 0; solve the system in
Eq. (9) there to find I1.t/ and I2.t/.

32. Repeat Problem 31, except use the electrical network of
Problem 27 of Section 4.1.

33. Repeat Problem 31, except use the electrical network of
Problem 28 of Section 4.1. Assume that I1.0/ D 2 and
Q.0/ D 0, so that at time t D 0 there is no charge on the
capacitor.

34. Three 100-gal brine tanks are connected as indicated in
Fig. 4.1.13 of Section 4.1. Assume that the first tank ini-
tially contains 100 lb of salt, whereas the other two are
filled with fresh water. Find the amounts of salt in each
of the three tanks at time t . (Suggestion: Examine the
equations to be derived in Problem 26 of Section 4.1.)

35. From Problem 31 of Section 4.1, recall the equations of
motion

mx00 D qBy0; my00 D �qBx0

for a particle of mass m and electrical charge q under the
influence of the uniform magnetic field B D Bk. Sup-
pose that the initial conditions are x.0/ D r0, y.0/ D 0,
x0.0/D 0, and y0.0/D �!r0 where ! D qB=m. Show that
the trajectory of the particle is a circle of radius r0.

36. If, in addition to the magnetic field B D Bk, the charged
particle of Problem 35 moves with velocity v under the in-
fluence of a uniform electric field E D Ei, then the force
acting on it is F D q.EC v � B/. Assume that the particle
starts from rest at the origin. Show that its trajectory is the
cycloid

x D a.1 � cos!t/; y D �a.!t � sin!t/

where a D E=.!B/ and ! D qB=m. The graph of such a
cycloid is shown in Fig. 4.2.5.

y

x

FIGURE 4.2.5. The cycloidal path of the
particle of Problem 36.

37. In the mass-and-spring system of Example 3, suppose in-
stead that m1 D 2, m2 D 0:5, k1 D 75, and k2 D 25. (a)
Find the general solution of the equations of motion of the
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system. In particular, show that its natural frequencies are
!1 D 5 and !2 D 5

p
3. (b) Describe the natural modes

of oscillation of the system.
38. Consider the system of two masses and three springs

shown in Fig. 4.2.6. Derive the equations of motion

m1x
00 D �.k1 C k2/x C k2y,

m2y
00 D k2x � .k2 C k3/y.

k1 k2 k3
m2m1

Equilibrium positions

y (t)x (t)

FIGURE 4.2.6. The mechanical system of
Problem 38.

In Problems 39 through 46, find the general solution of the
system in Problem 38 with the given masses and spring con-
stants. Find the natural frequencies of the mass-and-spring
system and describe its natural modes of oscillation. Use a
computer system or graphing calculator to illustrate the two
natural modes graphically (as in Figs. 4.2.3 and 4.2.4).

39. m1 D 4, m2 D 2, k1 D 8, k2 D 4, k3 D 0
40. m1 D 2, m2 D 1, k1 D 100, k2 D 50, k3 D 0
41. m1 D 1, m2 D 1, k1 D 1, k2 D 4, k3 D 1
42. m1 D 1, m2 D 2, k1 D 1, k2 D 2, k3 D 2
43. m1 D 1, m2 D 1, k1 D 1, k2 D 2, k3 D 1
44. m1 D 1, m2 D 1, k1 D 2, k2 D 1, k3 D 2
45. m1 D 1, m2 D 2, k1 D 2, k2 D 4, k3 D 4
46. m1 D 1, m2 D 1, k1 D 4, k2 D 6, k3 D 4
47. (a) For the system shown in Fig. 4.2.7, derive the equa-

tions of motion

mx00 D �2kx C ky,

my00 D kx � 2ky C k´,

m´00 D ky � 2k´.

(b) Assume that m D k D 1. Show that the natural fre-
quencies of oscillation of the system are

!1 D
p
2; !2 D

q
2 �
p
2; and !3 D

q
2C
p
2:

yx z

k k k k
mmm

FIGURE 4.2.7. The mechanical system of
Problem 47.

48. Suppose that the trajectory .x.t/; y.t// of a particle mov-
ing in the plane satisfies the initial value problem

x00 � 2y0 C 3x D 0,
y00 C 2x0 C 3y D 0;
x.0/ D 4; y.0/ D x0.0/ D y0.0/ D 0:

Solve this problem. You should obtain

x.t/ D 3 cos t C cos 3t;

y.t/ D 3 sin t � sin 3t:

Verify that these equations describe the hypocycloid traced
by a point P.x; y/ fixed on the circumference of a circle
of radius b D 1 that rolls around inside a circle of radius
a D 4. If P begins at A.a; 0/ when t D 0, then the param-
eter t represents the angle AOC shown in Fig. 4.2.8.

x

y

A (a, 0)

1

1
C

O (0, 0) P

t

FIGURE 4.2.8. The hypocycloid of
Problem 48.

4.2 Application Computer Algebra Solution of Systems
Computer algebra systems can be used to solve systems as well as single differential
equations. For instance, consider the system

dx

dt
D 4x � 3y; dy

dt
D 6x � 7y (1)

of Example 1. The Maple command

dsolve({diff(x(t),t) = 4�x(t) -- 3�y(t),
diff(y(t),t) = 6�x(t) -- 7�y(t)}, {x(t),y(t)});
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yields

x.t/ D 1
7
.3a1 � 2a2/e

�5t C 1
7
.�3a1 C 9a2/e

2t ;

y.t/ D 1
7
.9a1 � 6a2/e

�5t C 1
7
.�2a1 C 6a2/e

2t
(2)

(after a bit of simplification), and the Mathematica command

DSolve[ {x'[t] == 4 x[t] -- 3 y[t],
y'[t] == 6 x[t] -- 7 y[t]}, {x[t],y[t]}, t ]

yields

x.t/ D b1e
�5t C 3b2e

2t ; y.t/ D 3b1e
�5t C 2b2e

2t ; (3)

as does the WolframjAlpha query

x’ = 4x -- 3y, y’ = 6x -- 7y

Is it clear that the general solutions in (2) and (3) are equivalent to each other and to
the general solution

x.t/ D 3
2
c1e

2t C 1
3
c2e

�5t ; y.t/ D c1e
2t C c2e

�5t (4)

found in the text? What is the relation between the constants a1, a2 in (2), the
constants b1, b2 in (3), and the constants c1, c2 in (4)?

Modern computer algebra systems and some graphing calculators also allow
for interactive investigation of systems such as (1). For example, Fig. 4.2.9 shows
solution curves of the system (1) passing through the four points .˙1;˙1/, as well
as the direction field for the system, displayed on a TI-Nspire CX CAS handheld.
Using the Nspire’s touchpad, these initial conditions can be dragged to any desired
location in the viewing window, with the corresponding solution curves instantly

FIGURE 4.2.9. TI-Nspire CX CAS
display of the system (1). The points
representing the initial conditions
.˙1; ˙1/ can be dragged anywhere in
the viewing window, with the
corresponding trajectories immediately
redrawn.

redrawn.
Now consider the initial value problem

x00 D �3x C y; x.0/ D 0; x0.0/ D 6;
y00 D 2x � 2y; y.0/ D 0; y0.0/ D 6 (5)

for the mass-and-spring system of Example 3 in the text. Then the Maple command

dsolve({diff(x(t),t,t) = --3�x(t) + y(t),
diff(y(t),t,t) = 2�x(t) -- 2�y(t),
x(0) = 0, y(0) = 0, D(x)(0) = 6, D(y)(0) = 6},
{x(t),y(t)});

and the Mathematica command

DSolve[{x''[t] == --3 x[t] + y[t],
y''[t] == 2 x[t] -- 2 y[t],
x[0] == 0, y[0] == 0, x'[0] == 6, y'[0] == 6},
{x[t], y[t]}, t ] // ExpToTrig // Simplify

both yield the solution

x.t/ D 4 sin t C sin 2t; y.t/ D 8 sin t � sin 2t; (6)

where we see a linear combination of
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� an oscillation with frequency 1 in which the two masses move synchronously
with the amplitude of motion of the second mass twice that of the first, and

� an oscillation of frequency 2 in which the two masses move in opposite direc-
tions with the same amplitude of motion.

You can apply similarly an available computer algebra system to solve Problems 1
through 20 and 39 through 46 in this section (supplying initial conditions for the
latter ones if you like).

4.3 Numerical Methods for Systems
We now discuss the numerical approximation of solutions of systems of differential
equations. Our goal is to apply the methods of Sections 2.4 through 2.6 to the initial
value problem

x0 D f.t; x/; x.t0/ D x0 (1)

for a system of m first-order differential equations. In (1) the independent variable
is the scalar t , and

x D .x1; x2; : : : ; xm/ and f D .f1; f2; : : : ; fm/

are vector-valued functions. If the component functions of f and their first-order
partial derivatives are all continuous in a neighborhood of the point .t0; x0/, then
Theorems 3 and 4 of the Appendix guarantee the existence and uniqueness of a
solution x D x.t/ of (1) on some subinterval [of the t-axis] containing t0. With this
assurance we can proceed to discuss the numerical approximation of this solution.

Beginning with step size h, we want to approximate the values of x.t/ at the
points t1, t2, t3, : : : ; where tnC1 D tn C h for n = 0. Suppose that we have already
computed the approximations

x1; x2; x3; : : : ; xn

to the actual values

x.t1/; x.t2/; x.t3/; : : : ; x.tn/

of the exact solution of the system in (1). We can then make the step from xn to
the next approximation xnC1 � x.tnC1/ by any one of the methods of Sections 2.4
through 2.6. Essentially all that is required is to write the iterative formula of the
selected method in the vector notation of the present discussion.

Euler Methods for Systems
For example, the iterative formula of Euler’s method for systems is

xnC1 D xn C hf.t; xn/: (2)

To examine the case mD 2 of a pair of first-order differential equations, let us write

x D
�
x

y

�
and f D

�
f

g

�
:
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Then the initial value problem in (1) is

x0 D f .t; x; y/;
y0 D g.t; x; y/;

x.t0/ D x0;

y.t0/ D y0;
(3)

and the scalar components of the vector formula in (2) are

xnC1 D xn C hf .tn; xn; yn/;

ynC1 D yn C hg.tn; xn; yn/:
(4)

Note that each iterative formula in (4) has the form of a single Euler iteration, but
with yn inserted like a parameter in the first formula (for xnC1) and with xn inserted
like a parameter in the second formula (for ynC1). The generalization to the system
in (3) of each of the other methods in Sections 2.4 through 2.6 follows a similar
pattern.

The improved Euler method for systems consists at each step of calculating
first the predictor

unC1 D xn C hf.tn; xn/ (5)

and then the corrector

xnC1 D xn C
h

2
Œf.tn; xn/C f.tnC1;unC1/�: (6)

For the case of the two-dimensional initial value problem in (3), the scalar compo-
nents of the formulas in (5) and (6) are

unC1 D xn C hf .tn; xn; yn/;

vnC1 D yn C hg.tn; xn; yn/
(7)

and

xnC1 D xn C
h

2
Œf .tn; xn; yn/C f .tnC1; unC1; vnC1/�;

ynC1 D yn C
h

2
Œg.tn; xn; yn/C g.tnC1; unC1; vnC1/�:

(8)

Example 1 Consider the initial value problem

x0 D 3x � 2y;
y0 D 5x � 4y;

x.0/ D 3I
y.0/ D 6: (9)

The exact solution of the system in (9) is

x.t/ D 2e�2t C et ; y.t/ D 5e�2t C et : (10)

Here we have f .x; y/D 3x � 2y and g.x; y/D 5x � 4y in (3), so the Euler iterative formulas
in (4) are

xnC1 D xn C h � .3xn � 2yn/; ynC1 D yn C h � .5xn � 4yn/:

With step size h D 0:1 we calculate

x1 D 3C .0:1/ � Œ3 � 3 � 2 � 6� D 2:7;
y1 D 6C .0:1/ � Œ5 � 3 � 4 � 6� D 5:1

and

x2 D 2:7C .0:1/ � Œ3 � .2:7/ � 2 � .5:1/� D 2:49;
y2 D 5:1C .0:1/ � Œ5 � .2:7/ � 4 � .5:1/� D 4:41:

The actual values at t2 D 0:2 given by (10) are x.0:2/ � 2:562 and y.0:2/ � 4:573.
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To compute the improved Euler approximations to x.0:2/ and y.0:2/ with a single step
of size h D 0:2, we first calculate the predictors

u1 D 3C .0:2/ � Œ3 � 3�2 � 6� D 2:4;
v1 D 6C .0:2/ � Œ5 � 3�4 � 6� D 4:2:

Then the corrector formulas in (8) yield

x1 D 3 C .0:1/ � .Œ3 � 3 � 2 � 6� C Œ3 � .2:4/ � 2 � .4:2/�/ D 2:58,
y1 D 6 C .0:1/ � .Œ5 � 3 � 4 � 6� C Œ5 � .2:4/ � 4 � .4:2/�/ D 4:62.

As we would expect, a single improved Euler step gives better accuracy than two ordinary
Euler steps.

The Runge–Kutta Method and Second-Order Equations
The vector version of the iterative formula for the Runge–Kutta method is

xnC1 D xn C
h

6
.k1 C 2k2 C 2k3 C k4/; (11)

where the vectors k1, k2, k3, and k4 are defined (by analogy with Eqs. (5a)–(5d) of
Section 2.6) as follows:

k1 D f.tn; xn/;

k2 D f
�
tn C 1

2
h; xn C 1

2
hk1

	
;

k3 D f
�
tn C 1

2
h; xn C 1

2
hk2

	
;

k4 D f.tn C h; xn C hk3/:

(12)

To describe in scalar notation the Runge–Kutta method for the two-dimensional
initial value problem

x0 D f .t; x; y/;
y0 D g.t; x; y/;

x.t0/ D x0;

y.t0/ D y0;
(3)

let us write

x D
�
x

y

�
; f D

�
f

g

�
; and ki D

�
Fi

Gi

�
:

Then the Runge–Kutta iterative formulas for the step from .xn; yn/ to the next ap-
proximation .xnC1; ynC1/ � .x.tnC1/; y.tnC1// are

xnC1 D xn C
h

6
.F1 C 2F2 C 2F3 C F4/;

ynC1 D yn C
h

6
.G1 C 2G2 C 2G3 CG4/;

(13)

where the values F1, F2, F3, and F4 of the function f are

F1 D f .tn; xn; yn/;

F2 D f
�
tn C 1

2
h; xn C 1

2
hF1; yn C 1

2
hG1

	
;

F3 D f
�
tn C 1

2
h; xn C 1

2
hF2; yn C 1

2
hG2

	
;

F4 D f .tn C h; xn C hF3; yn C hG3/I

(14)

G1, G2, G3, and G4 are the similarly defined values of the function g.
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Perhaps the most common application of the two-dimensional Runge–Kutta
method is to the numerical solution of second-order initial value problems of the
form

x00 D g.t; x; x0/;
x.t0/ D x0; x0.t0/ D y0:

(15)

If we introduce the auxiliary variable y D x0, then the problem in (15) translates
into the two-dimensional first-order problem

x0 D y;
y0 D g.t; x; y/;

x.t0/ D x0;

y.t0/ D y0:
(16)

This is a problem of the form in (3) with f .t; x; y/ D y.
If the functions f and g are not too complicated, then it is feasible to carry

out manually a reasonable number of steps of the two-dimensional Runge–Kutta
method described here. But the first operating electronic computers were con-
structed (during World War II) specifically to implement methods similar to the
Runge–Kutta method for the numerical computation of trajectories of artillery pro-
jectiles. The application material for this section lists TI-Nspire CX CAS and BA-
SIC versions of Program RK2DIM that can be used with two-dimensional systems.

t x D sin t y D cos t

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

C0:47943
C0:84147
C0:99749
C0:90930
C0:59847
C0:14112
�0:35078
�0:75680
�0:97753
�0:95892

C0:87758
C0:54030
C0:07074
�0:41615
�0:80114
�0:98999
�0:93646
�0:65364
�0:21080
C0:28366

FIGURE 4.3.1. Runge–Kutta values
(with h D 0:05) for the problem in
Eq. (18).

Example 2 The exact solution of the initial value problem

x00 D �xI x.0/ D 0; x0.0/ D 1 (17)

is x.t/ D sin t . The substitution y D x0 translates (17) into the two-dimensional problem

x0 D y;
y0 D �x;

x.0/ D 0I
y.0/ D 1; (18)

which has the form in (3) with f .t; x; y/ D y and g.t; x; y/ D �x. The table in Fig. 4.3.1
shows the results produced for 0 5 t 5 5 (radians) using Program RK2DIM with step size
h D 0:05. The values shown for x D sin t and y D cos t are all accurate to five decimal
places.

Example 3 In Example 4 of Section 2.3 we considered a lunar lander that initially is falling freely toward
the surface of the moon. Its retrorockets, when fired, provide a deceleration of T D 4 m/s2.
We found that a soft touchdown at the lunar surface is achieved by igniting these retrorockets
when the lander is at a height of 41,870 meters (just over 26 miles) above the surface and is
then descending at the rate of 450 m/s.

Now we want to compute the descent time of the lunar lander. Let the distance x.t/ of
the lander from the center of the moon be measured in meters and measure time t in seconds.
According to the analysis in Section 2.3 (where we used r.t/ instead of x.t/), x.t/ satisfies
the initial value problem

d2x

dt2
D T � GM

x2
D 4 � 4:9044 � 10

12

x2
;

x.0/ D RC 41870 D 1;781;870; x0.0/ D �450
(19)

whereG � 6:6726� 10�11 N�(m=kg)2 is the universal gravitational constant andM D 7:35�
1022 kg and R D 1:74 � 106 m are the mass and radius of the moon. We seek the value of t
when x.t/ D R D 1;740;000.

The problem in (19) is equivalent to the first-order system

dx

dt
D y; x.0/ D 1;781;870I

dy

dt
D 4 � 4:9044 � 10

12

x2
; y.0/ D �450:

(20)
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The table in Fig. 4.3.2 shows the result of a Runge–Kutta approximation with step size h D 1
(the indicated data agreeing with those obtained with step size h D 2). Evidently, touchdown
on the lunar surface (x D 1;740;000) occurs at some time between t D 180 and t D 190

seconds. The table in Fig. 4.3.3 shows a second Runge–Kutta approximation with t .0/D 180,
x.0/ D 1;740;059, y.0/ D �16:83, and h D 0:1. Now it is apparent that the lander’s time
of descent to the lunar surface is very close to 187 seconds; that is, 3 min 7 s. (The final
velocity terms in these two tables are positive because the lander would begin to ascend if its
retrorockets were not turned off at touchdown.)

t (s) x (m) v (m/s)

0

20

40

60

80
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120
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180

200

1,781,870

1,773,360

1,765,826

1,759,264

1,753,667

1,749,033

1,745,357

1,742,637

1,740,872

1,740,059

1,740,199

�450:00
�401:04
�352:37
�303:95
�255:74
�207:73
�159:86
�112:11
�64:45
�16:83

30.77

FIGURE 4.3.2. The lander’s descent to
the lunar surface.

t (s) x (m) v (m/s)

180

181
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1,740,059

1,740,044

1,740,030

1,740,019

1,740,011

1,740,005

1,740,001

1,740,000

1,740,001

1,740,004

1,740,010

�16:83
�14:45
�12:07
�9:69
�7:31
�4:93
�2:55
�0:17

2.21

4.59

6.97

FIGURE 4.3.3. Focusing on the lunar
lander’s soft touchdown.

Higher-Order Systems
As we saw in Section 4.1, any system of higher-order differential equations can be
replaced with an equivalent system of first-order differential equations. For exam-
ple, consider the system

x00 D F.t; x; y; x0; y0/;
y00 D G.t; x; y; x0; y0/

(21)

of second-order equations. If we substitute

x D x1; y D x2; x0 D x3 D x0
1; y0 D x4 D x0

2;

then we get the equivalent system

x0
1 D x3;

x0
2 D x4;

x0
3 D F.t; x1; x2; x3; x4/;

x0
4 D G.t; x1; x2; x3; x4/

(22)

of four first-order equations in the unknown functions x1.t/ D x.t/, x2.t/ D y.t/,
x3.t/, and x4.t/. It would be a routine (if slightly tedious) matter to write a four-
dimensional version of program RK2DIM for the purpose of solving such a sys-
tem. But in a programming language that accommodates vectors, an n-dimensional
Runge–Kutta program is scarcely more complicated than a one-dimensional pro-
gram. For instance, the application material for this section lists the n-dimensional
MATLAB program rkn that closely resembles the one-dimensional program rk of
Fig. 2.6.11.
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Example 4 Suppose that a batted ball starts at x0 D 0, y0 D 0 with initial velocity v0 D 160 ft=s and
with initial angle of inclination � D 30ı. If air resistance is ignored, we find by the ele-
mentary methods of Section 1.2 that the baseball travels a [horizontal] distance of 400

p
3 ft

(approximately 693 ft) in 5 s before striking the ground. Now suppose that in addition to a
downward gravitational acceleration (g D 32 ft=s2), the baseball experiences an acceleration
due to air resistance of .0:0025/v2 feet per second per second, directed opposite to its instan-
taneous direction of motion. Determine how far the baseball will travel horizontally under
these conditions.

Solution According to Problem 30 of Section 4.1, the equations of motion of the baseball are

d2x

dt2
D �cv dx

dt
;

d2y

dt2
D �cv dy

dt
� g (23)

where v D
p
.x0/2 C .y0/2 is the speed of the ball, and where c D 0:0025 and g D 32 in fps

units. We convert to a first-order system as in (22) and thereby obtain the system

x0
1 D x3;

x0
2 D x4;

x0
3 D �cx3

q
x2

3 C x2
4 ;

x0
4 D �cx4

q
x2

3 C x2
4 � g

(24)

of four first-order differential equations with

x1.0/ D x2.0/ D 0;
x3.0/ D 80

p
3; x4.0/ D 80:

(25)

Note that x3.t/ and x4.t/ are simply the x- and y-components of the baseball’s velocity
vector, so v D

p
x2

3 C x2
4 . We proceed to apply the Runge–Kutta method to investigate the

motion of the batted baseball described by the initial value problem in (24) and (25), first
taking c D 0 to ignore air resistance and then using c D 0:0025 to take air resistance into
account.

WITHOUT AIR RESISTANCE: Figure 4.3.4 shows the numerical results obtained when
a Runge–Kutta program such as rkn is applied with step size h D 0:1 and with c D 0 (no
air resistance). For convenience in interpreting the results, the printed output at each selected
step consists of the horizontal and vertical coordinates x and y of the baseball, its velocity v,
and the angle of inclination ˛ of its velocity vector (in degrees measured from the horizontal).
These results agree with the exact solution when c D 0. The ball travels a horizontal distance
of 400

p
3 � 692:82 ft in exactly 5 s, having reached a maximum height of 100 ft after 2:5

s. Note also that the ball strikes the ground at the same angle and with the same speed as its
initial angle and speed.

WITH AIR RESISTANCE: Figure 4.3.5 shows the results obtained with the fairly real-
istic value of c D 0:0025 for the air resistance for a batted baseball. To within a hundredth of
a foot in either direction, the same results are obtained with step sizes hD 0:05 and hD 0:025.
We now see that with air resistance the ball travels a distance well under 400 ft in just over 4
s. The more refined data in Fig. 4.3.6 show that the ball travels horizontally only about 340 ft
and that its maximum height is only about 66 ft. As illustrated in Fig. 4.3.7, air resistance has
converted a massive home run into a routine fly ball (if hit straightaway to center field). Note
also that when the ball strikes the ground, it has slightly under half its initial speed (only
about 79 ft=s) and is falling at a steeper angle (about 46ı). Every baseball fan has observed
empirically these aspects of the trajectory of a fly ball.

Variable Step Size Methods
The Runge–Kutta method for a large system requires an appreciable amount of com-
putational labor, even when a computer is employed. Therefore, just as the step
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t x y v ˛
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FIGURE 4.3.4. The batted baseball with no air
resistance (c D 0).
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FIGURE 4.3.5. The batted baseball with air
resistance (c D 0:0025).

size h should not be so large that the resulting error in the solution is unaccept-
able, h ought not to be so small that too many steps are needed, hence requiring
an unacceptable amount of computation. Thus the practical numerical solution of
differential equations involves a tradeoff between accuracy and efficiency.

To facilitate this tradeoff, modern variable step size methods vary the step
size h as the solution process proceeds. Large steps are taken in regions where
the dependent variables are changing slowly; smaller steps are taken when these
variables are changing rapidly, in order to prevent large errors.

An adaptable or variable step size Runge–Kutta method employs both a pre-
assigned minimum error tolerance MinTol and a maximum error tolerance MaxTol
to attempt to ensure that the error made in the typical step from xn to xnC1 is nei-
ther too large (and hence inaccurate) nor too small (and hence inefficient). A fairly
simple scheme for doing this may be outlined as follows:

t x y v ˛

1.5

1.6

1.7

1.8

1.9

2.0
:::

3.8

3.9

4.0

4.1

4.2

164.32

173.11

181.72

190.15

198.40

206.48
:::

328.50

334.14

339.67

345.10

350.41

63.60

64.60

65.26

65.60

65.61

65.30
:::

11.77

6.45

0.91

�4:84
�10:79

89.72

87.40

85.29

83.39

81.68

80.17
:::

77.24

77.93

78.66

79.43

80.22

C8
C5
C3
C1
�1
�3
:::

�42
�44
�46
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�49

 � Apex

 � Impact

FIGURE 4.3.6. The batted ball’s apex and its impact with the ground.

The easy out

The massive home run

FIGURE 4.3.7. An “easy out” or a
home run?
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� Having reached xn with a Runge–Kutta step of length tn � tn�1 D h, let x.1/

denote the result of a further Runge–Kutta step of length h and let x.2/ denote
the result of two successive Runge–Kutta steps each of length h=2.

� On the grounds that x.2/ should be a more accurate approximation to x.tnC h/
than is x.1/, take

Err D jx.1/ � x.2/j
as an estimate of the error in x.1/.

� If MinTol 5 Err 5 MaxTol, then let xnC1 D x.1/, tnC1 D tn C h, and proceed
to the next step.

� If Err < MinTol, then the error is too small! Hence let xnC1 D x.1/, tnC1 D
tn C h, but double the step size to 2h before making the next step.

� If Err > MaxTol, then the error is too large. Hence reject x.1/ and start afresh
at xn with the halved step size h=2.

The detailed implementation of such a scheme can be complicated. For a
much more complete but readable discussion of adaptive Runge–Kutta methods,
see Section 15.2 of William H. Press et al., Numerical Recipes: The Art of Scientific
Computing (New York: Cambridge University Press, 1986).

Several widely available scientific computing packages (such as Maple, Math-
ematica, and MATLAB) include sophisticated variable step size programs that will
accommodate an essentially arbitrary number of simultaneous differential equa-
tions. Such a general-purpose program might be used, for example, to model nu-
merically the major components of the solar system: the sun and the nine (known)
major planets. If mi denotes the mass and ri D .xi ; yi ; ´i / denotes the position
vector of the i th one of these 10 bodies, then—by Newton’s laws—the equation of
motion of mi is

mi r00
i D

X
j 6Di

Gmimj

.rij /3
.rj � ri /; (26)

where rij D jrj �ri j denotes the distance betweenmi andmj . For each i D 1, 2, : : : ;
10, the summation in Eq. (26) is over all values of j 6D i from 1 to 10. The 10 vector
equations in (26) constitute a system of 30 second-order scalar equations, and the
equivalent first-order system consists of 60 differential equations in the coordinates
and velocity components of the 10 major bodies in the solar system. Mathematical
models that involve this many (or more) differential equations—and that require so-
phisticated software and hardware for their numerical analysis—are quite common
in science, engineering, and applied technology.

Earth–Moon Satellite Orbits
For an example of a program whose efficient solution requires adaptive step size
methods, we consider an Apollo satellite in orbit about the Earth E and Moon M .
Figure 4.3.8 shows an x1x2-coordinate system whose origin lies at the center of
mass of the Earth and the Moon and which rotates at the rate of one revolution
per “moon month” of approximately � D 27:32 days, so the Earth and Moon re-
main fixed in their positions on the x1-axis. If we take as unit distance the distance
(about 384;000 kilometers, assumed constant) between the Earth and Moon centers,
then their coordinates are E.�; 0/ and M.1 � ; 0/, where  D mM=.mE CmM /

in terms of the Earth mass mE and Moon mass mM . If we take the total mass
mE C mM as the unit of mass and �=.2�/ � 4:35 days as the unit of time, then
the gravitational constant is G D 1 in Eq. (26), and the equations of motion of the

x1

x2

E(– μ, 0)

S (x1, x2)

M(1 – μ, 0)

rE

rM

FIGURE 4.3.8. The Earth–Moon
center-of-mass coordinate system.
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satellite position S.x1; x2/ are

x00
1 D x1 C 2x0

2 �
.1 � /.x1 C /

.rE /3
� .x1 � 1C /

.rM /3
;

x00
2 D x2 � 2x0

1 �
.1 � /x2

.rE /3
� x2

.rM /3
;

(27)

where rE and rM denote the satellite’s distance to the Earth and Moon (indicated
in Fig. 4.3.8). The initial two terms on the right-hand side of each equation result
from the rotation of the coordinate system. In the system of units described here, the
lunar mass is approximately mM D 0:012277471. The second-order system in (27)
can be converted to an equivalent first-order system (of four differential equations)
by substituting

x0
1 D x3; x0

2 D x4; so that x00
1 D x0

3; x00
2 D x0

4:

Suppose that the satellite initially is in a clockwise circular orbit of radius
about 2400 kilometers about the Moon. At its farthest point from the Earth (x1 D
0:994) it is “launched” into Earth–Moon orbit with initial velocity v0. The corre-
sponding initial conditions are

x1.0/ D 0:994; x2.0/ D 0; x3.0/ D 0; x4.0/ D �v0:

An adaptive step size method (ode45) in the MATLAB software system was used

x1

Moon
Satellite

Earth

x2

FIGURE 4.3.9. Apollo Moon–Earth
bus orbit with insertion velocity
v0 D 7476 km/h.

to solve numerically the system in (27). The orbits in Figs. 4.3.9 and 4.3.10 were
obtained with

Earth x1

x2

Satellite

Moon

FIGURE 4.3.10. Apollo
Moon–Earth bus orbit with insertion
velocity v0 D 7365 km/h.

v0 D 2:031732629557 and v0 D 2:001585106379;

respectively. [In the system of units used here, the unit of velocity is approxi-
mately 3680 km=h.] In each case a closed but multilooped periodic trajectory about
the Earth and the Moon—a so-called bus orbit—is obtained, but a relatively small
change in the initial velocity changes the number of loops! For more information,
see NASA Contractor Report CR-61139, “Study of the Methods for the Numerical
Solution of Ordinary Differential Equations,” prepared by O. B. Francis, Jr. et al. for
the NASA–George C. Marshall Space Flight Center, June 7, 1966.

So-called Moon–Earth “bus orbits” are periodic—that is, are closed trajecto-
ries traversed repeatedly by the satellite—only in a rotating x1x2-coordinate system
as discussed above. The satellite of Fig. 4.3.9 traverses its closed orbit and returns
to rendezvous with the Moon about 48.4 days after its insertion into orbit. Figures
4.3.11 and 4.3.12 illustrate the motion of the same satellite—but in an ordinary non-
rotating xy-coordinate system centered at the Earth, in which the Moon encircles
the Earth counterclockwise in a near-circular orbit, completing one revolution in
about 27.3 days. The Moon starts at point S , and after 48.4 days it has completed
a bit over 1.75 revolutions about the Earth and reaches the point R at which its ren-
dezvous with the satellite occurs. Figure 4.3.11 shows the positions of Moon and
satellite a day and a half after the satellite’s insertion into its orbit, each traveling in
a generally counterclockwise direction around the Earth. Figure 4.3.12 shows their
positions a day and a half before their rendezvous at point R, the satellite mean-
while having encircled the Earth about 2.5 times in an orbit that (in the indicated
xy-coordinate system) appears to resemble a slowly varying ellipse.
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x 

y

Earth

Moon

Satellite
S

R

FIGURE 4.3.11. The moon and satellite
in a nonrotating coordinate system, 1.5
days after orbital insertion of the satellite
at starting point S .

x

y

Earth

Moon

Satellite

S

R

FIGURE 4.3.12. The moon and
satellite in a nonrotating coordinate
system, 1.5 days before their rendezvous
at point R.

4.3 Problems
A hand-held calculator will suffice for Problems 1 through 8.
In each problem an initial value problem and its exact solution
are given. Approximate the values of x.0:2/ and y.0:2/ in three
ways: (a) by the Euler method with two steps of size h D 0:1;
(b) by the improved Euler method with a single step of size
h D 0:2; and (c) by the Runge–Kutta method with a single
step of size h D 0:2. Compare the approximate values with the
actual values x.0:2/ and y.0:2/.

1. x0 D x C 2y, x.0/ D 0,
y0 D 2x C y, y.0/ D 2;
x.t/ D e3t � e�t , y.t/ D e3t C e�t

2. x0 D 2x C 3y, x.0/ D 1,
y0 D 2x C y, y.0/ D �1;
x.t/ D e�t , y.t/ D �e�t

3. x0 D 3x C 4y, x.0/ D 1,
y0 D 3x C 2y, y.0/ D 1;
x.t/ D 1

7 .8e
6t � e�t /, y.t/ D 1

7 .6e
6t C e�t /

4. x0 D 9x C 5y, x.0/ D 1,
y0 D �6x � 2y, y.0/ D 0;
x.t/ D �5e3t C 6e4t , y.t/ D 6e3t � 6e4t

5. x0 D 2x � 5y, x.0/ D 2,
y0 D 4x � 2y, y.0/ D 3;
x.t/ D 2 cos 4t � 11

4 sin 4t , y.t/ D 3 cos 4t C 1
2 sin 4t

6. x0 D x � 2y, x.0/ D 0,
y0 D 2x C y, y.0/ D 4;
x.t/ D �4et sin 2t , y.t/ D 4et cos 2t

7. x0 D 3x � y, x.0/ D 2,
y0 D x C y, y.0/ D 1;
x.t/ D .t C 2/e2t , y.t/ D .t C 1/e2t

8. x0 D 5x � 9y, x.0/ D 0,
y0 D 2x � y, y.0/ D �1;
x.t/ D 3e2t sin 3t , y.t/ D e2t .sin 3t � cos 3t/

A computer will be required for the remaining problems in this
section. In Problems 9 through 12, an initial value problem
and its exact solution are given. In each of these four prob-
lems, use the Runge–Kutta method with step sizes h D 0:1 and

h D 0:05 to approximate to five decimal places the values x.1/
and y.1/. Compare the approximations with the actual values.

9. x0 D 2x � y, x.0/ D 1,
y0 D x C 2y, y.0/ D 0;
x.t/ D e2t cos t , y.t/ D e2t sin t

10. x0 D x C 2y, x.0/ D 0,
y0 D x C e�t , y.0/ D 0;
x.t/ D 1

9 .2e
2t � 2e�t C 6te�t /,

y.t/ D 1
9 .e

2t � e�t C 6te�t /

11. x0 D �x C y � .1C t3/e�t , x.0/ D 0,
y0 D �x � y � .t � 3t2/e�t , y.0/ D 1;
x.t/ D e�t .sin t � t /, y.t/ D e�t .cos t C t3/

12. x00 C x D sin t , x.0/ D 0I
x.t/ D 1

2 .sin t � t cos t /
13. Suppose that a crossbow bolt is shot straight upward with

initial velocity 288 ft=s. If its deceleration due to air re-
sistance is .0:04/v, then its height x.t/ satisfies the initial
value problem

x00 D �32 � .0:04/x0I x.0/ D 0; x0.0/ D 288:
Find the maximum height that the bolt attains and the time
required for it to reach this height.

14. Repeat Problem 13, but assume instead that the decelera-
tion of the bolt due to air resistance is .0:0002/v2.

15. Suppose that a projectile is fired straight upward with ini-
tial velocity v0 from the surface of the earth. If air resis-
tance is not a factor, then its height x.t/ at time t satisfies
the initial value problem

d2x

dt2
D � gR2

.x CR/2 I x.0/ D 0; x0.0/ D v0:

Use the values g D 32:15 ft=s2 � 0:006089 mi=s2 for the
gravitational acceleration of the earth at its surface and
R D 3960 mi as the radius of the earth. If v0 D 1 mi=s,
find the maximum height attained by the projectile and its
time of ascent to this height.
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Problems 16 through 18 deal with the batted baseball of Ex-
ample 4, having initial velocity 160 ft=s and air resistance co-
efficient c D 0:0025.
16. Find the range—the horizontal distance the ball travels be-

fore it hits the ground—and its total time of flight with
initial inclination angles 40ı, 45ı, and 50ı.

17. Find (to the nearest degree) the initial inclination that
maximizes the range. If there were no air resistance it
would be exactly 45ı, but your answer should be less than
45ı.

18. Find (to the nearest half degree) the initial inclination an-
gle greater than 45ı for which the range is 300 ft.

19. Find the initial velocity of a baseball hit by Babe Ruth
(with c D 0:0025 and initial inclination 40ı) if it hit the
bleachers at a point 50 ft high and 500 horizontal feet from
home plate.

20. Consider the crossbow bolt of Problem 14, fired with the
same initial velocity of 288 ft=s and with the air resistance
deceleration .0:0002/v2 directed opposite its direction of
motion. Suppose that this bolt is fired from ground level at
an initial angle of 45ı. Find how high vertically and how
far horizontally it goes, and how long it remains in the air.

21. Suppose that an artillery projectile is fired from ground
level with initial velocity 3000 ft=s and initial inclination
angle 40ı. Assume that its air resistance deceleration is
.0:0001/v2. (a) What is the range of the projectile and
what is its total time of flight? What is its speed at impact
with the ground? (b) What is the maximum altitude of
the projectile, and when is that altitude attained? (c) You
will find that the projectile is still losing speed at the apex
of its trajectory. What is the minimum speed that it attains
during its descent?

4.3 Application Comets and Spacecraft
Figure 4.3.13 lists TI-Nspire CX CAS and BASIC versions of the two-dimensional
Runge–Kutta program RK2DIM. You should note that it closely parallels the one-
dimensional Runge–Kutta program listed in Fig. 2.6.11, with a single line there
replaced (where appropriate) with two lines here to calculate a pair of x- and y-
values or slopes. Note also that the notation used is essentially that of Eqs. (13)
and (14) in this section. The first several lines define the functions and initial
data needed for Example 1. (The TI-Nspire program can be downloaded from
www.pearsonhighered.com/mathstatsresources/.)

Figure 4.3.14 exhibits an n-dimensional MATLAB implementation of the
Runge–Kutta method. The MATLAB function f defines the vector of right-hand
sides of the differential equations in the system x0 D f.t; x/ to be solved. The rkn
function then takes as input the initial t-value t, the column vector x of initial x-
values, the final t-value t1, and the desired number n of subintervals. As output
it produces the resulting column vector T of t-values and the matrix X whose rows
give the corresponding x-values. For instance, with f as indicated in the figure, the
MATLAB command

[T,X] = rkn(0, [0;1], 5, 50)

then generates the data shown in the table of Fig. 4.3.1 (which lists only every fifth
value of each variable).

You can use Examples 1 through 3 in this section to test your own imple-
mentation of the Runge–Kutta method. Then investigate the comet and space-
craft problems described next. Additional application material at the web site
www.pearsonhighered.com/mathstatsresources/ describes additional nu-
merical ODE investigations ranging from batted baseballs to the Apollo orbits
shown in Figs. 4.3.9 and 4.3.10.

Your Spacecraft Landing

Your spacecraft is traveling at constant velocity V , approaching a distant earthlike
planet with mass M and radius R. When activated, your deceleration system pro-
vides a constant thrust T until impact with the surface of the planet. During the
period of deceleration, your distance x.t/ from the center of the planet satisfies the

http://www.pearsonhighered.com/mathstatsresources/
http://www.pearsonhighered.com/mathstatsresources/
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TI-Nspire CX CAS BASIC Comment

Define rk2dim()=Prgm

f(t,x,y):=y

g(t,x,y):=--x

n:=50

t:=0.0

x:=0.0

y:=1.0

t1:=5.0

h:=(t1--t)/n

For i,1,n

t0:=t

x0:=x

y0:=y

f1:=f(t,x,y)

g1:=g(t,x,y)

t:=t0+h/2

x:=x0+(h*f1)/2

y:=y0+(h*g1)/2

f2:=f(t,x,y)

g2:=g(t,x,y)

x:=x0+(h*f2)/2

y:=y0+(h*g2)/2

f3:=f(t,x,y)

g3:=g(t,x,y)

t:=t0+h

x:=x0+h*f3

y:=y0+h*g3

f4:=f(t,x,y)

g4:=g(t,x,y)

fa:=(f1+2*f2+2*f3+f4)/6

ga:=(g1+2*g2+2*g3+g4)/6

x:=x0+h*fa

y:=y0+h*ga

Disp t,x,y

EndFor

EndPrgm

Program RK2DIM

DEF FN F(T,X,Y) = Y

DEF FN G(T,X,Y) = --X

N = 50

T = 0

X = 0

Y = 1

T1 = 5

H = (T1--T)/N

FOR I=1 TO N

T0 = T

X0 = X

Y0 = Y

F1 = FNF(T,X,Y)

G1 = FNG(T,X,Y)

T = T0 + H/2

X = X0 + H*F1/2

Y = Y0 + H*G1/2

F2 = FNF(T,X,Y)

G2 = FNG(T,X,Y)

X = X0 + H*F2/2

Y = Y0 + H*G2/2

F3 = FNF(T,X,Y)

G3 = FNG(T,X,Y)

T = T0 + H

X = X0 + H*F3

Y = Y0 + H*G3

F4 = FNF(T,X,Y)

G4 = FNG(T,X,Y)

FA = (F1+2*F2+2*F3+F4)/6

GA = (G1+2*G2+2*G3+G4)/6

X = Y0 + H*FA

Y = Y0 + H*GA

PRINT T,X,Y

NEXT I

Program title

Define function f

Define function g

No. of steps

Initial t

Initial x

Initial y

Final t

Step size

Begin loop

Save previous t

Save previous x

Save previous y

First f-slope

First g-slope

Midpoint t

Midpt x-predictor

Midpt y-predictor

Second f-slope

Second g-slope

Midpt x-predictor

Midpt y-predictor

Third f-slope

Third g-slope

New t

Endpt x-predictor

Endpt y-predictor

Fourth f-slope

Fourth g-slope

Average f-slope

Average g-slope

x-corrector

y-corrector

Display results

End loop

FIGURE 4.3.13. TI-Nspire CX CAS and BASIC two-dimensional Runge–Kutta programs.
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function xp = f(t,x)
xp = x;
xp(1) = x(2);
xp(2) = --x(1);

function [T,Y] = rkn(t,x,t1,n)
h = (t1 -- t)/n; % step size
T = t; % initial t
X = x’; % initial x-vector
for i = 1:n % begin loop

k1 = f(t,x); % first k-vector
k2 = f(t+h/2,x+h*k1/2); % second k-vector
k3 = f(t+h/2,x+h*k2/2); % third k-vector
k4 = f(t+h ,x+h*k3 ); % fourth k-vector
k = (k1+2*k2+2*k3+k4)/6; % average k-vector
t = t + h; % new t
x = x + h*k; % new x
T = [T;t]; % update t-column
X = [X;x’]; % update x-matrix
end % end loop

FIGURE 4.3.14. MATLAB implementation of the Runge–Kutta method.

differential equation

d2x

dt2
D T � GM

x2
; (1)

where G � 6:6726 � 10�11 N�(m=kg)2 as in Example 3. Your question is this: At
what altitude above the surface should your deceleration system be activated in order
to achieve a soft touchdown? For a reasonable problem, you can take

M D 5:97 � 1024 (kg);

R D 6:38 � 106 (m);

V D p � 104 (km=h);

T D g C q (m=s2)

where g D GM=R2 is the surface gravitational acceleration of the planet. Choose p
to be the smallest nonzero digit and q the next-to-smallest nonzero digit in your ID
number. Find the “ignition altitude” accurate to the nearest meter and the resulting
“descent time” accurate to the nearest tenth of a second.

Kepler’s Law of Planetary (or Satellite) Motion
Consider a satellite in elliptical orbit around a planet of mass M , and suppose that
physical units are so chosen that GM D 1 (where G is the gravitational constant). If
the planet is located at the origin in the xy-plane, then the equations of motion of
the satellite are

d2x

dt2
D � x

.x2 C y2/3=2
;

d2y

dt2
D � y

.x2 C y2/3=2
: (2)
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Let T denote the period of revolution of the satellite. Kepler’s third law says that
the square of T is proportional to the cube of the major semiaxis a of its elliptical
orbit. In particular, if GM D 1, then

T 2 D 4�2a3: (3)

(For details, see Section 11.6 of Edwards and Penney, Calculus: Early Transcen-
dentals, 7th ed. (Upper Saddle River, NJ: Prentice Hall, 2008).) If the satellite’s x-
and y-components of velocity, x3 D x0 D x0

1 and x4 D y0 D x0
2, are introduced, then

the system in (2) translates into a system of four first-order differential equations
having the form of those in Eq. (22) of this section.

(a) Solve this 4 � 4 system numerically with the initial conditions

x.0/ D 1; y.0/ D 0; x0.0/ D 0; y0.0/ D 1

that correspond theoretically to a circular orbit of radius a D 1, so Eq. (3) gives
T D 2� . Is this what you get?

(b) Now solve the system numerically with the initial conditions

x.0/ D 1; y.0/ D 0; x0.0/ D 0; y0.0/ D 1
2

p
6

that correspond theoretically to an elliptical orbit with major semiaxis a D 2, so
Eq. (3) gives T D 4�

p
2. Is this what you get?

Halley’s Comet
Halley’s comet last reached perihelion (its point of closest approach to the sun at the
origin) on February 9, 1986. Its position and velocity components at that time were

p0 D .0:325514;�0:459460; 0:166229/ and

v0 D .�9:096111;�6:916686;�1:305721/

(respectively), with position in AU (astronomical units, in which the unit of distance
is the major semiaxis of the earth’s orbit) and time in years. In this system, the three-
dimensional equations of motion of the comet are

d2x

dt2
D �x

r3
;

d2y

dt2
D �y

r3
;

d2´

dt2
D �´

r3
(4)

where
 D 4�2 and r D

p
x2 C y2 C ´2:

Solve the equations in (4) numerically to verify the appearance of the y´-projection
of the orbit of Halley’s comet shown in Fig. 4.3.15. Plot the xy- and x´-projections

y

z

5

–5

–10

10 15 20 25 30

FIGURE 4.3.15. y´-projection of
the orbit of Halley’s comet.

as well.
Figure 4.3.16 shows the graph of the distance r.t/ of Halley’s comet from

the sun. Inspection of this graph indicates that Halley’s comet reaches a maximum
distance (at aphelion) of about 35 AU in a bit less than 40 years and returns to
perihelion after about three-quarters of a century. The closer look in Fig. 4.3.17
indicates that the period of revolution of Halley’s comet is about 76 years. Use your
numerical solution to refine these observations. What is your best estimate of the
calendar date of the comet’s next perihelion passage?
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FIGURE 4.3.16. 200-year plot of the distance r.t/ of Halley’s comet from the sun. Is there a
cusp near t D 75?
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FIGURE 4.3.17. A closer look at Halley’s perihelion
passage after about 76 years.

Your Own Comet
The night before your birthday in 2007 you set up your telescope on a nearby moun-
taintop. It was a clear night, and you had a stroke of luck: At 12:30 A.M. you
spotted a new comet. After repeating the observation on successive nights, you
were able to calculate its solar system coordinates p0 D .x0; y0; ´0/ and its velocity
vector v0 D .vx0; vy0; v´0/ on that first night. Using this information, determine the
following:

� the comet’s perihelion (point nearest the sun) and aphelion (point farthest from
the sun),

� the comet’s velocity at perihelion and at aphelion,
� the comet’s period of revolution around the sun, and
� the comet’s next two dates of perihelion passage.

Using units of length in AU and time in earth years, the equations of motion
of your comet are given in (4). For your personal comet, begin with random initial
position and velocity vectors with the same order of magnitude as those of Halley’s
comet. Repeat the random selection of initial position and velocity vectors, if nec-
essary, until you get a plausible eccentric orbit that ranges well outside the earth’s
orbit (as most real comets do).



55 Linear Systems
of Differential
Equations

5.1 Matrices and Linear Systems

Although the simple elimination techniques of Section 4.2 suffice for the
solution of small linear systems containing only two or three equations with

constant coefficients, the general properties of linear systems—as well as solution
methods suitable for larger systems—are most easily and concisely described using
the language and notation of vectors and matrices. For ready reference and review,
this section begins with a complete and self-contained account of the matrix notation
and terminology that is needed. Special techniques of linear algebra—specifically,
those associated with eigenvalues and eigenvectors—are introduced as needed in
subsequent sections of this chapter.

Review of Matrix Notation and Terminology

An m� n matrix A is a rectangular array of mn numbers (or elements) arranged in
m (horizontal) rows and n (vertical) columns:

A D

266666666664

a11 a12 a13 � � � a1j � � � a1n

a21 a22 a23 � � � a2j � � � a2n

a31 a32 a33 � � � a3j � � � a3n

:::
:::

:::
:::

:::

ai1 ai2 ai3 � � � aij � � � ain

:::
:::

:::
:::

:::

am1 am2 am3 � � � amj � � � amn

377777777775
: (1)

We will ordinarily denote matrices by boldface capital letters. Sometimes we use
the abbreviation A D 


aij

�
for the matrix with the element aij in the i th row and

j th column, as in Eq. (1). We denote the zero matrix, each entry of which is zero,

264
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by

0 D

26664
0 0 � � � 0

0 0 � � � 0
:::

:::
:::

0 0 � � � 0

37775 : (2)

Actually for each pair of positive integers m and n there is anm� n zero matrix, but
the single symbol 0 will suffice for all these zero matrices.

Two m � n matrices A D 

aij

�
and B D 


bij

�
are said to be equal if corre-

sponding elements are equal; that is, if aij D bij for 1 5 i 5 m and 1 5 j 5 n. We
add A and B by adding corresponding entries:

AC B D 
 aij

�C 
 bij

� D 
 aij C bij

�
: (3)

Thus the element in row i and column j of CDACB is cij D aij Cbij . To multiply
the matrix A by the number c, we simply multiply each of its elements by c:

cA D Ac D Œcaij �: (4)

Example 1 If

A D
�
2 �3
4 7

�
; B D

� �13 10

7 �5
�
; and C D

�
3 0

5 �7
�
;

then

AC B D
�
2 �3
4 7

�
C
� �13 10

7 �5
�
D
� �11 7

11 2

�
and

6C D 6 �
�
3 0

5 �7
�
D
�
18 0

30 �42
�
:

We denote .�1/A by �A and define subtraction of matrices as follows:

A � B D AC .�B/: (5)

The matrix operations just defined have the following properties, each of
which is analogous to a familiar algebraic property of the real number system:

AC 0 D 0CA D A; A �A D 0I (6)

AC B D BCA (commutativity); (7)

AC .BCC/ D .AC B/CC (associativity); (8)

c.AC B/ D cAC cB;
.c C d/A D cAC dA:

(distributivity) (9)

Each of these properties is readily verified by elementwise application of a corre-
sponding property of the real numbers. For example, aij C bij D bij C aij for all i
and j because addition of real numbers is commutative. Consequently,

AC B D 
 aij C bij

� D 
 bij C aij

� D BCA:

The transpose AT of the m � n matrix A D Œaij � is the n �m (note!) matrix
whose j th column is the j th row of A (and consequently, whose i th row is the
i th column of A). Thus AT D 


aj i

�
, although this is not notationally perfect; you
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must remember that AT will not have the same shape as A unless A is a square
matrix—that is, unless m D n.

An m � 1 matrix—one having only a single column—is called a column vec-
tor, or simply a vector. We often denote column vectors by boldface lowercase
letters, as in

b D
24 3

�7
0

35 or x D

26664
x1

x2

:::

xm

37775 :
Similarly, a row vector is a 1 � n matrix—one having only a single row, such as
c D 


5 17 0 �3 �. For aesthetic and typographical reasons, we will fre-
quently write a column vector as the transpose of a row vector; for example, the two
preceding column vectors may be written in the forms

b D 
 3 �7 0
�T and x D 
 x1 x2 � � � xm

�T
:

Sometimes it is convenient to describe an m � n matrix in terms of either its
m row vectors or its n column vectors. Thus if we write

A D

26664
a1

a2

:::

am

37775 and B D 
 b1 b2 � � � bn

�
;

it is understood that a1, a2, : : : ; and am are the row vectors of the matrix A and that
b1, b2, : : : ; and bn are the column vectors of the matrix B.

Matrix Multiplication
The properties listed in Eqs. (6) through (9) are quite natural and expected. The first
surprises in the realm of matrix arithmetic come with multiplication. We define first
the scalar product of a row vector a and a column vector b, each having the same
number p of elements. If

a D 
 a1 a2 � � � ap

�
and b D 
 b1 b2 � � � bp

�T
;

then a � b is defined as follows:

a � b D
pX

kD1

akbk D a1b1 C a2b2 C � � � C apbp; (10)

exactly as in the scalar or dot product of two vectors—a familiar topic from elemen-
tary calculus.

The product AB of two matrices is defined only if the number of columns of
A is equal to the number of rows of B. If A is an m � p matrix and B is a p � n
matrix, then their product AB is them�nmatrix CD 
 cij

�
, where cij is the scalar

product of the i th row vector ai of A and the j th column vector bj of B. Thus

C D AB D 
 ai � bj

�
: (11)
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In terms of the individual entries of A D 

aij

�
and B D 


bij

�
, Eq. (11) can be

recast in the form

cij D
pX

kD1

aikbkj : (12)

For purposes of hand computation, the definition in Eqs. (11) and (12) is easy to
remember by visualizing the picture

ai �!

266666666664

a11 a12 � � � a1p

a21 a22 � � � a2p

:::
:::

:::

ai1 ai2 � � � aip

:::
:::

:::

am1 am2 � � � amp

377777777775

26666666664

b11 b12 � � � b1j � � � b1n

b21 b22 � � � b2j � � � b2n

:::
:::

:::
:::

bp1 bp2 � � � bpj � � � bpn

37777777775
;

"
bj

which shows that one forms the dot product of the row vector ai with the column
vector bj to obtain the element cij in the i th row and the j th column of AB. It may
help to think of “pouring the rows of A down the columns of B.” This also reminds
us that the number of columns of A must be equal to the number of rows of B.

Example 2 Check your understanding of the definition of matrix multiplication by verifying that if

A D
�

2 �3
�1 5

�
and B D

�
13 9

4 0

�
;

then

AB D
�

2 �3
�1 5

� �
13 9

4 0

�
D
�
14 18

7 �9
�
:

Similarly, verify that 24 2 �3 1

4 5 �2
6 �7 0

3524 xy
´

35 D
24 2x � 3y C ´
4x C 5y � 2´
6x � 7y

35
and that 2664

1 2

3 4

5 6

7 8

3775� 2 1 3

�1 3 �2
�
D

2664
0 7 �1
2 15 1

4 23 3

6 31 5

3775 :
It can be shown by direct (though lengthy) computation based on its definition

that matrix multiplication is associative and is also distributive with respect to matrix
addition; that is,

A.BC/ D .AB/C (13)

and

A.BCC/ D ABCAC; (14)
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provided that the matrices are of such sizes that the indicated multiplications and
additions are possible.

But matrix multiplication is not commutative. That is, if A and B are both
n � n matrices (so that both the products AB and BA are defined and have the same
dimensions—n � n), then, in general,

AB 6D BA: (15)

Moreover, it can happen that

AB D 0 even though A 6D 0 and B 6D 0: (16)

Examples illustrating the phenomena in (15) and (16) may be found in the problems,
although you can easily construct your own examples using 2 � 2 matrices with
small integral elements.

Inverse Matrices
A square n � n matrix is said to have order n. The identity matrix of order n is the
square matrix

I D

26666666664

1 0 0 0 � � � 0

0 1 0 0 � � � 0

0 0 1 0 � � � 0

0 0 0 1 � � � 0
:::

:::
:::

:::
:::

0 0 0 0 � � � 1

37777777775
; (17)

for which each entry on the principal diagonal is 1 and all off-diagonal entries are
zero. It is quite easy to verify that

AI D A D IA (18)

for every square matrix A of the same order as I.
If A is a square matrix, then an inverse of A is a square matrix B of the same

order as A such that both

AB D I and BA D I:

It is not difficult to show that if the matrix A has an inverse, then this inverse is
unique. Consequently, we may speak of the inverse of A, and we will denote it by
A�1. Thus

AA�1 D I D A�1A; (19)

given the existence of A�1. It is clear that some square matrices do not have
inverses—consider any square zero matrix. It is also easy to show that if A�1 exists,
then .A�1/�1 exists and .A�1/�1 D A.

In linear algebra it is proved that A�1 exists if and only if the determinant
det.A/ of the square matrix A is nonzero. If so, the matrix A is said to be nonsin-
gular; if det.A/ D 0, then A is called a singular matrix.
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Determinants
We assume that the student has computed 2 � 2 and 3 � 3 determinants in earlier
courses. If A D 


aij

�
is a 2 � 2 matrix, then its determinant det.A/ D jAj is

defined as

jAj D
ˇ̌̌̌
a11 a12

a21 a22

ˇ̌̌̌
D a11a22 � a12a21:

Determinants of higher order may be defined by induction, as follows. If AD 
 aij

�
is an n � n matrix, let Aij denote the .n � 1/ � .n � 1/ matrix obtained from A by
deleting its i th row and its j th column. The expansion of the determinant jAj along
its i th row is given by

jAj D
nX

j D1

.�1/iCjaij jAij j (i fixed); (20a)

and its expansion along its j th column is given by

jAj D
nX

iD1

.�1/iCjaij jAij j (j fixed): (20b)

It is shown in linear algebra that whichever row we use in Eq. (20a) and whichever
column we use in Eq. (20b), the results are the same in all 2n cases. Hence jAj is
well defined by these formulas.

Example 3 If

A D
24 3 1 �2

4 2 1

�2 3 5

35 ;
then the expansion of jAj along its second row is

jAj D �4 �
ˇ̌̌̌
1 �2
3 5

ˇ̌̌̌
C 2 �

ˇ̌̌̌
3 �2
�2 5

ˇ̌̌̌
� 1 �

ˇ̌̌̌
3 1

�2 3

ˇ̌̌̌
D �4 � 11C 2 � 11 � 1 � 11 D �33:

And the expansion of jAj along its third column is

jAj D �2 �
ˇ̌̌̌

4 2

�2 3

ˇ̌̌̌
� 1 �

ˇ̌̌̌
3 1

�2 3

ˇ̌̌̌
C 5 �

ˇ̌̌̌
3 1

4 2

ˇ̌̌̌
D �2 � 16 � 1 � 11C 5 � 2 D �33:

Calculators and computers are convenient for the calculation of higher-dimen-
sional determinants and inverse matrices, but determinants and inverses of 2 � 2
matrices are easy to compute by hand. For instance, if the 2 � 2 matrix

A D
�
a b

c d

�
has nonzero determinant jAj D ad � bc 6D 0, then its inverse matrix is

A�1 D 1

jAj

�
d �b
�c a

�
: (21)

Note that the matrix on the right-hand side of Eq. (21) is obtained from A by inter-
changing the diagonal elements and changing the signs of the off-diagonal elements.
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Example 4 If

A D
�
6 8

5 7

�
;

then jAj D 6 � 7 � 5 � 8 D 2. Hence Eq. (21) gives

A�1 D 1

2

24 7 �8
�5 6

35 D
24 7

2 �4
�5

2 3

35 :
You should pause to verify that

A�1A D
24 7

2 �4
�5

2 3

3524 6 8

5 7

35 D � 1 0

0 1

�
:

Matrix-Valued Functions
A matrix-valued function, or simply matrix function, is a matrix such as

x.t/ D

26666664
x1.t/

x2.t/

:::

xn.t/

37777775 (22a)

or

A.t/ D

26666664
a11.t/ a12.t/ � � � a1n.t/

a21.t/ a22.t/ � � � a2n.t/

:::
:::

:::

am1.t/ am2.t/ � � � amn.t/

37777775 ; (22b)

in which each entry is a function of t . We say that the matrix function A.t/ is
continuous (or differentiable) at a point (or on an interval) if each of its elements
has the same property. The derivative of a differentiable matrix function is defined
by elementwise differentiation; that is,

A0.t/ D dA
dt
D
�
daij

dt

�
: (23)

Example 5 If

x.t/ D
24 t

t2

e�t

35 and A.t/ D
�

sin t 1

t cos t

�
;

then

dx
dt
D
24 1

2t

�e�t

35 and A0.t/ D
�

cos t 0

1 � sin t

�
:
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The differentiation rules

d

dt
.AC B/ D dA

dt
C dB
dt

(24)

and

d

dt
.AB/ D A

dB
dt
C dA
dt

B (25)

follow readily by elementwise application of the analogous differentiation rules of
elementary calculus for real-valued functions. If c is a (constant) real number and
C is a constant matrix, then

d

dt
.cA/ D c dA

dt
;

d

dt
.CA/ D C

dA

dt
; and

d

dt
.AC/ D dA

dt
C: (26)

Because of the noncommutativity of matrix multiplication, it is important not to
reverse the order of the factors in Eqs. (25) and (26).

First-Order Linear Systems
The notation and terminology of matrices and vectors may seem rather elaborate
when first encountered, but it is readily assimilated with practice. Our main use for
matrix notation will be the simplification of computations with systems of differ-
ential equations, especially those computations that would be burdensome in scalar
notation.

We discuss here the general system of n first-order linear equations

x0
1 D p11.t/x1 C p12.t/x2 C � � � C p1n.t/xn C f1.t/;

x0
2 D p21.t/x1 C p22.t/x2 C � � � C p2n.t/xn C f2.t/;

x0
3 D p31.t/x1 C p32.t/x2 C � � � C p3n.t/xn C f3.t/;

:::

x0
n D pn1.t/x1 C pn2.t/x2 C � � � C pnn.t/xn C fn.t/:

(27)

If we introduce the coefficient matrix

P.t/ D 
 pij .t/
�

and the column vectors

x D 
 xi

�
and f.t/ D 
 fi .t/

�
;

then the system in (27) takes the form of a single matrix equation

dx
dt
D P.t/xC f.t/: (28)

We will see that the general theory of the linear system in (27) closely parallels
that of a single nth-order equation. The matrix notation used in Eq. (28) not only
emphasizes this analogy, but also saves a great deal of space.

A solution of Eq. (28) on the open interval I is a column vector function
x.t/ D 


xi .t/
�

such that the component functions of x satisfy the system in (27)
identically on I . If the functions pij .t/ and fi .t/ are all continuous on I , then
Theorem 1 of Section 4.1 guarantees the existence on I of a unique solution x.t/
satisfying preassigned initial conditions x.a/ D b.
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Example 6 The first-order system

x0
1 D 4x1 � 3x2;

x0
2 D 6x1 � 7x2

can be written as the single matrix equation

dx
dt
D
�
4 �3
6 �7

�
x D Px:

To verify that the vector functions

x1.t/ D
�
3e2t

2e2t

�
and x2.t/ D

�
e�5t

3e�5t

�
are both solutions of the matrix differential equation with coefficient matrix P, we need only
calculate

Px1 D
�
4 �3
6 �7

� �
3e2t

2e2t

�
D
�
6e2t

4e2t

�
D x0

1

and

Px2 D
�
4 �3
6 �7

� �
e�5t

3e�5t

�
D
� �5e�5t

�15e�5t

�
D x0

2:

To investigate the general nature of the solutions of Eq. (28), we consider first
the associated homogeneous equation

dx
dt
D P.t/x; (29)

which has the form shown in Eq. (28), but with f.t/ � 0. We expect it to have n
solutions x1, x2, : : : ; xn that are independent in some appropriate sense, and such
that every solution of Eq. (29) is a linear combination of these n particular solutions.
Given n solutions x1, x2, : : : ; xn of Eq. (29), let us write

xj .t/ D

26666666664

x1j .t/

:::

xij .t/

:::

xnj .t/

37777777775
: (30)

Thus xij .t/ denotes the i th component of the vector xj .t/, so the second subscript
refers to the vector function xj .t/, whereas the first subscript refers to a component
of this function. Theorem 1 is analogous to Theorem 1 of Section 3.2.

THEOREM 1 Principle of Superposition

Let x1, x2, : : : ; xn be n solutions of the homogeneous linear equation in (29) on
the open interval I . If c1, c2, : : : ; cn are constants, then the linear combination

x.t/ D c1x1.t/C c2x2.t/C � � � C cnxn.t/ (31)

is also a solution of Eq. (29) on I .
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Proof: We know that x0
i D P.t/xi for each i (1 5 i 5 n), so it follows imme-

diately that

x0 D c1x0
1 C c2x0

2 C � � � C cnx0
n

D c1P.t/x1 C c2P.t/x2 C � � � C cnP.t/xn

D P.t/.c1x1 C c2x2 C � � � C cnxn/:

That is, x0 D P.t/x, as desired. The remarkable simplicity of this proof demonstrates
clearly one advantage of matrix notation.

Continued

Example 6 If x1 and x2 are the two solutions of

dx
dt
D
�
4 �3
6 �7

�
x

discussed in Example 6, then the linear combination

x.t/ D c1x1.t/C c2x2.t/ D c1

�
3e2t

2e2t

�
C c2

�
e�5t

3e�5t

�
is also a solution. In scalar form with x D Œx1 x2�

T , this gives the solution

x1.t/ D 3c1e
2t C c2e

�5t ;

x2.t/ D 2c1e
2t C 3c2e�5t ;

which is equivalent to the general solution we found by the method of elimination in Example
2 of Section 4.2.

Independence and General Solutions
Linear independence is defined in the same way for vector-valued functions as for
real-valued functions (Section 3.2). The vector-valued functions x1, x2, : : : ; xn are
linearly dependent on the interval I provided that there exist constants c1, c2, : : : ;
cn not all zero such that

c1x1.t/C c2x2.t/C � � � C cnxn.t/ D 0 (32)

for all t in I . Otherwise, they are linearly independent. Equivalently, they are
linearly independent provided that no one of them is a linear combination of the
others. For instance, the two solutions x1 and x2 of Example 6 are linearly indepen-
dent because, clearly, neither is a scalar multiple of the other.

Just as in the case of a single nth-order equation, there is a Wronskian deter-
minant that tells us whether or not n given solutions of the homogeneous equation
in (29) are linearly dependent. If x1, x2, : : : ; xn are such solutions, then their Wron-
skian is the n � n determinant

W.t/ D

ˇ̌̌̌
ˇ̌̌̌
ˇ̌
x11.t/ x12.t/ � � � x1n.t/

x21.t/ x22.t/ � � � x2n.t/
:::

:::
:::

xn1.t/ xn2.t/ � � � xnn.t/

ˇ̌̌̌
ˇ̌̌̌
ˇ̌ ; (33)

using the notation in (30) for the components of the solutions. We may write either
W.t/ or W.x1; x2; : : : ; xn/. Note that W is the determinant of the matrix that has as
its column vectors the solutions x1, x2, : : : ; xn. Theorem 2 is analogous to Theorem
3 of Section 3.2. Moreover, its proof is essentially the same, with the definition of
W.x1; x2; : : : ; xn/ in Eq. (33) substituted for the definition of the Wronskian of n
solutions of a single nth-order equation (see Problems 42 through 44).
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THEOREM 2 Wronskians of Solutions

Suppose that x1, x2, : : : ; xn are n solutions of the homogeneous linear equation
x0 D P.t/x on an open interval I . Suppose also that P.t/ is continuous on I . Let

W D W.x1; x2; : : : ; xn/:

Then:
� If x1, x2, : : : ; xn are linearly dependent on I , then W D 0 at every point

of I .
� If x1, x2, : : : ; xn are linearly independent on I , then W ¤ 0 at each point

of I .
Thus there are only two possibilities for solutions of homogeneous systems: Ei-
ther W D 0 at every point of I , or W D 0 at no point of I .

Example 7 It is readily verified (as in Example 6) that

x1.t/ D
24 2et

2et

et

35 ; x2.t/ D
24 2e3t

0

�e3t

35 ; and x3.t/ D
24 2e5t

�2e5t

e5t

35
are solutions of the equation

dx
dt
D
24 3 �2 0

�1 3 �2
0 �1 3

35 x: (34)

The Wronskian of these solutions is

W D
ˇ̌̌̌
ˇ̌ 2e

t 2e3t 2e5t

2et 0 �2e5t

et �e3t e5t

ˇ̌̌̌
ˇ̌ D e9t

ˇ̌̌̌
ˇ̌ 2 2 2

2 0 �2
1 �1 1

ˇ̌̌̌
ˇ̌ D �16e9t ;

which is never zero. Hence Theorem 2 implies that the solutions x1, x2, and x3 are linearly
independent (on any open interval).

Theorem 3 is analogous to Theorem 4 of Section 3.2. It says that a general
solution of the homogeneous n � n system x0 D P.t/x is a linear combination

x D c1x1 C c2x2 C � � � C cnxn (35)

of any n given linearly independent solutions x1, x2, : : : ; xn.

THEOREM 3 General Solutions of Homogeneous Systems

Let x1, x2, : : : ; xn be n linearly independent solutions of the homogeneous linear
equation x0 D P.t/x on an open interval I , where P.t/ is continuous. If x.t/ is any
solution whatsoever of the equation x0 D P.t/x on I , then there exist numbers c1,
c2, : : : ; cn such that

x.t/ D c1x1.t/C c2x2.t/C � � � C cnxn.t/ (35)

for all t in I .
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Proof: Let a be a fixed point of I . We show first that there exist numbers c1,
c2, : : : ; cn such that the solution

y.t/ D c1x1.t/C c2x2.t/C � � � C cnxn.t/ (36)

has the same initial values at t D a as does the given solution x.t/; that is, such that

c1x1.a/C c2x2.a/C � � � C cnxn.a/ D x.a/: (37)

Let X.t/ be the n � n matrix with column vectors x1, x2, : : : ; xn, and let c be the
column vector with components c1, c2, : : : ; cn. Then Eq. (37) may be written in the
form

X.a/c D x.a/: (38)

The Wronskian determinant W.a/ D jX.a/j is nonzero because the solutions x1,
x2, : : : ; xn are linearly independent. Hence the matrix X.a/ has an inverse matrix
X.a/�1. Therefore the vector c D X.a/�1x.a/ satisfies Eq. (38), as desired.

Finally, note that the given solution x.t/ and the solution y.t/ of Eq. (36)—
with the values of ci determined by the equation c D X.a/�1x.a/—have the same
initial values (at t D a). It follows from the existence-uniqueness theorem of Section
4.1 that x.t/ D y.t/ for all t in I . This establishes Eq. (35).
Remark Every n � n system x0 D P.t/x with continuous coefficient matrix does have a
set of n linearly independent solutions x1; x2; : : : ; xn as in the hypotheses of Theorem 3. It
suffices to choose for xj .t/ the unique solution such that

xj .a/ D

266666666666666664

0

0

0

:::

0

1

0

:::

0

377777777777777775
 � position j

—that is, the column vector with all elements zero except for a 1 in row j . (In other words,
xj .a/ is merely the j th column of the identity matrix.) Then

W.x1; x2; : : : ; xn/
ˇ̌
tDa
D jIj D 1 6D 0;

so the solutions x1; x2; : : : ; xn are linearly independent by Theorem 2. How to actually find
these solutions explicitly is another matter—one that we address in Section 5.2 (for the case
of constant coefficient matrices).

Initial Value Problems and Elementary Row Operations
The general solution in Eq. (35) of the homogeneous linear system x0 D P.t/x can
be written in the form

x.t/ D X.t/c; (39)

where

X.t/ D 
 x1.t/ x2.t/ � � � xn.t/
�

(40)
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is the n � n matrix whose column vectors are the linearly independent solutions x1,
x2, : : : ; xn, and c D 


c1 c2 � � � cn

�T is the vector of coefficients in the linear
combination

x.t/ D c1x1.t/C c2x2.t/C � � � C cnxn.t/: (35)

Suppose now that we wish to solve the initial value problem

dx
dt
D Px; x.a/ D b; (41)

where the initial vector b D 

b1 b2 � � � bn

�T is given. Then, according to
Eq. (39), it suffices to solve the system

X.a/c D b (42)

to find the coefficients c1, c2, : : : ; cn in Eq. (35).
We therefore review briefly the elementary technique of row reduction to solve

an n � n algebraic linear system

a11x1 C a12x2 C � � � C a1nxn D b1;

a21x1 C a22x2 C � � � C a2nxn D b2;
:::

an1x1 C an2x2 C � � � C annxn D bn

(43)

with nonsingular coefficient matrix A D Œaij �, constant vector b D Œbi �, and un-
knowns x1; x2; : : : ; xn. The basic idea is to transform the system in (43) into the
simpler upper triangular form

a11x1 C a12x2 C � � � C a1nxn D b1;

a22x2 C � � � C a2nxn D b2;
:::

annxn D bn

(44)

in which only the unknowns xj ; xj C1; : : : ; xn appear explicitly in the j th equation
(j D 1, 2, : : : ; n). The transformed system is then easily solved by the process of
back substitution. First the last equation in (44) is solved for xn, then the next-to-last
is solved for xn�1, and so forth, until the first equation is finally solved for x1.

The transformation of the system in (43) to upper triangular form is most
easily described in terms of elementary row operations on the augmented coefficient
matrix



A b

� D
266664
a11 a12 � � � a1n b1

a21 a22 � � � a2n b2

:::
:::

:::
:::

an1 an2 � � � ann bn

377775 (45)

that is obtained by adjoining the vector b to the matrix A as an additional column.
The admissible elementary row operations are of the following three types:
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1. Multiply any (single) row of the matrix by a nonzero constant.
2. Interchange any two rows of the matrix.
3. Subtract a constant multiple of one row from any other row.

The goal is to use a sequence of such operations (one by one, in turn) to trans-
form



A b

�
into an upper triangular matrix, one that has only zeros beneath its

principal diagonal. This upper triangular augmented coefficient matrix then cor-
responds to an upper triangular system as in (44). The process of transforming


A b
�

is carried out one column at a time, from left to right, as in the next exam-
ple.

Example 8 Use the solution vectors given in Example 7 to solve the initial value problem

dx
dt
D
24 3 �2 0

�1 3 �2
0 �1 3

35 x; x.0/ D
24 02
6

35 : (46)

Solution It follows from Theorem 3 that the linear combination

x.t/ D c1x1.t/C c2x2.t/C c3x3.t/

D c1

24 2et

2et

et

35C c2
24 2e3t

0

�e3t

35C c3

24 2e5t

�2e5t

e5t

35
is a general solution of the 3 � 3 linear system in (46). In scalar form, this gives the general
solution

x1.t/ D 2c1e
t C 2c2e

3t C 2c3e
5t ;

x2.t/ D 2c1e
t � 2c3e

5t ;

x3.t/ D c1e
t � c2e

3t C c3e
5t :

We seek the particular solution satisfying the initial conditions

x1.0/ D 0; x2.0/ D 2; x3.0/ D 6:

When we substitute these values in the three preceding scalar equations, we get the algebraic
linear system

2c1 C 2c2 C 2c3 D 0,
2c1 � 2c3 D 2,
c1 � c2 C c3 D 6

with augmented coefficient matrix24 2 2 2 0

2 0 �2 2

1 �1 1 6

35 :
Multiplication of each of the first two rows by 1

2 gives24 1 1 1 0

1 0 �1 1

1 �1 1 6

35 ;
then subtraction of the first row both from the second row and from the third row gives the
matrix 24 1 1 1 0

0 �1 �2 1

0 �2 0 6

35 :
The first column of this matrix now has the desired form.
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Now we multiply the second row by �1, then add twice the result to the third row.
Thereby we get the upper triangular augmented coefficient matrix24 1 1 1 0

0 1 2 �1
0 0 4 4

35
that corresponds to the transformed system

c1 C c2 C c3 D 0,

c2 C 2c3 D �1,
4c3 D 4.

We finally solve in turn for c3 D 1, c2 D �3, and c1 D 2. Thus the desired particular solution
is given by

x.t/ D 2x1.t/ � 3x2.t/C x3.t/ D
24 4et � 6e3t C 2e5t

4et � 2e5t

2et C 3e3t C e5t

35 :

Nonhomogeneous Solutions
We finally turn our attention to a nonhomogeneous linear system of the form

dx
dt
D P.t/xC f.t/: (47)

The following theorem is analogous to Theorem 5 of Section 3.2 and is proved in
precisely the same way, substituting the preceding theorems in this section for the
analogous theorems of Section 3.2. In brief, Theorem 4 means that the general
solution of Eq. (47) has the form

x.t/ D xc.t/C xp.t/; (48)

where xp.t/ is a single particular solution of Eq. (47) and the complementary func-
tion xc.t/ is a general solution of the associated homogeneous equation x0 D P.t/x.

THEOREM 4 Solutions of Nonhomogeneous Systems

Let xp be a particular solution of the nonhomogeneous linear equation in (47)
on an open interval I on which the functions P.t/ and f.t/ are continuous. Let
x1, x2, : : : ; xn be linearly independent solutions of the associated homogeneous
equation on I . If x.t/ is any solution whatsoever of Eq. (47) on I , then there
exist numbers c1, c2, : : : ; cn such that

x.t/ D c1x1.t/C c2x2.t/C � � � C cnxn.t/C xp.t/ (49)

for all t in I .

Thus finding a general solution of a nonhomogeneous linear system involves
two separate steps:

1. Finding the general solution xc.t/ of the associated homogeneous system;
2. Finding a single particular solution xp.t/ of the nonhomogeneous system.

The sum x.t/D xc.t/Cxp.t/will then be a general solution of the nonhomogeneous
system.
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Example 9 The nonhomogeneous linear system

x0
1 D 3x1 � 2x2 � 9t C 13 ,

x0
2 D �x1 C 3x2 � 2x3 C 7t � 15,
x0

3 D � x2 C 3x3 � 6t C 7

is of the form in (47) with

P.t/ D
24 3 �2 0

�1 3 �2
0 �1 3

35 ; f.t/ D
24 �9t C 137t � 15
�6t C 7

35 :
In Example 7 we saw that a general solution of the associated homogeneous linear system

dx
dt
D
24 3 �2 0

�1 3 �2
0 �1 3

35 x

is given by

xc.t/ D
242c1e

t C 2c2e
3t C 2c3e

5t

2c1e
t � 2c3e

5t

c1e
t � c2e

3t C c3e
5t

35 ;
and we can verify by substitution that the function

xp.t/ D
24 3t5
2t

35
(found using a computer algebra system, or perhaps by a human being using a method dis-
cussed in Section 5.7) is a particular solution of the original nonhomogeneous system. Con-
sequently, Theorem 4 implies that a general solution of the nonhomogeneous system is given
by

x.t/ D xc.t/C xp.t/I
that is, by

x1.t/ D 2c1e
t C 2c2e

3t C 2c3e
5t C 3t ,

x2.t/ D 2c1e
t � 2c3e5t C 5,

x3.t/ D c1e
t � c2e

3t C c3e
5t C 2t .

5.1 Problems
1. Let

A D
�
2 �3
4 7

�
and B D

�
3 �4
5 1

�
:

Find (a) 2AC 3B; (b) 3A � 2B; (c) AB; (d) BA.
2. Verify that (a) A.BC/D .AB/C and that (b) A.BCC/D

ABCAC, where A and B are the matrices given in Prob-
lem 1 and

C D
�
0 2

3 �1
�
:

3. Find AB and BA given

A D
�
2 0 �1
3 �4 5

�
and B D

24 1 3

�7 0

3 �2

35 :

4. Let A and B be the matrices given in Problem 3 and let

x D
�
2t

e�t

�
and y D

24 t2

sin t
cos t

35 :
Find Ay and Bx. Are the products Ax and By defined?
Explain your answer.

5. Let

A D
24 3 2 �1

0 4 3

�5 2 7

35 and B D
24 0 �3 2

1 4 �3
2 5 �1

35 :
Find (a) 7AC 4B; (b) 3A � 5B; (c) AB; (d) BA;
(e) A � tI.
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6. Let

A1 D
�

2 1

�3 2

�
; A2 D

�
1 3

�1 �2
�
;

B D
�
2 4

1 2

�
:

(a) Show that A1B D A2B and note that A1 ¤ A2. Thus
the cancellation law does not hold for matrices; that is, if
A1B D A2B and B ¤ 0, it does not follow that A1 D A2.
(b) Let ADA1�A2 and use part (a) to show that ABD 0.
Thus the product of two nonzero matrices may be the zero
matrix.

7. Compute the determinants of the matrices A and B in
Problem 6. Are your results consistent with the theorem
to the effect that

det.AB/ D det.A/ � det.B/

for any two square matrices A and B of the same order?
8. Suppose that A and B are the matrices of Problem 5. Ver-

ify that det.AB/ D det.BA/.

In Problems 9 and 10, verify the product law for differentia-
tion, .AB/0 D A0BCAB0.

9. A.t/ D
"
t 2t � 1
t3

1

t

#
and B.t/ D

�
1 � t 1C t
3t2 4t3

�

10. A.t/ D
24 et t t2

�t 0 2

8t �1 t3

35 and B.t/ D
24 3

2e�t

3t

35
In Problems 11 through 20, write the given system in the form
x0 D P.t/xC f.t/.

11. x0 D �3y; y0 D 3x
12. x0 D 3x � 2y; y0 D 2x C y
13. x0 D 2x C 4y C 3et ; y0 D 5x � y � t2
14. x0 D tx � ety C cos t; y0 D e�tx C t2y � sin t
15. x0 D y C ´; y0 D ´C x; ´0 D x C y
16. x0 D 2x � 3y; y0 D x C y C 2´; ´0 D 5y � 7´
17. x0 D 3x � 4yC ´C t , y0 D x � 3´C t2, ´0 D 6y � 7´C t3
18. x0 D tx � y C et´, y0 D 2xC t2y � ´, ´0 D e�txC 3ty C

t3´

19. x0
1 D x2, x0

2 D 2x3, x0
3 D 3x4, x0

4 D 4x1

20. x0
1 D x2 C x3 C 1, x0

2 D x3 C x4 C t ,
x0

3 D x1 C x4 C t2, x0
4 D x1 C x2 C t3

In Problems 21 through 30, first verify that the given vectors
are solutions of the given system. Then use the Wronskian to
show that they are linearly independent. Finally, write the gen-
eral solution of the system.

21. x0 D
�

4 2

�3 �1
�

x; x1 D
�

2et

�3et

�
, x2 D

�
e2t

�e2t

�
22. x0 D

� �3 2

�3 4

�
x; x1 D

�
e3t

3e3t

�
, x2 D

�
2e�2t

e�2t

�

23. x0 D
�
3 �1
5 �3

�
x; x1 D e2t

�
1

1

�
, x2 D e�2t

�
1

5

�
24. x0 D

�
4 1

�2 1

�
x; x1 D e3t

�
1

�1
�

, x2 D e2t

�
1

�2
�

25. x0 D
�
4 �3
6 �7

�
x; x1 D

�
3e2t

2e2t

�
, x2 D

�
e�5t

3e�5t

�

26. x0 D
24 3 �2 0

�1 3 �2
0 �1 3

35 x; x1 D et

24 22
1

35,

x2 D e3t

24 �20
1

35, x3 D e5t

24 2

�2
1

35
27. x0 D

24 0 1 1

1 0 1

1 1 0

35 x; x1 D e2t

24 11
1

35,

x2 D e�t

24 1

0

�1

35, x3 D e�t

24 0

1

�1

35
28. x0 D

24 1 2 1

6 �1 0

�1 �2 �1

35 x; x1 D
24 1

6

�13

35,

x2 D e3t

24 2

3

�2

35, x3 D e�4t

24 �12
1

35
29. x0 D

24 �8 �11 �2
6 9 2

�6 �6 1

35 x; x1 D e�2t

24 3

�2
2

35,

x2 D et

24 1

�1
1

35, x3 D e3t

24 1

�1
0

35

30. x0 D

2664
1 �4 0 �2
0 1 0 0

6 �12 �1 �6
0 �4 0 �1

3775 x; x1 D e�t

2664
1

0

0

1

3775,

x2 D e�t

2664
0

0

1

0

3775, x3 D et

2664
0

1

0

�2

3775, x4 D et

2664
1

0

3

0

3775
In Problems 31 through 40, find a particular solution of the in-
dicated linear system that satisfies the given initial conditions.

31. The system of Problem 22: x1.0/ D 0, x2.0/ D 5
32. The system of Problem 23: x1.0/ D 5, x2.0/ D �3
33. The system of Problem 24: x1.0/ D 11, x2.0/ D �7
34. The system of Problem 25: x1.0/ D 8, x2.0/ D 0
35. The system of Problem 26: x1.0/D 0, x2.0/D 0, x3.0/D

4

36. The system of Problem 27: x1.0/ D 10, x2.0/ D 12,
x3.0/ D �1

37. The system of Problem 29: x1.0/D 1, x2.0/D 2, x3.0/D
3

38. The system of Problem 29: x1.0/ D 5, x2.0/ D �7,
x3.0/ D 11
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39. The system of Problem 30: x1.0/ D x2.0/ D x3.0/ D
x4.0/ D 1

40. The system of Problem 30: x1.0/D 1, x2.0/D 3, x3.0/D
4, x4.0/ D 7

41. (a) Show that the vector functions

x1.t/ D
�
t

t2

�
and x2 D

�
t2

t3

�
are linearly independent on the real line. (b) Why does it
follow from Theorem 2 that there is no continuous matrix
P.t/ such that x1 and x2 are both solutions of x0 D P.t/x?

42. Suppose that one of the vector functions

x1.t/ D
�
x11.t/

x21.t/

�
and x2.t/ D

�
x12.t/

x22.t/

�
is a constant multiple of the other on the open interval I .
Show that their Wronskian W.t/ D jŒxij .t/�j must vanish
identically on I . This proves part (a) of Theorem 2 in the
case n D 2.

43. Suppose that the vectors x1.t/ and x2.t/ of Problem 42 are
solutions of the equation x0 D P.t/x, where the 2 � 2 ma-
trix P.t/ is continuous on the open interval I . Show that if
there exists a point a of I at which their Wronskian W.a/
is zero, then there exist numbers c1 and c2 not both zero
such that c1x1.a/C c2x2.a/D 0. Then conclude from the
uniqueness of solutions of the equation x0 D P.t/x that

c1x1.t/C c2x2.t/ D 0

for all t in I ; that is, that x1 and x2 are linearly dependent.
This proves part (b) of Theorem 2 in the case n D 2.

44. Generalize Problems 42 and 43 to prove Theorem 2 for n
an arbitrary positive integer.

45. Let x1.t/, x2.t/, : : : ; xn.t/ be vector functions whose i th
components (for some fixed i) xi1.t/, xi2.t/, : : : ; xin.t/

are linearly independent real-valued functions. Conclude
that the vector functions are themselves linearly indepen-
dent.

5.1 Application Automatic Solution of Linear Systems
Linear systems with more than two or three equations are most frequently solved
with the aid of calculators or computers. For instance, recall that in Example 8 we
needed to solve the linear system

2c1 C 2c2 C 2c3 D 0,
2c1 � 2c3 D 2,
c1 � c2 C c3 D 6

(1)

that can be written in the form AC D B with 3 � 3 coefficient matrix A, right-

FIGURE 5.1.1. TI-Nspire CX CAS
solution of the system AC D B in (1).

hand side the 3 � 1 column vector B D 

0 2 6

�T , and unknown column vector

C D 

c1 c2 c3

�T . Figure 5.1.1 shows a TI calculator solution for C D A�1B,
with the result that c1 D 2, c2 D�3, and c3 D 1. The same result can be found using
the Maple commands

with(linalg):
A := array([[2, 2, 2], [2, 0, --2], [1, --1, 1]]):
B := array([[0], [2], [6] ]):
C := multiply(inverse(A),B);

the Mathematica commands

A = {{2, 2, 2}, {2, 0, --2}, {1, --1, 1}};
B = {{0}, {2}, {6}};
C = Inverse[A].B

or the MATLAB commands

A = [[2 2 2]; [2 0 --2]; [1 --1 1]];
B = [0; 2; 6];
C = inv(A)*B

We could also use the WolframjAlpha query

2c1 + 2c2 + 2c3 = 0, 2c1 -- 2c3 = 2, c1 -- c2 + c3 = 6
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Use your own calculator or available computer algebra system to solve “automati-
cally” Problems 31 through 40 in this section.

5.2 The Eigenvalue Method for Homogeneous Systems
We now introduce a powerful alternative to the method of elimination for construct-
ing the general solution of a homogeneous first-order linear system with constant
coefficients,

x0
1 D a11x1 C a12x2 C � � � C a1nxn;

x0
2 D a21x1 C a22x2 C � � � C a2nxn;
:::

x0
n D an1x1 C an2x2 C � � � C annxn:

(1)

By Theorem 3 of Section 5.1, we know that it suffices to find n linearly independent
solution vectors x1; x2; : : : ; xn; the linear combination

x.t/ D c1x1 C c2x2 C � � � C cnxn (2)

with arbitrary coefficients will then be a general solution of the system in (1).
To search for the n needed linearly independent solution vectors, we proceed

by analogy with the characteristic root method for solving a single homogeneous
equation with constant coefficients (Section 3.3). It is reasonable to anticipate solu-
tion vectors of the form

x.t/ D

2666664
x1

x2

x3

:::

xn

3777775 D
2666664
v1e

�t

v2e
�t

v3e
�t

:::

vne
�t

3777775 D
2666664
v1

v2

v3

:::

vn

3777775 e�t D ve�t (3)

where �, v1; v2; : : : ; vn are appropriate scalar constants. For if we substitute

xi D vie
�t ; x0

i D �vie
�t ; (i D 1; 2; : : : ; n)

in (1), then each term in the resulting equations will have the factor e�t , so we
can cancel it throughout. This will leave us with n linear equations which—for
appropriate values of �—we can hope to solve for values of the coefficients v1, v2,
: : : ; vn in Eq. (3) so that x.t/ D ve�t is, indeed, a solution of the system in (1).

To investigate this possibility, it is more efficient to write the system in (1) in
the matrix form

x0 D Ax (4)

where A D 

aij

�
. When we substitute the trial solution x D ve�t with derivative

x0 D �ve�t in Eq. (4), the result is

�ve�t D Ave�t :

We cancel the nonzero scalar factor e�t to get

Av D �v: (5)
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This means that x D ve�t will be a nontrivial solution of Eq. (4) provided that v is a
nonzero vector and � is a constant such that Eq. (5) holds; that is, the matrix product
Av is a scalar multiple of the vector v. The question now is this: How do we find v
and �?

To answer this question, we rewrite Eq. (5) in the form

.A � �I/v D 0: (6)

Given �, this is a system of n homogeneous linear equations in the unknowns v1,
v2, : : : ; vn. By a standard theorem of linear algebra, it has a nontrivial solution if
and only if the determinant of its coefficient matrix vanishes; that is, if and only if

jA � �Ij D det.A � �I/ D 0: (7)

In its simplest formulation, the eigenvalue method for solving the system x0 D Ax
consists of finding � so that Eq. (7) holds and next solving Eq. (6) with this value of
� to obtain v1, v2, : : : ; vn. Then x D ve�t will be a solution vector. The name of the
method comes from the following definition.

DEFINITION Eigenvalues and Eigenvectors

The number � (either zero or nonzero) is called an eigenvalue of the n�nmatrix
A provided that

jA � �Ij D 0: (7)

An eigenvector associated with the eigenvalue � is a nonzero vector v such that
Av D �v, so that

.A � �I/v D 0: (6)

Note that if v is an eigenvector associated with the eigenvalue �, then so is any
nonzero constant scalar multiple cv of v—this follows upon multiplication of each
side in Eq. (6) by c 6D 0.

The prefix eigen is a German word with the approximate translation charac-
teristic in this context; the terms characteristic value and characteristic vector are
in common use. For this reason, the equation

jA � �Ij D

ˇ̌̌̌
ˇ̌̌̌
ˇ̌
a11 � � a12 � � � a1n

a21 a22 � � � � � a2n

:::
:::

:::

an1 an2 � � � ann � �

ˇ̌̌̌
ˇ̌̌̌
ˇ̌ D 0 (8)

is called the characteristic equation of the matrix A; its roots are the eigenval-
ues of A. Upon expanding the determinant in (8), we evidently get an nth-degree
polynomial of the form

.�1/n�n C bn�1�
n�1 C � � � C b1�C b0 D 0: (9)

By the fundamental theorem of algebra, this equation has n roots—possibly some
are complex, possibly some are repeated—and thus an n � n matrix has n eigenval-
ues (counting repetitions, if any). Although we assume that the elements of A are
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real numbers, we allow the possibility of complex eigenvalues and complex-valued
eigenvectors.

Our discussion of Eqs. (4) through (7) provides a proof of the following the-
orem, which is the basis for the eigenvalue method of solving a first-order linear
system with constant coefficients.

THEOREM 1 Eigenvalue Solutions of x0 = Ax

Let � be an eigenvalue of the [constant] coefficient matrix A of the first-order
linear system

dx
dt
D Ax:

If v is an eigenvector associated with �, then

x.t/ D ve�t

is a nontrivial solution of the system.

The Eigenvalue Method
In outline, this method for solving the n � n homogeneous constant-coefficient sys-
tem x0 D Ax proceeds as follows:

1. We first solve the characteristic equation in (8) for the eigenvalues �1; �2; : : : ; �n

of the matrix A.
2. Next we attempt to find n linearly independent eigenvectors v1; v2; : : : ; vn as-

sociated with these eigenvalues.
3. Step 2 is not always possible, but when it is, we get n linearly independent

solutions

x1.t/ D v1e
�1t ; x2.t/ D v2e

�2t ; : : : ; xn.t/ D vne
�nt : (10)

In this case the general solution of x0 D Ax is a linear combination

x.t/ D c1x1.t/C c2x2.t/C � � � C cnxn.t/

of these n solutions.

We will discuss separately the various cases that can occur, depending on whether
the eigenvalues are distinct or repeated, real or complex. The case of repeated
eigenvalues—multiple roots of the characteristic equation—will be deferred to Sec-
tion 5.5.

Distinct Real Eigenvalues
If the eigenvalues �1; �2; : : : ; �n are real and distinct, then we substitute each of
them in turn in Eq. (6) and solve for the associated eigenvectors v1, v2, : : : ; vn.
In this case it can be proved that the particular solution vectors given in (10) are
always linearly independent. (For instance, see Section 6.2 of Edwards and Pen-
ney, Elementary Linear Algebra (Englewood Cliffs, NJ: Prentice Hall, 1988).) In
any particular example such linear independence can always be verified by using
the Wronskian determinant of Section 5.1. The following example illustrates the
procedure.



5.2 The Eigenvalue Method for Homogeneous Systems 285

Example 1 Find a general solution of the system

x0
1 D 4x1 C 2x2,

x0
2 D 3x1 � x2.

(11)

Solution The matrix form of the system in (11) is

x0 D
�
4 2

3 �1
�

x: (12)

The characteristic equation of the coefficient matrix isˇ̌̌̌
4 � � 2

3 �1 � �
ˇ̌̌̌
D .4 � �/.�1 � �/ � 6

D �2 � 3� � 10 D .�C 2/.� � 5/ D 0;

so we have the distinct real eigenvalues �1 D �2 and �2 D 5.
For the coefficient matrix A in Eq. (12) the eigenvector equation .A � �I/v D 0 takes

the form �
4 � � 2

3 �1 � �
� �

a

b

�
D
�
0

0

�
(13)

for the associated eigenvector v D 
 a b
�T .

CASE 1: �1 D �2. Substitution of the first eigenvalue �1 D �2 in Eq. (13) yields the
system �

6 2

3 1

� �
a

b

�
D
�
0

0

�
I

that is, the two scalar equations

6a C 2b D 0,
3a C b D 0. (14)

In contrast with the nonsingular (algebraic) linear systems whose solutions we discussed in
Section 5.1, the homogeneous linear system in (14) is singular—the two scalar equations ob-
viously are equivalent (each being a multiple of the other). Therefore, Eq. (14) has infinitely
many nonzero solutions—we can choose a arbitrarily (but nonzero) and then solve for b.

Substitution of an eigenvalue � in the eigenvector equation .A��I/vD 0 always yields
a singular homogeneous linear system, and among its infinity of solutions we generally seek
a “simple” solution with small integer values (if possible). Looking at the second equation in
(14), the choice a D 1 yields b D �3, and thus

v1 D
�

1

�3
�

is an eigenvector associated with �1 D �2 (as is any nonzero constant multiple of v1).

Remark If instead of the “simplest” choice a D 1, b D �3, we had made another choice
a D c 6D 0, b D �3c, we would have obtained the eigenvector

v1 D
�

c

�3c
�
D c

�
1

�3
�
:

Because this is a constant multiple of our previous result, any choice we make leads to (a
constant multiple of) the same solution

x1.t/ D
�

1

�3
�
e�2t :
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CASE 2: �2 D 5. Substitution of the second eigenvalue � D 5 in (13) yields the pair

�a C 2b D 0,
3a � 6b D 0 (15)

of equivalent scalar equations. With b D 1 in the first equation we get a D 2, so

v2 D
�
2

1

�
is an eigenvector associated with �2 D 5. A different choice a D 2c, b D c 6D 0 would merely
give a [constant] multiple of v2.

These two eigenvalues and associated eigenvectors yield the two solutions

x1.t/ D
�

1

�3
�
e�2t and x2.t/ D

�
2

1

�
e5t :

They are linearly independent because their Wronskianˇ̌̌̌
e�2t 2e5t

�3e�2t e5t

ˇ̌̌̌
D 7e3t

is nonzero. Hence a general solution of the system in (11) is

x.t/ D c1x1.t/C c2x2.t/ D c1

�
1

�3
�
e�2t C c2

�
2

1

�
e5t I

in scalar form,
x1.t/ D c1e

�2t C 2c2e
5t ,

x2.t/ D �3c1e�2t C c2e
5t .

Figure 5.2.1 shows some typical solution curves of the system in (11). We see two families of
hyperbolas sharing the same pair of asymptotes: the line x1 D 2x2 obtained from the general
solution with c1 D 0, and the line x2 D �3x1 obtained with c2 D 0. Given initial values

0–4 2 4–2 1–3 3–1

0

–4

1

–3

2

–2

3

4

–1

x1

x 2

FIGURE 5.2.1. Direction field and
solution curves for the linear system
x0

1
D 4x1 C 2x2, x0

2
D 3x1 � x2 of

Example 1.

x1.0/ D b1, x2.0/ D b2, it is apparent from the figure that

� If .b1; b2/ lies to the right of the line x2 D�3x1, then x1.t/ and x2.t/ both tend toC1
as t !C1;

� If .b1; b2/ lies to the left of the line x2 D �3x1, then x1.t/ and x2.t/ both tend to �1
as t !C1.

Remark As in Example 1, it is convenient when discussing a linear system x0 D Ax to use
vectors x1, x2, : : : ; xn to denote different vector-valued solutions of the system, whereas the
scalars x1, x2, : : : ; xn denote the components of a single vector-valued solution x.

Compartmental Analysis
Frequently a complex process or system can be broken down into simpler subsys-
tems or “compartments” that can be analyzed separately. The whole system can
then be modeled by describing the interactions between the various compartments.
Thus a chemical plant may consist of a succession of separate stages (or even phys-
ical compartments) in which various reactants and products combine or are mixed.
It may happen that a single differential equation describes each compartment of the
system, and then the whole physical system is modeled by a system of differential
equations.

As a simple example of a three-stage system, Fig. 5.2.2 shows three brine
tanks containing V1, V2, and V3 gallons of brine, respectively. Fresh water flows
into tank 1, while mixed brine flows from tank 1 into tank 2, from tank 2 into tank
3, and out of tank 3. Let xi .t/ denote the amount (in pounds) of salt in tank i at

r (gal/min)

r

r

r

Tank 1
V1 (gal)

Tank 2
V2

Tank 3
V3

FIGURE 5.2.2. The three brine
tanks of Example 2.

time t for i D 1, 2, and 3. If each flow rate is r gallons per minute, then a simple
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accounting of salt concentrations, as in Example 2 of Section 4.1, yields the first-
order system

x0
1 D �k1x1,
x0

2 D k1x1 � k2x2,
x0

3 D k2x2 � k3x3,

(16)

where

ki D
r

Vi

; i D 1, 2, 3. (17)

Example 2 If V1 D 20, V2 D 40, V3 D 50, r D 10 (gal=min), and the initial amounts of salt in the three
brine tanks, in pounds, are

x1.0/ D 15; x2.0/ D x3.0/ D 0;

find the amount of salt in each tank at time t = 0.

Solution Substituting the given numerical values in (16) and (17), we get the initial value problem

x0.t/ D
24 �0:5 0:0 0:0

0:5 �0:25 0:0

0:0 0:25 �0:2

35 x; x.0/ D
24 150

0

35 (18)

for the vector x.t/ D 
 x1.t/ x2.t/ x3.t/
�T . The simple form of the matrix

A � �I D
24 �0:5 � � 0:0 0:0

0:5 �0:25 � � 0:0

0:0 0:25 �0:2 � �

35 (19)

leads readily to the characteristic equation

jA � �Ij D .�0:5 � �/.�0:25 � �/.�0:2 � �/ D 0:

Thus the coefficient matrix A in (18) has the distinct eigenvalues �1 D �0:5, �2 D �0:25,
and �3 D �0:2.

CASE 1: �1 D �0:5. Substituting � D �0:5 in (19), we get the equation



AC .0:5/ � I � v D

24 0:0 0:0 0:0

0:5 0:25 0:0

0:0 0:25 0:3

3524 ab
c

35 D
24 00
0

35
for the associated eigenvector v D 


a b c
�T . The last two rows, after division by 0:25

and 0:05, respectively, yield the scalar equations

2a C b D 0,
5b C 6c D 0.

The second equation is satisfied by b D �6 and c D 5, and then the first equation gives a D 3.
Thus the eigenvector

v1 D


3 �6 5

�T
is associated with the eigenvalue �1 D �0:5.
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CASE 2: �2 D �0:25. Substituting � D �0:25 in (19), we get the equation



AC .0:25/ � I � v D

24 �0:25 0 0

0:5 0 0

0 0:25 0:05

3524 ab
c

35 D
24 00
0

35
for the associated eigenvector v D 


a b c
�T . Each of the first two rows implies that

a D 0, and division of the third row by 0:05 gives the equation

5b C c D 0;
which is satisfied by b D 1, c D �5. Thus the eigenvector

v2 D


0 1 �5 �T

is associated with the eigenvalue �2 D �0:25.

CASE 3: �3 D �0:2. Substituting � D �0:2 in (19), we get the equation



AC .0:2/ � I � v D

24 �0:3 0:0 0:0

0:5 �0:05 0:0

0:0 0:25 0:0

3524 ab
c

35 D
24 00
0

35
for the eigenvector v. The first and third rows imply that a D 0, and b D 0, respectively, but
the all-zero third column leaves c arbitrary (but nonzero). Thus

v3 D


0 0 1

�T
is an eigenvector associated with �3 D �0:2.

The general solution

x.t/ D c1v1e
�1t C c2v2e

�2t C c3v3e
�3t

therefore takes the form

x.t/ D c1

24 3

�6
5

35 e.�0:5/t C c2

24 0

1

�5

35 e.�0:25/t C c3

24 00
1

35 e.�0:2/t :

The resulting scalar equations are

x1.t/ D 3c1e
.�0:5/t ,

x2.t/ D �6c1e
.�0:5/t C c2e

.�0:25/t ,

x3.t/ D 5c1e
.�0:5/t � 5c2e

.�0:25/t C c3e
.�0:2/t :

When we impose the initial conditions x1.0/ D 15, x2.0/ D x3.0/ D 0, we get the equations

3c1 D 15,
�6c1 C c2 D 0,

5c1 � 5c2 C c3 D 0

that are readily solved (in turn) for c1 D 5, c2 D 30, and c3 D 125. Thus, finally, the amounts
of salt at time t in the three brine tanks are given by

x1.t/ D 15e.�0:5/t ,

x2.t/ D �30e.�0:5/t C 30e.�0:25/t ,

x3.t/ D 25e.�0:5/t � 150e.�0:25/t C 125e.�0:2/t .

Figure 5.2.3 shows the graphs of x1.t/, x2.t/, and x3.t/. As we would expect, tank 1 is
rapidly “flushed” by the incoming fresh water, and x1.t/ ! 0 as t ! C1. The amounts
x2.t/ and x3.t/ of salt in tanks 2 and 3 peak in turn and then approach zero as the whole
three-tank system is purged of salt as t !C1.

302520151050
t

x

0

5

15

10
x = x1(t)

x = x2(t)

x = x3(t)

FIGURE 5.2.3. The salt content
functions of Example 2.
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Complex Eigenvalues
Even if some of the eigenvalues are complex, so long as they are distinct the method
described previously still yields n linearly independent solutions. The only compli-
cation is that the eigenvectors associated with complex eigenvalues are ordinarily
complex valued, so we will have complex-valued solutions.

To obtain real-valued solutions, we note that—because we are assuming that
the matrix A has only real entries—the coefficients in the characteristic equation in
(8) will all be real. Consequently any complex eigenvalues must appear in complex
conjugate pairs. Suppose then that � D p C qi and � D p � qi are such a pair of
eigenvalues. If v is an eigenvector associated with �, so that

.A � �I/v D 0;

then taking complex conjugates in this equation yields

.A � �I/v D 0

since A D A and I D I (these matrices being real) and the conjugate of a complex
product is the product of the conjugates of the factors. Thus the conjugate v of v
is an eigenvector associated with �. Of course the conjugate of a vector is defined
componentwise; if

v D

26664
a1 C b1i

a2 C b2i
:::

an C bni

37775 D
26664
a1

a2

:::

an

37775C
26664
b1

b2

:::

bn

37775 i D aC bi; (20)

then v D a � bi . The complex-valued solution associated with � and v is then

x.t/ D ve�t D ve.pCqi/t D .aC bi/ept .cos qt C i sin qt/I

that is,

x.t/ D ept .a cos qt � b sin qt/C iept .b cos qt C a sin qt/: (21)

Because the real and imaginary parts of a complex-valued solution are also solu-
tions, we thus get the two real-valued solutions

x1.t/ D ReŒx.t/� D ept .a cos qt � b sin qt/;

x2.t/ D ImŒx.t/� D ept .b cos qt C a sin qt/
(22)

associated with the complex conjugate eigenvalues p ˙ qi . It is easy to check that
the same two real-valued solutions result from taking real and imaginary parts of
ve�t . Rather than memorizing the formulas in (22), it is preferable in a specific
example to proceed as follows:

� First find explicitly a single complex-valued solution x.t/ associated with the
complex eigenvalue �;

� Then find the real and imaginary parts x1.t/ and x2.t/ to get two independent
real-valued solutions corresponding to the two complex conjugate eigenvalues
� and �.
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Example 3 Find a general solution of the system

dx1

dt
D 4x1 � 3x2;

dx2

dt
D 3x1 C 4x2:

(23)

Solution The coefficient matrix

A D
�
4 �3
3 4

�
has characteristic equation

jA � �Ij D
ˇ̌̌̌
4 � � �3
3 4 � �

ˇ̌̌̌
D .4 � �/2 C 9 D 0;

and hence has the complex conjugate eigenvalues � D 4 � 3i and � D 4C 3i .
Substituting �D 4� 3i in the eigenvector equation .A� �I/vD 0, we get the equation

ŒA � .4 � 3i/ � I�v D
�
3i �3
3 3i

� �
a

b

�
D
�
0

0

�

for an associated eigenvalue v D 

a b

�T . Division of each row by 3 yields the two scalar
equations

ia � b D 0,
a C ib D 0,

each of which is satisfied by a D 1 and b D i . Thus v D 
 1 i
�T is a complex eigenvector

associated with the complex eigenvalue � D 4 � 3i .
The corresponding complex-valued solution x.t/ D ve�t of x0 D Ax is then

x.t/ D
�
1

i

�
e.4�3i/t D

�
1

i

�
e4t .cos 3t � i sin 3t/ D e4t

�
cos 3t � i sin 3t
i cos 3t C sin 3t

�
:

The real and imaginary parts of x.t/ are the real-valued solutions

x1.t/ D e4t

�
cos 3t
sin 3t

�
and x2.t/ D e4t

� � sin 3t
cos 3t

�
:

A real-valued general solution of x0 D Ax is then given by

x.t/ D c1x1.t/C c2x2.t/ D e4t

�
c1 cos 3t � c2 sin 3t
c1 sin 3t C c2 cos 3t

�
:

Finally, a general solution of the system in (23) in scalar form is

x1.t/ D e4t .c1 cos 3t � c2 sin 3t/;

x2.t/ D e4t .c1 sin 3t C c2 cos 3t/:

Figure 5.2.4 shows some typical solution curves of the system in (23). Each appears to
spiral counterclockwise as it emanates from the origin in the x1x2-plane. Actually, because
of the factor e4t in the general solution, we see that

x1

x 2

100–10 2–8 4–6 6–4 8–2

–10

10

0

–8

2

–6

4

–4

6

–2

8

FIGURE 5.2.4. Direction field and
solution curves for the linear system
x0

1
D 4x1 � 3x2, x0

2
D 3x1 C 4x2 of

Example 3.

� Along each solution curve, the point .x1.t/; x2.t// approaches the origin as t ! �1,
whereas

� The absolute values of x1.t/ and x2.t/ both increase without bound as t !C1.
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Figure 5.2.5 shows a “closed” system of three brine tanks with volumes V1,

r

Flow rate: r

r

T1 T3

T2

FIGURE 5.2.5. The three brine
tanks of Example 4.

V2, and V3. The difference between this system and the “open” system of Fig. 5.2.2
is that now the inflow to tank 1 is the outflow from tank 3. With the same notation
as in Example 2, the appropriate modification of Eq. (16) is

dx1

dt
D �k1x1 C k3x3,

dx2

dt
D k1x1 � k2x2,

dx3

dt
D k2x2 � k3x3,

(24)

where ki D r=Vi as in (17).

Example 4 Find the amounts x1.t/, x2.t/, and x3.t/ of salt at time t in the three brine tanks of Fig. 5.2.5
if V1 D 50 gal, V2 D 25 gal, V3 D 50 gal, and r D 10 gal=min.

Solution With the given numerical values, (24) takes the form

dx
dt
D
24 �0:2 0 0:2

0:2 �0:4 0

0 0:4 �0:2

35 x (25)

with x D 
 x1 x2 x3

�T as usual. When we expand the determinant of the matrix

A � � � I D
24 �0:2 � � 0:0 0:2

0:2 �0:4 � � 0:0

0:0 0:4 �0:2 � �

35 (26)

along its first row, we find that the characteristic equation of A is

.�0:2 � �/.�0:4 � �/.�0:2 � �/C .0:2/.0:2/.0:4/
D ��3 � .0:8/ � �2 � .0:2/ � �
D ��

h
.�C 0:4/2 C .0:2/2

i
D 0:

Thus A has the zero eigenvalue �0 D 0 and the complex conjugate eigenvalues �, �D�0:4˙
.0:2/i .

CASE 1: �0 D 0. Substitution of � D 0 in Eq. (26) gives the eigenvector equation

.A � 0 � I/v D
24 �0:2 0:0 0:2

0:2 �0:4 0:0

0:0 0:4 �0:2

3524 ab
c

35 D
24 00
0

35
for v D 


a b c
�T . The first row gives a D c and the second row gives a D 2b, so v0 D


2 1 2
�T is an eigenvector associated with the eigenvalue �0 D 0. The corresponding

solution x0.t/ D v0e
�0t of Eq. (25) is the constant solution

x0.t/ D
24 21
2

35 : (27)
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CASE 2: � D �0:4 � .0:2/i . Substitution of � D �0:4 � .0:2/i in Eq. (26) gives the
eigenvector equation

ŒA � .�0:4 � .0:2/i/I� v D
24 0:2C .0:2/i 0:0 0:2

0:2 .0:2/i 0:0

0:0 0:4 0:2C .0:2/i

3524 ab
c

35

D
24 00
0

35 :
The second equation .0:2/a C .0:2/ib D 0 is satisfied by a D 1 and b D i . Then the first
equation

Œ0:2C .0:2/i �aC .0:2/c D 0
gives c D �1 � i . Thus v D 


1 i .�1 � i/ �T is a complex eigenvector associated with
the complex eigenvalue � D �0:4 � .0:2/i .

The corresponding complex-valued solution x.t/ D ve�t of (25) is

x.t/ D 
 1 i �1 � i �T e.�0:4�0:2i/t

D 
 1 i �1 � i �T e.�0:4/t .cos 0:2t � i sin 0:2t/

D e.�0:4/t

264 cos 0:2t � i sin 0:2t
sin 0:2t C i cos 0:2t

� cos 0:2t � sin 0:2t � i cos 0:2t C i sin 0:2t

375 :
The real and imaginary parts of x.t/ are the real-valued solutions

x1.t/ D e.�0:4/t

24 cos 0:2t
sin 0:2t

� cos 0:2t � sin 0:2t

35 ;

x2.t/ D e.�0:4/t

24 � sin 0:2t
cos 0:2t

� cos 0:2t C sin 0:2t

35 :
(28)

The general solution
x.t/ D c0x0.t/C c1x1.t/C c2x2.t/

has scalar components

x1.t/ D 2c0 C e.�0:4/t .c1 cos 0:2t � c2 sin 0:2t/;

x2.t/ D c0 C e.�0:4/t .c1 sin 0:2t C c2 cos 0:2t/;

x3.t/ D 2c0 C e.�0:4/t Œ.�c1 � c2/ cos 0:2t C .�c1 C c2/ sin 0:2t �

(29)

giving the amounts of salt in the three tanks at time t .
Observe that

x1.t/C x2.t/C x3.t/ � 5c0: (30)

Of course the total amount of salt in the closed system is constant; the constant c0 in (30) is
one-fifth the total amount of salt. Because of the factors of e.�0:4/t in (29), we see that

lim
t!1 x1.t/ D 2c0; lim

t!1 x2.t/ D c0; and lim
t!1 x3.t/ D 2c0:

Thus as t !C1 the salt in the system approaches a steady-state distribution with 40% of
the salt in each of the two 50-gallon tanks and 20% in the 25-gallon tank. So whatever the
initial distribution of salt among the three tanks, the limiting distribution is one of uniform
concentration throughout the system. Figure 5.2.6 shows the graphs of the three solution
functions with c0 D 10, c1 D 30, and c2 D �10, in which case

20151050
t

x

0

50
45
40
35
30
25
20
15
10
5

x = x1(t)

x = x2(t)
x = x3(t)

FIGURE 5.2.6. The salt content
functions of Example 4.

x1.0/ D 50 and x2.0/ D x3.0/ D 0:
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5.2 Problems
In Problems 1 through 16, apply the eigenvalue method of this
section to find a general solution of the given system. If initial
values are given, find also the corresponding particular solu-
tion. For each problem, use a computer system or graphing
calculator to construct a direction field and typical solution
curves for the given system.

1. x0
1 D x1 C 2x2, x0

2 D 2x1 C x2

2. x0
1 D 2x1 C 3x2, x0

2 D 2x1 C x2

3. x0
1 D 3x1 C 4x2, x0

2 D 3x1 C 2x2; x1.0/ D x2.0/ D 1
4. x0

1 D 4x1 C x2, x0
2 D 6x1 � x2

5. x0
1 D 6x1 � 7x2, x0

2 D x1 � 2x2

6. x0
1 D 9x1C 5x2, x0

2 D�6x1� 2x2; x1.0/D 1, x2.0/D 0
7. x0

1 D �3x1 C 4x2, x0
2 D 6x1 � 5x2

8. x0
1 D x1 � 5x2, x0

2 D x1 � x2

9. x0
1 D 2x1 � 5x2, x0

2 D 4x1 � 2x2; x1.0/ D 2, x2.0/ D 3
10. x0

1 D �3x1 � 2x2, x0
2 D 9x1 C 3x2

11. x0
1 D x1 � 2x2, x0

2 D 2x1 C x2; x1.0/ D 0, x2.0/ D 4
12. x0

1 D x1 � 5x2, x0
2 D x1 C 3x2

13. x0
1 D 5x1 � 9x2, x0

2 D 2x1 � x2

14. x0
1 D 3x1 � 4x2, x0

2 D 4x1 C 3x2

15. x0
1 D 7x1 � 5x2, x0

2 D 4x1 C 3x2

16. x0
1 D �50x1 C 20x2, x0

2 D 100x1 � 60x2

In Problems 17 through 25, the eigenvalues of the coefficient
matrix can be found by inspection and factoring. Apply the
eigenvalue method to find a general solution of each system.

17. x0
1D 4x1Cx2C4x3, x0

2D x1C7x2Cx3,
x0

3D 4x1Cx2C4x3

18. x0
1D x1C2x2C2x3, x0

2D 2x1C7x2Cx3,
x0

3D 2x1Cx2C7x3

19. x0
1D4x1Cx2Cx3, x0

2Dx1C4x2Cx3, x0
3Dx1Cx2C4x3

20. x0
1D 5x1Cx2C3x3, x0

2D x1C7x2Cx3,
x0

3D 3x1Cx2C5x3

21. x0
1D5x1�6x3, x0

2D2x1�x2�2x3, x0
3D4x1�2x2�4x3

22. x0
1D 3x1C2x2C2x3, x0

2D�5x1�4x2�2x3,
x0

3D 5x1C5x2C3x3

23. x0
1D 3x1Cx2Cx3, x0

2D�5x1�3x2�x3,
x0

3D 5x1C5x2C3x3

24. x0
1D 2x1Cx2�x3, x0

2D�4x1�3x2�x3,
x0

3D 4x1C4x2C2x3

25. x0
1 D 5x1 C 5x2 C 2x3, x0

2 D �6x1 � 6x2 � 5x3,
x0

3 D 6x1 C 6x2 C 5x3

26. Find the particular solution of the system

dx1

dt
D 3x1 C x3,

dx2

dt
D 9x1 � x2 C 2x3,

dx3

dt
D �9x1 C 4x2 � x3

that satisfies the initial conditions x1.0/ D 0, x2.0/ D 0,
x3.0/ D 17.

The amounts x1.t/ and x2.t/ of salt in the two brine tanks of
Fig. 5.2.7 satisfy the differential equations

dx1

dt
D �k1x1;

dx2

dt
D k1x1 � k2x2;

where ki D r=Vi for i D 1, 2. In Problems 27 and 28 the vol-
umes V1 and V2 are given. First solve for x1.t/ and x2.t/, as-
suming that r D 10 (gal=min), x1.0/ D 15 (lb), and x2.0/ D 0.
Then find the maximum amount of salt ever in tank 2. Finally,
construct a figure showing the graphs of x1.t/ and x2.t/.

Tank 1
Volume V1
Salt x1(t)

Fresh water
Flow rate r

Tank 2
Volume V2
Salt x2(t)

r

r

FIGURE 5.2.7. The two brine tanks of
Problems 27 and 28.

27. V1 D 50 (gal), V2 D 25 (gal)

28. V1 D 25 (gal), V2 D 40 (gal)

The amounts x1.t/ and x2.t/ of salt in the two brine tanks of
Fig. 5.2.8 satisfy the differential equations

dx1

dt
D �k1x1 C k2x2;

dx2

dt
D k1x1 � k2x2;

where ki D r=Vi as usual. In Problems 29 and 30, solve for
x1.t/ and x2.t/, assuming that r D 10 (gal=min), x1.0/ D 15

(lb), and x2.0/ D 0. Then construct a figure showing the
graphs of x1.t/ and x2.t/.

r

r

Tank 2Tank 1

FIGURE 5.2.8. The two brine tanks of
Problems 29 and 30.

29. V1 D 50 (gal), V2 D 25 (gal)

30. V1 D 25 (gal), V2 D 40 (gal)
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Problems 31 through 34 deal with the open three-tank system
of Fig. 5.2.2. Fresh water flows into tank 1; mixed brine flows
from tank 1 into tank 2, from tank 2 into tank 3, and out of tank
3; all at the given flow rate r gallons per minute. The initial
amounts x1.0/ D x0 (lb), x2.0/ D 0, and x3.0/ D 0 of salt in
the three tanks are given, as are their volumes V1, V2, and V3

(in gallons). First solve for the amounts of salt in the three
tanks at time t , then determine the maximal amount of salt that
tank 3 ever contains. Finally, construct a figure showing the
graphs of x1.t/, x2.t/, and x3.t/.

31. r D 30, x0 D 27, V1 D 30, V2 D 15, V3 D 10
32. r D 60, x0 D 45, V1 D 20, V2 D 30, V3 D 60
33. r D 60, x0 D 45, V1 D 15, V2 D 10, V3 D 30
34. r D 60, x0 D 40, V1 D 20, V2 D 12, V3 D 60

Problems 35 through 37 deal with the closed three-tank sys-
tem of Fig. 5.2.5, which is described by the equations in (24).
Mixed brine flows from tank 1 into tank 2, from tank 2 into
tank 3, and from tank 3 into tank 1, all at the given flow rate r
gallons per minute. The initial amounts x1.0/ D x0 (pounds),
x2.0/ D 0, and x3.0/ D 0 of salt in the three tanks are given,
as are their volumes V1, V2, and V3 (in gallons). First solve
for the amounts of salt in the three tanks at time t , then deter-
mine the limiting amount (as t ! C1) of salt in each tank.
Finally, construct a figure showing the graphs of x1.t/, x2.t/,
and x3.t/.

35. r D 120, x0 D 33, V1 D 20, V2 D 6, V3 D 40
36. r D 10, x0 D 18, V1 D 20, V2 D 50, V3 D 20
37. r D 60, x0 D 55, V1 D 60, V2 D 20, V3 D 30

For each matrix A given in Problems 38 through 40, the zeros
in the matrix make its characteristic polynomial easy to calcu-
late. Find the general solution of x0 D Ax.

38. A D

2664
1 0 0 0

2 2 0 0

0 3 3 0

0 0 4 4

3775
39. A D

2664
�2 0 0 9

4 2 0 �10
0 0 �1 8

0 0 0 1

3775
40. A D

2664
2 0 0 0

�21 �5 �27 �9
0 0 5 0

0 0 �21 �2

3775
41. The coefficient matrix A of the 4 � 4 system

x0
1 D 4x1 C x2 C x3 C 7x4,

x0
2 D x1 C 4x2 C 10x3 C x4,

x0
3 D x1 C 10x2 C 4x3 C x4,

x0
4 D 7x1 C x2 C x3 C 4x4

has eigenvalues �1 D�3, �2 D�6, �3 D 10, and �4 D 15.
Find the particular solution of this system that satisfies the
initial conditions

x1.0/ D 3; x2.0/ D x3.0/ D 1; x4.0/ D 3:

In Problems 42 through 50, use a calculator or computer sys-
tem to calculate the eigenvalues and eigenvectors (as illus-
trated in the 5.2 Application below) in order to find a general
solution of the linear system x0 D Ax with the given coefficient
matrix A.

42. A D
24 �40 �12 54

35 13 �46
�25 �7 34

35
43. A D

24 �20 11 13

12 �1 �7
�48 21 31

35
44. A D

24 147 23 �202
�90 �9 129

90 15 �123

35

45. A D

2664
9 �7 �5 0

�12 7 11 9

24 �17 �19 �9
�18 13 17 9

3775

46. A D

2664
13 �42 106 139

2 �16 52 70

1 6 �20 �31
�1 �6 22 33

3775

47. A D

2664
23 �18 �16 0

�8 6 7 9

34 �27 �26 �9
�26 21 25 12

3775

48. A D

2664
47 �8 5 �5
�10 32 18 �2
139 �40 �167 �121
�232 64 360 248

3775

49. A D

266664
139 �14 �52 �14 28

�22 5 7 8 �7
370 �38 �139 �38 76

152 �16 �59 �13 35

95 �10 �38 �7 23

377775

50. A D

26666664

9 13 0 0 0 �13
�14 19 �10 �20 10 4

�30 12 �7 �30 12 18

�12 10 �10 �9 10 2

6 9 0 6 5 �15
�14 23 �10 �20 10 0

37777775
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5.2 Application Automatic Calculation of Eigenvalues and Eigenvectors
Most computational systems offer the capability to find eigenvalues and eigenvec-

FIGURE 5.2.9. TI-Nspire CX CAS
calculation of the eigenvalues and
eigenvectors of the matrix A.

tors readily. For instance, Fig. 5.2.9 shows a graphing calculator computation of the
eigenvalues and eigenvectors of the matrix

A D
24 �0:5 0:0 0:0

0:5 �0:25 0:0

0:0 0:25 �0:2

35
of Example 2. We see the three eigenvectors displayed as column vectors, appearing
in the same order as their corresponding eigenvalues. In this display the eigenvectors
are normalized, that is, multiplied by an appropriate scalar so as to have length 1.
You can verify, for example, that the displayed eigenvector corresponding to the
third eigenvalue � D �1

2
is a scalar multiple of v D 


1 �2 5
3

�T
. The Maple

commands

with(linalg)
A := matrix(3,3,[--0.5,0,0,0.5,--0.25,0,0,0.25,--0.2]);
eigenvects(A);

the Mathematica commands

A = {{--0.5,0,0},{0.5,--0.25,0},{0,0.25,--0.2}}
Eigensystem[A]

the WolframjAlpha query

((--0.5, 0, 0), (0.5, --0.25, 0), (0, 0.25, --0.2))

and the MATLAB commands

A = [--0.5,0,0; 0.5,--0.25,0; 0,0.25,--0.2]
[V,D] = eig(A)

(where D will be a diagonal matrix displaying the eigenvalues of A and the column
vectors of V are the corresponding eigenvectors) produce similar results. You can
use these commands to find the eigenvalues and eigenvectors needed for any of the
problems in this section.

For a more substantial investigation, choose a positive integer n < 10 (n D 5,
for instance) and let q1, q2, : : : ; qn denote the first n nonzero digits in your student
ID number. Now consider an open system of brine tanks as in Fig. 5.2.2, except
with n rather than three successive tanks having volumes Vi D 10qi (i D 1, 2, : : : ;
n) in gallons. If each flow rate is r D 10 gallons per minute, then the salt amounts
x1.t/, x2.t/, : : : ; xn.t/ satisfy the linear system

x0
1 D �k1x1;

x0
i D ki�1xi�1 � kixi .i D 2; 3; : : : ; n/;

where ki D r=Vi . Apply the eigenvalue method to solve this system with initial
conditions

x1.0/ D 10; x2.0/ D x3.0/ D � � � D xn.0/ D 0:
Graph the solution functions and estimate graphically the maximum amount of salt
that each tank ever contains.

For an alternative investigation, suppose that the system of n tanks is closed
as in Fig. 5.2.5, so that tank 1 receives as inflow the outflow from tank n (rather than
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fresh water). Then the first equation should be replaced with x0
1 D knxn � k1x1.

Now show that, in this closed system, as t ! C1 the salt originally in tank 1
distributes itself with constant density throughout the various tanks. A plot like
Fig. 5.2.6 should make this fairly obvious.

5.3 A Gallery of Solution Curves of Linear Systems
In the preceding section we saw that the eigenvalues and eigenvectors of the
n� n matrix A are of central importance to the solutions of the homogeneous linear
constant-coefficient system

x0 D Ax: (1)

Indeed, according to Theorem 1 from Section 5.2, if � is an eigenvalue of A and v
is an eigenvector of A associated with �, then

x.t/ D ve�t (2)

is a nontrivial solution of the system (1). Moreover, if A has n linearly independent
eigenvectors v1, v2, : : : ; vn associated with its n eigenvalues �1, �2, : : : ; �n, then in
fact all solutions of the system (1) are given by linear combinations

x.t/ D c1v1e
�1t C c2v2e

�2t C � � � C cnvne
�nt ; (3)

where c1; c2; : : : ; cn are arbitrary constants. If the eigenvalues include complex con-
jugate pairs, then we can obtain a real-valued general solution from Eq. (3) by taking
real and imaginary parts of the terms in (3) corresponding to the complex eigenval-
ues.

Our goal in this section is to gain a geometric understanding of the role that the
eigenvalues and eigenvectors of the matrix A play in the solutions of the system (1).
We will see, illustrating primarily with the case n D 2, that particular arrangements
of eigenvalues and eigenvectors correspond to identifiable patterns—“fingerprints,”
so to speak—in the phase plane portrait of the system (1). Just as in algebra we
learn to recognize when an equation in x and y corresponds to a line or parabola,
we can predict the general appearance of the solution curves of the system (1) from
the eigenvalues and eigenvectors of the matrix A. By considering various cases
for these eigenvalues and eigenvectors we will create a “gallery”— Figure 5.3.16
appearing at the end of this section—of typical phase plane portraits that gives,
in essence, a complete catalog of the geometric behaviors that the solutions of a
2� 2 homogeneous linear constant-coefficient system can exhibit. This will help us
analyze not only systems of the form (1), but also more complicated systems that
can be approximated by linear systems, a topic we explore in Section 6.2.

Systems of Dimension n = 2
Until stated otherwise, we henceforth assume that n D 2, so that the eigenvalues of
the matrix A are �1 and �2. As we noted in Section 5.2, if �1 and �2 are distinct,
then the associated eigenvectors v1 and v2 of A are linearly independent. In this
event, the general solution of the system (1) is given by

x.t/ D c1v1e
�1t C c2v2e

�2t (4)

if �1 and �2 are real, and by

x.t/ D c1e
pt .a cos qt � b sin qt/C c2e

pt .b cos qt C a sin qt/ (5)
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if �1 and �2 are the complex conjugate numbers p˙ iq; here the vectors a and b are
the real and imaginary parts, respectively, of a (complex-valued) eigenvector of A
associated with the eigenvalue p ˙ iq. If instead �1 and �2 are equal (to a common
value �, say), then as we will see in Section 5.5, the matrix A may or may not have
two linearly independent eigenvectors v1 and v2 . If it does, then the eigenvalue
method of Section 5.2 applies once again, and the general solution of the system (1)
is given by the linear combination

x.t/ D c1v1e
�t C c2v2e

�t (6)

as before. If A does not have two linearly independent eigenvectors, then—as we
will see—we can find a vector v2 such that the general solution of the system (1) is
given by

x.t/ D c1v1e
�t C c2.v1t C v2/e

�t ; (7)

where v1 is an eigenvector of A associated with the lone eigenvalue �. The nature
of the vector v2 and other details of the general solution in (7) will be discussed in
Section 5.5, but we include this case here in order to make our gallery complete.

With this algebraic background in place, we begin our analysis of the solution
curves of the system (1). First we assume that the eigenvalues �1 and �2 of the ma-
trix A are real, and subsequently we take up the case where �1 and �2 are complex
conjugates.

Real Eigenvalues
We will divide the case where �1 and �2 are real into the following possibilities:

Distinct eigenvalues
� Nonzero and of opposite sign (�1 < 0 < �2)
� Both negative (�1 < �2 < 0)
� Both positive (0 < �2 < �1)
� One zero and one negative (�1 < �2 D 0)
� One zero and one positive (0 D �2 < �1)

Repeated eigenvalue
� Positive (�1 D �2 > 0)
� Negative (�1 D �2 < 0)
� Zero (�1 D �2 D 0)

Saddle Points

NONZERO DISTINCT EIGENVALUES OF OPPOSITE SIGN: The key observa-
tion when �1 < 0 < �2 is that the positive scalar factors e�1t and e�2t in the general
solution

x.t/ D c1v1e
�1t C c2v2e

�2t (4)

of the system x0 D Ax move in opposite directions (on the real line) as t varies. For
example, as t grows large and positive, e�2t grows large, because �2 > 0, whereas
e�1t approaches zero, because �1 < 0; thus the term c1v1e

�1t in the solution x.t/
in (4) vanishes and x.t/ approaches c2v2e

�2t . If instead t grows large and negative,
then the opposite occurs: The factor e�1t grows large whereas e�2t becomes small,
and the solution x.t/ approaches c1v1e

�1t . If we assume for the moment that both c1

and c2 are nonzero, then loosely speaking, as t ranges from �1 toC1, the solution
x.t/ shifts from being “mostly” a multiple of the eigenvector v1 to being “mostly” a
multiple of v2.
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Geometrically, this means that all solution curves given by (4) with both c1

and c2 nonzero have two asymptotes, namely the lines l1 and l2 passing through the
origin and parallel to the eigenvectors v1 and v2, respectively; the solution curves
approach l1 as t ! �1 and l2 as t ! C1. Indeed, as Fig. 5.3.1 illustrates, the
lines l1 and l2 effectively divide the plane into four “quadrants” within which all
solution curves flow from the asymptote l1 to the asymptote l2 as t increases. (The
eigenvectors shown in Fig. 5.3.1—and in other figures—are scaled so as to have
equal length.) The particular quadrant in which a solution curve lies is determined
by the signs of the coefficients c1 and c2. If c1 and c2 are both positive, for example,
then the corresponding solution curve extends asymptotically in the direction of the
eigenvector v1 as t ! �1, and asymptotically in the direction of v2 as t ! 1.
If instead c1 > 0 but c2 < 0, then the corresponding solution curve still extends
asymptotically in the direction of v1 as t ! �1, but extends asymptotically in the
direction opposite v2 as t ! C1 (because the negative coefficient c2 causes the
vector c2v2 to point “backwards” from v2).

If c1 or c2 equals zero, then the solution curve remains confined to one of the
lines l1 and l2. For example, if c1 6D 0 but c2 D 0, then the solution (4) becomes
x.t/ D c1v1e

�1t , which means that the corresponding solution curve lies along the
line l1. It approaches the origin as t ! C1, because �1 < 0, and recedes farther
and farther from the origin as t ! �1, either in the direction of v1 (if c1 > 0) or
the direction opposite v1 (if c1 < 0). Similarly, if c1 D 0 and c2 6D 0, then because
�2 > 0, the solution curve flows along the line l2 away from the origin as t ! C1
and toward the origin as t ! �1.

x 2

x1

v1
v2

l2

l1

c1<0, c2>0

c1<0, c2<0

c1>0, c2<0

c1>0, c2>0

FIGURE 5.3.1. Solution curves
x.t/ D c1v1e�1t C c2v2e�2t for the
system x0 D Ax when the eigenvalues
�1, �2 of A are real with
�1 < 0 < �2.

Figure 5.3.1 illustrates typical solution curves corresponding to nonzero val-
ues of the coefficients c1 and c2. Because the overall picture of the solution curves
is suggestive of the level curves of a saddle-shaped surface (like ´ D xy), we call
the origin a saddle point for the system x0 D Ax.

Example 1 The solution curves in Fig. 5.3.1 correspond to the choice

A D
�
4 1

6 �1
�

(8)

in the system x0 D Ax; as you can verify, the eigenvalues of A are �1 D �2 and �2 D 5 (thus
�1 < 0 < �2), with associated eigenvectors

v1 D
� �1

6

�
and v2 D

�
1

1

�
:

According to Eq. (4), the resulting general solution is

x.t/ D c1

� �1
6

�
e�2t C c2

�
1

1

�
e5t ; (9)

or, in scalar form,

x1.t/ D �c1e
�2t C c2e

5t ;

x2.t/ D 6c1e
�2t C c2e

5t :
(10)

Our gallery Fig. 5.3.16 at the end of this section shows a more complete set of solution curves,
together with a direction field, for the system x0 D Ax with A given by Eq. (8). (In Problem
29 we explore “Cartesian” equations for the solution curves (10) relative to the “axes” defined
by the lines l1 and l2, which form a natural frame of reference for the solution curves.)
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Nodes: Sinks and Sources

DISTINCT NEGATIVE EIGENVALUES: When �1 < �2 < 0, the factors e�1t and
e�2t both decrease as t increases. Indeed, as t !C1, both e�1t and e�2t approach
zero, which means that the solution curve

x.t/ D c1v1e
�1t C c2v2e

�2t (4)

approaches the origin; likewise, as t!�1, both e�1t and e�2t grow without bound,
and so the solution curve “goes off to infinity.” Moreover, differentiation of the
solution in (4) gives

x0.t/ D c1�1v1e
�1t C c2�2v2e

�2t D e�2t
h
c1�1v1e

.�1��2/t C c2�2v2

i
: (11)

This shows that the tangent vector x0.t/ to the solution curve x.t/ is a scalar mul-
tiple of the vector c1�1v1e

.�1��2/t C c2�2v2, which approaches the fixed nonzero
multiple c2�2v2 of the vector v2 as t !C1 (because e.�1��2/t approaches zero). It
follows that if c2 6D 0 , then as t !C1 , the solution curve x.t/ becomes more and
more nearly parallel to the eigenvector v2 . (More specifically, note that if c2 > 0,
for example, then x.t/ approaches the origin in the direction opposite to v2, because
the scalar c2�2 is negative.) Thus, if c2 6D 0 , then with increasing t the solution
curve approaches the origin and is tangent there to the line l2 passing through the
origin and parallel to v2.

If c2 D 0, on the other hand, then the solution curve x.t/ flows similarly along

x 2

x1

c1<0, c2>0

c1<0, c2<0

c1>0, c2<0

c1>0, c2>0

v1

v2

l1

l2

FIGURE 5.3.2. Solution curves
x.t/ D c1v1e�1t C c2v2e�2t for the
system x0 D Ax when the eigenvalues
�1, �2 of A are real with
�1 < �2 < 0.

the line l1 passing through the origin and parallel to the eigenvector v1. Once again,
the net effect is that the lines l1 and l2 divide the plane into four “quadrants” as
shown in Figure 5.3.2, which illustrates typical solution curves corresponding to
nonzero values of the coefficients c1 and c2.

To describe the appearance of phase portraits like Fig. 5.3.2, we introduce
some new terminology, which will be useful both now and in Chapter 6, when we
study nonlinear systems. In general, we call the origin a node of the system x0 DAx
provided that both of the following conditions are satisfied:

� Either every trajectory approaches the origin as t ! C1 or every trajectory
recedes from the origin as t !C1;

� Every trajectory is tangent at the origin to some straight line through the ori-
gin.

Moreover, we say that the origin is a proper node provided that no two different
pairs of “opposite” trajectories are tangent to the same straight line through the
origin. This is the situation in Fig. 5.3.6, in which the trajectories are straight lines,
not merely tangent to straight lines; indeed, a proper node might be called a “star
point.” However, in Fig. 5.3.2, all trajectories—apart from those that flow along the
line l1—are tangent to the line l2; as a result we call the node improper.

Further, if every trajectory for the system x0 D Ax approaches the origin as
t ! C1 (as in Fig. 5.3.2), then the origin is called a sink; if instead every tra-
jectory recedes from the origin, then the origin is a source. Thus we describe the
characteristic pattern of the trajectories in Fig. 5.3.2 as an improper nodal sink.

Example 2 The solution curves in Fig. 5.3.2 correspond to the choice

A D
� �8 3

2 �13
�

(12)

in the system x0 D Ax. The eigenvalues of A are �1 D�14 and �2 D �7 (and thus �1 < �2 <

0), with associated eigenvectors

v1 D
� �1

2

�
and v2 D

�
3

1

�
:
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Equation (4) then gives the general solution

x.t/ D c1

� �1
2

�
e�14t C c2

�
3

1

�
e�7t ; (13)

or, in scalar form,

x1.t/ D �c1e
�14t C 3c2e�7t ;

x2.t/ D 2c1e
�14t C c2e�7t :

Our gallery Fig. 5.3.16 shows a more complete set of solution curves, together with a direc-
tion field, for the system x0 D Ax with A given by Eq. (12).

The case of distinct positive eigenvalues mirrors that of distinct negative eigen-
values. But instead of analyzing it independently, we can rely on the following
principle, whose verification is a routine matter of checking signs (Problem 30).

PRINCIPLE Time Reversal in Linear Systems

Let x.t/ be a solution of the 2-dimensional linear system

x0 D Ax (1)

Then the function Qx.t/ D x.�t / is a solution of the system

Qx0 D �AQx: (14)

We note furthermore that the two vector-valued functions x.t/ and Qx.t/ for
�1 < t < 1 have the same solution curve (or image) in the plane. However,
the chain rule gives Qx0.t/ D �x0.t/; since Qx.t/ and x.�t / represent the same point, it
follows that at each point of their common solution curve the velocity vectors of the
two functions x.t/ and Qx.t/ are negatives of each other. Therefore the two solutions
traverse their common solution curve in opposite directions as t increases—or, al-
ternatively, in the same direction as t increases for one solution and decreases for
the other. In short, we may say that the solutions of the systems (1) and (14) corre-
spond to each other under “time reversal,” since we get the solutions of one system
by letting time “run backwards” in the solutions of the other.

DISTINCT POSITIVE EIGENVALUES: If the matrix A has positive eigenvalues
with 0 < �2 < �1, then as you can verify (Problem 31), the matrix �A has negative
eigenvalues��1 <��2 <0 but the same eigenvectors v1 and v2. The preceding case
then shows that the system x0 D �Ax has an improper nodal sink at the origin. But
the system x0 D Ax has the same trajectories, except with the direction of motion
(as t increases) along each solution curve reversed. Thus the origin is now a source,
rather than a sink, for the system x0 DAx, and we call the origin an improper nodal
source. Figure 5.3.3 illustrates typical solution curves given by x.t/ D c1v1e

�1t C
c2v2e

�2t corresponding to nonzero values of the coefficients c1 and c2.

Example 3 The solution curves in Fig. 5.3.3 correspond to the choice

A D �
� �8 3

2 �13
�
D
�

8 �3
�2 13

�
(15)

in the system x0 D Ax ; thus A is the negative of the matrix in Example 2. Therefore we
can solve the system x0 D Ax by applying the principle of time reversal to the solution in
Eq. (13): Replacing t with �t in the righthand side of (13) leads to

x.t/ D c1

� �1
2

�
e14t C c2

�
3

1

�
e7t : (16)
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Of course, we could also have “started from scratch” by finding the eigenvalues �1, �2 and
eigenvectors v1, v2 of A. These can be found from the definition of eigenvalue, but it is easier
to note (see Problem 31 again) that because A is the negative of the matrix in Eq. (12), �1

and �2 are likewise the negatives of their values in Example 2, whereas we can take v1 and
v2 to be the same as in Example 2. By either means we find that �1 D 14 and �2 D 7 (so that

x 2

x1

c1<0, c2>0c1<0, c2<0

c1>0, c2<0

c1>0, c2>0

v1

v2

l1

l2

FIGURE 5.3.3. Solution curves
x.t/ D c1v1e�1t C c2v2e�2t for the
system x0 D Ax when the eigenvalues
�1, �2 of A are real with
0 < �2 < �1.

0 < �2 < �1), with associated eigenvectors

v1 D
� �1

2

�
and v2 D

�
3

1

�
:

From Eq. (4), then, the general solution is

x.t/ D c1

� �1
2

�
e14t C c2

�
3

1

�
e7t

(in agreement with Eq. (16)), or, in scalar form,

x1.t/ D �c1e
14t C 3c2e7t ;

x2.t/ D 2c1e
14t C c2e7t :

Our gallery Fig. 5.3.16 shows a more complete set of solution curves, together with a direc-
tion field, for the system x0 D Ax with A given by Eq. (15).

Zero Eigenvalues and Straight-Line Solutions

ONE ZERO AND ONE NEGATIVE EIGENVALUE: When �1 < �2 D 0, the gen-
eral solution (4) becomes

x.t/ D c1v1e
�1t C c2v2: (17)

For any fixed nonzero value of the coefficient c1, the term c1v1e
�1t in Eq. (17) is

a scalar multiple of the eigenvector v1, and thus (as t varies) travels along the line
l1 passing through the origin and parallel to v1; the direction of travel is toward the
origin as t ! C1 because �1 < 0. If c1 > 0 , for example, then c1v1e

�1t extends
in the direction of v1, approaching the origin as t increases, and receding from the
origin as t decreases. If instead c1 < 0 , then c1v1e

�1t extends in the direction
opposite v1 while still approaching the origin as t increases. Loosely speaking, we
can visualize the flow of the term c1v1e

�1t taken alone as a pair of arrows opposing
each other head-to-head at the origin. The solution curve x.t/ in Eq. (17) is simply
this same trajectory c1v1e

�1t , then, shifted (or offset) by the constant vector c2v2.
Thus in this case the phase portrait of the system x0 D Ax consists of all lines
parallel to the eigenvector v1, where along each such line the solution flows (from
both directions) toward the line l2 passing through the origin and parallel to v1.
Figure 5.3.4 illustrates typical solution curves corresponding to nonzero values of
the coefficients c1 and c2.

c1>0, c2<0

x 2

x1

c1<0, c2>0
c1<0, c2<0

c1>0, c2>0

v1

v2

l1

l2

FIGURE 5.3.4. Solution curves
x.t/ D c1v1e�1t C c2v2 for the
system x0 D Ax when the eigenvalues
�1, �2 of A are real with
�1 < �2 D 0.

It is noteworthy that each single point represented by a constant vector b lying
on the line l2 represents a constant solution of the system x0 D Ax. Indeed, if b lies
on l2, then b is a scalar multiple k � v2 of the eigenvector v2 of A associated with the
eigenvalue �2 D 0. In this case, the constant-valued solution x.t/ � b is given by
Eq. (17) with c1 D 0 and c2 D k. This constant solution, with its “trajectory” being
a single point lying on the line l2, is then the unique solution of the initial value
problem

x0 D Ax; x.0/ D b

guaranteed by Theorem 1 of Section 4.1. Note that this situation is in marked con-
trast with the other eigenvalue cases we have considered so far, in which x.t/ � 0
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is the only constant solution of the system x0 D Ax. (In Problem 32 we explore the
general circumstances under which the system x0 D Ax has constant solutions other
than x.t/ � 0.)

Example 4 The solution curves in Fig. 5.3.4 correspond to the choice

A D
� �36 �6

6 1

�
(18)

in the system x0 D Ax. The eigenvalues of A are �1 D �35 and �2 D 0, with associated
eigenvectors

v1 D
�

6

�1
�

and v2 D
�

1

�6
�
:

Based on Eq. (17), the general solution is

x.t/ D c1

�
6

�1
�
e�35t C c2

�
1

�6
�
; (19)

or, in scalar form,

x1.t/ D 6c1e
�35t C c2;

x2.t/ D �c1e
�35t � 6c2:

Our gallery Fig. 5.3.16 shows a more complete set of solution curves, together with a direc-
tion field, for the system x0 D Ax with A given by Eq. (18).

ONE ZERO AND ONE POSITIVE EIGENVALUE: When 0D �2 <�1, the solution
of the system x0 D Ax is again given by

x.t/ D c1v1e
�1t C c2v2: (17)

By the principle of time reversal, the trajectories of the system x0 D Ax are identical
to those of the system x0 D �Ax, except that they flow in the opposite direction.
Since the eigenvalues ��1 and ��2 of the matrix �A satisfy ��1 < ��2 D 0, by
the preceding case the trajectories of x0 D �Ax are lines parallel to the eigenvector
v1 and flowing toward the line l2 from both directions. Therefore the trajectories
of the system x0 D Ax are lines parallel to v1 and flowing away from the line l2.
Figure 5.3.5 illustrates typical solution curves given by x.t/ D c1v1e

�1t C c2v2 cor-
responding to nonzero values of the coefficients c1 and c2.

c1>0, c2<0

x 2

x1

c1<0, c2>0

c1<0, c2<0

c1>0, c2>0

v1

v2

l1

l2

FIGURE 5.3.5. Solution curves
x.t/ D c1v1e�1t C c2v2 for the
system x0 D Ax when the eigenvalues
�1, �2 of A are real with
0 D �2 < �1.

Example 5 The solution curves in Fig. 5.3.5 correspond to the choice

A D �
� �36 �6

6 1

�
D
�
36 6

�6 �1
�

(20)

in the system x0 D Ax; thus A is the negative of the matrix in Example 4. Once again we can
solve the system using the principle of time reversal: Replacing t with �t in the right-hand
side of the solution in Eq. (19) of Example 4 leads to

x.t/ D c1

�
6

�1
�
e35t C c2

�
1

�6
�
: (21)

Alternatively, directly finding the eigenvalues and eigenvectors of A leads to �1 D 35 and
�2 D 0 , with associated eigenvectors

v1 D
�

6

�1
�

and v2 D
�

1

�6
�
:
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Equation (17) gives the general solution of the system x0 D Ax as

x.t/ D c1

�
6

�1
�
e35t C c2

�
1

�6
�

(in agreement with Eq. (21)), or, in scalar form,

x1.t/ D 6c1e
35t C c2;

x2.t/ D �c1e
35t � 6c2:

Our gallery Fig. 5.3.16 shows a more complete set of solution curves, together with a direc-
tion field, for the system x0 D Ax with A given by Eq. (20).

Repeated Eigenvalues; Proper and Improper Nodes

REPEATED POSITIVE EIGENVALUE: As we noted earlier, if the matrix A has
one repeated eigenvalue, then A may or may not have two associated linearly inde-
pendent eigenvectors. Because these two possibilities lead to quite different phase
portraits, we will consider them separately. We let � denote the repeated eigenvalue
of A with � > 0.

With two independent eigenvectors: First, if A does have two linearly inde-
pendent eigenvectors, then it is easy to show (Problem 33) that in fact every nonzero
vector is an eigenvector of A, from which it follows that A must be equal to the
scalar � times the identity matrix of order two, that is,

A D �
�
1 0

0 1

�
D
�
� 0

0 �

�
: (22)

Therefore the system x0 D Ax becomes (in scalar form)

x0
1.t/ D �x1.t/;

x0
2.t/ D �x2.t/:

(23)

The general solution of Eq. (23) is

x1.t/ D c1e
�t

x2.t/ D c2e
�t ;

(24)

or in vector format,

x.t/ D e�t

�
c1

c2

�
: (25)

We could also have arrived at Eq. (25) by starting, as in previous cases, from our
general solution (4): Because all nonzero vectors are eigenvectors of A, we are
free to take v1 D



1 0

�T and v2 D


0 1

�T as a representative pair of linearly
independent eigenvectors, each associated with the eigenvalue �. Then Eq. (4) leads
to the same result as Eq. (25):

x.t/ D c1v1e
�t C c2v2e

�t D e�t .c1v1 C c2v2/ D e�t

�
c1

c2

�
:

Either way, our solution in Eq. (25) shows that x.t/ is always a positive scalar
multiple of the fixed vector



c1 c2

�T . Thus apart from the case c1 D c2 D 0, the
trajectories of the system (1) are half-lines, or rays, emanating from the origin and



304 Chapter 5 Linear Systems of Differential Equations

(because � > 0) flowing away from it. As noted above, the origin in this case repre-
sents a proper node, because no two pairs of “opposite” solution curves are tangent
to the same straight line through the origin. Moreover the origin is also a source
(rather than a sink), and so in this case we call the origin a proper nodal source.
Figure 5.3.6 shows the “exploding star” pattern characteristic of such points.

Example 6 The solution curves in Fig. 5.3.6 correspond to the case where the matrix A is given by
Eq. (22) with � D 2:

A D
�
2 0

0 2

�
: (26)

Equation (25) then gives the general solution of the system x0 D Ax as

c1>0, c2<0

x 2

x1

c1<0, c2>0

c1<0, c2<0

c1>0, c2>0

FIGURE 5.3.6. Solution curves

x.t/ D e�t

�
c1

c2

�
for the system

x0 D Ax when A has one repeated
positive eigenvalue and two linearly
independent eigenvectors.

x.t/ D e2t

�
c1

c2

�
; (27)

or, in scalar form,

x1.t/ D c1e
2t ;

x2.t/ D c2e
2t :

Our gallery Fig. 5.3.16 shows a more complete set of solution curves, together with a direc-
tion field, for the system x0 D Ax with A given by Eq. (26).

Without two independent eigenvectors: The remaining possibility is that
the matrix A has a repeated positive eigenvalue yet fails to have two linearly inde-
pendent eigenvectors. In this event the general solution of the system x0 D Ax is
given by Eq. (7) above:

x.t/ D c1v1e
�t C c2.v1t C v2/e

�t : (7)

Here v1 is an eigenvector of the matrix A associated with the repeated eigenvalue �
and v2 is a (nonzero) “generalized eigenvector” that will be described more fully in
Section 5.5. To analyze this trajectory, we first distribute the factor e�t in Eq. (7),
leading to

x.t/ D c1v1e
�t C c2.v1te

�t C v2e
�t /: (28)

Our assumption that � > 0 implies that both e�t and te�t approach zero as t !�1,
and so by Eq. (28) the solution x.t/ approaches the origin as t ! �1. Except for
the trivial solution given by c1 D c2 D 0, all trajectories given by Eq. (7) “emanate”
from the origin as t increases.

The direction of flow of these curves can be understood from the tangent vec-
tor x0.t/. Rewriting Eq. (28) as

x.t/ D e�t Œc1v1 C c2.v1t C v2/�

and applying the product rule for vector-valued functions gives

x0.t/ D e�tc2v1 C �e�t Œc1v1 C c2.v1t C v2/�

D e�t .c2v1 C �c1v1 C �c2v1t C �c2v2/:
(29)

For t 6D 0, we can factor out t in Eq. (29) and rearrange terms to get

x0.t/ D te�t

�
�c2v1 C

1

t
.�c1v1 C �c2v2 C c2v1/

�
: (30)

Equation (30) shows that for t 6D 0, the tangent vector x0.t/ is a nonzero scalar mul-
tiple of the vector �c2v1 C 1

t
.�c1v1 C �c2v2 C c2v1/, which, if c2 6D 0, approaches
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the fixed nonzero multiple �c2v1 of the eigenvector v1 as t!C1 or as t!�1. In
this case it follows that as t gets larger and larger numerically (in either direction),
the tangent line to the solution curve at the point x.t/—since it is parallel to the tan-
gent vector x0.t/ which approaches �c2v1—becomes more and more nearly parallel
to the eigenvector v1. In short, we might say that as t increases numerically, the
point x.t/ on the solution curve moves in a direction that is more and more nearly
parallel to the vector v1, or still more briefly, that near x.t/ the solution curve itself
is virtually parallel to v1.

We conclude that if c2 6D 0, then as t !�1 the point x.t/ approaches the ori-
gin along the solution curve which is tangent there to the vector v1. But as t !C1
and the point x.t/ recedes further and further from the origin, the tangent line to the
trajectory at this point tends to differ (in direction) less and less from the (moving)
line through x.t/ that is parallel to the (fixed) vector v1. Speaking loosely but sug-
gestively, we might therefore say that at points sufficiently far from the origin, all
trajectories are essentially parallel to the single vector v1.

If instead c2 D 0, then our solution (7) becomes

x.t/ D c1v1e
�t ; (31)

and thus runs along the line l1 passing through the origin and parallel to the eigen-
vector v1. Because � > 0, x.t/ flows away from the origin as t increases; the flow is
in the direction of v1 if c1 > 0, and opposite v1 if c1 < 0.

We can further see the influence of the coefficient c2 by writing Eq. (7) in yet
a different way:

x.t/ D c1v1e
�t C c2.v1t C v2/e

�t D .c1 C c2t /v1e
�t C c2v2e

�t : (32)

It follows from Eq. (32) that if c2 6D 0, then the solution curve x.t/ does not cross
the line l1. Indeed, if c2 > 0, then Eq. (32) shows that for all t , the solution curve
x.t/ lies on the same side of l1 as v2, whereas if c2 < 0, then x.t/ lies on the opposite
side of l1.

To see the overall picture, then, suppose for example that the coefficient
c2 > 0. Starting from a large negative value of t , Eq. (30) shows that as t increases,
the direction in which the solution curve x.t/ initially proceeds from the origin is
roughly that of the vector te�t�c2v1. Since the scalar te�t�c2 is negative (because
t < 0 and �c2 > 0), the direction of the trajectory is opposite that of v1. For large
positive values of t , on the other hand, the scalar te�t�c2 is positive, and so x.t/
flows in nearly the same direction as v1. Thus, as t increases from �1 to C1,
the solution curve leaves the origin flowing in the direction opposite v1, makes a
“U-turn” as it moves away from the origin, and ultimately flows in the direction of
v1.

Because all nonzero trajectories are tangent at the origin to the line l1, the ori-
gin represents an improper nodal source. Figure 5.3.7 illustrates typical solution

v2

c2=0, c1>0

c2=0, c1<0

x 2

x1

c2<0

c2>0
v1

l1

FIGURE 5.3.7. Solution curves
x.t/ D c1v1e�t C c2.v1t C v2/e�t

for the system x0 D Ax when A has
one repeated positive eigenvalue �
with associated eigenvector v1 and
“generalized eigenvector” v2.

curves given by x.t/ D c1v1e
�t C c2.v1t C v2/e

�t for the system x0 D Ax when A
has a repeated eigenvalue but does not have two linearly independent eigenvectors.

Example 7 The solution curves in Fig. 5.3.7 correspond to the choice

A D
�
1 �3
3 7

�
(33)

in the system x0 DAx. In Examples 2 and 3 of Section 5.5 we will see that A has the repeated
eigenvalue � D 4 with associated eigenvector and generalized eigenvector given by

v1 D
� �3

3

�
and v2 D

�
1

0

�
; (34)
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respectively. According to Eq. (7) the resulting general solution is

x.t/ D c1

� �3
3

�
e4t C c2

� �3t C 1
3t

�
e4t ; (35)

or, in scalar form,

x1.t/ D .�3c2t � 3c1 C c2/e
4t ;

x2.t/ D .3c2t C 3c1/e
4t :

Our gallery Fig. 5.3.16 shows a more complete set of solution curves, together with a direc-
tion field, for the system x0 D Ax with A given by Eq. (33).

REPEATED NEGATIVE EIGENVALUE: Once again the principle of time reversal
shows that the solutions x.t/ of the system x0DAx are identical to those of x0D�Ax
with t replaced by �t ; hence these two systems share the same trajectories while
flowing in opposite directions. Further, if the matrix A has the repeated negative
eigenvalue �, then the matrix �A has the repeated positive eigenvalue �� (Problem
31 again). Therefore, to construct phase portraits for the system x0DAx when A has
a repeated negative eigenvalue, we simply reverse the directions of the trajectories in
the phase portraits corresponding to a repeated positive eigenvalue. These portraits
are illustrated in Figs. 5.3.8 and 5.3.9. In Fig. 5.3.8 the origin represents a proper
nodal sink, whereas in Fig. 5.3.9 it represents an improper nodal sink.

c1>0, c2<0

x 2

x1

c1<0, c2>0

c1<0, c2<0

c1>0, c2>0

FIGURE 5.3.8. Solution curves

x.t/ D e�t

�
c1

c2

�
for the system

x0 D Ax when A has one repeated
negative eigenvalue � and two linearly
independent eigenvectors.

v2

c2=0, c1>0

c2=0, c1<0

x 2

x1

c2<0

c2>0

v1

l1

FIGURE 5.3.9. Solution curves
x.t/ D c1v1e�t C c2.v1t C v2/e�t

for the system x0 D Ax when A has
one repeated negative eigenvalue �
with associated eigenvector v1 and
“generalized eigenvector” v2.

Example 8 The solution curves in Fig. 5.3.8 correspond to the choice

A D �
�
2 0

0 2

�
D
� �2 0

0 �2
�

(36)

in the system x0 D Ax; thus A is the negative of the matrix in Example 6. We can solve this
system by applying the principle of time reversal to the solution found in Eq. (27): Replacing
t with �t in the right-hand side of Eq. (27) leads to

x.t/ D e�2t

�
c1

c2

�
; (37)

or, in scalar form,

x1.t/ D c1e
�2t ;

x2.t/ D c2e
�2t :
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Alternatively, because A is given by Eq. (22) with � D �2 , Eq. (25) leads directly to the
solution in Eq. (37). Our gallery Fig. 5.3.16 shows a more complete set of solution curves,
together with a direction field, for the system x0 D Ax with A given by Eq. (36).

Example 9 The solution curves in Fig. 5.3.9 correspond to the choice

A D �
�
1 �3
3 7

�
D
� �1 3

�3 �7
�

(38)

in the system x0 D Ax. Thus A is the negative of the matrix in Example 7, and once again we
can apply the principle of time reversal to the solution found in Eq. (35): Replacing t with �t
in the right-hand side of Eq. (35) yields

x.t/ D c1

� �3
3

�
e�4t C c2

�
3t C 1
�3t

�
e�4t : (39)

We could also arrive at an equivalent form of the solution in Eq. (39) in the following way.
You can verify that A has the repeated eigenvalue � D �2 with eigenvector v1 given by
Eq. (34), that is,

v1 D
� �3

3

�
:

However, as the methods of Section 5.5 will show, a generalized eigenvector v2 associated
with v1 is now given by

v2 D �
�
1

0

�
D
� �1

0

�
I

that is, v2 is the negative of the generalized eigenvector in Eq. (34). Equation (7) then gives
the general solution of the system x0 D Ax as

x.t/ D c1

� �3
3

�
e�4t C c2

� �3t � 1
3t

�
e�4t ; (40)

or, in scalar form,

x1.t/ D .�3c2t � 3c1 � c2/e�4t ;

x2.t/ D .3c2t C 3c1/e
�4t :

Note that replacing c2 with �c2 in the solution (39) yields the solution (40), thus confirming
that the two solutions are indeed equivalent. Our gallery Fig. 5.3.16 shows a more complete
set of solution curves, together with a direction field, for the system x0 D Ax with A given by
Eq. (38).

The Special Case of a Repeated Zero Eigenvalue

REPEATED ZERO EIGENVALUE: Once again the matrix A may or may not have
two linearly independent eigenvectors associated with the repeated eigenvalue
�D 0. If it does, then (using Problem 33 once more) we conclude that every nonzero
vector is an eigenvector of A, that is, that Av D 0 � v D 0 for all two-dimensional
vectors v. It follows that A is the zero matrix of order two, that is,

A D
�
0 0

0 0

�
:

Therefore the system x0 D Ax reduces to x0
1.t/ D x0

2.t/ D 0, which is to say that
x1.t/ and x2.t/ are each constant functions. Thus the general solution of x0 D Ax is
simply

x.t/ D
�
c1

c2

�
; (41)

where c1 and c2 are arbitrary constants, and the “trajectories” given by Eq. (41) are
simply the fixed points .c1; c2/ in the phase plane.
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If instead A does not have two linearly independent eigenvectors associated
with � D 0, then the general solution of the system x0 D Ax is given by Eq. (7) with
� D 0:

x.t/ D c1v1 C c2.v1t C v2/ D .c1v1 C c2v2/C c2v1t: (42)

Once again v1 denotes an eigenvector of the matrix A associated with the repeated
eigenvalue �D 0 and v2 denotes a corresponding nonzero “generalized eigenvector.”
If c2 6D 0, then the trajectories given by Eq. (42) are lines parallel to the eigenvector
v1 and “starting” at the point c1v1 C c2v2 (when t D 0). When c2 > 0 the trajectory
proceeds in the same direction as v1, whereas when c2 < 0 the solution curve flows
in the direction opposite v1. Once again the lines l1 and l2 passing through the origin
and parallel to the vectors v1 and v2, respectively, divide the plane into “quadrants”
corresponding to the signs of the coefficients c1 and c2. The particular quadrant in
which the “starting point” c1v1 C c2v2 of the trajectory falls is determined by the
signs of c1 and c2. Finally, if c2 D 0, then Eq. (42) gives x.t/� c1v1 for all t , which
means that each fixed point c1v1 along the line l1 corresponds to a solution curve.
(Thus the line l1 could be thought of as a median strip dividing two opposing lanes
of traffic.) Figure 5.3.10 illustrates typical solution curves corresponding to nonzero
values of the coefficients c1 and c2.

v2

c1<0, c2>0

c1<0, c2<0
c1>0, c2<0

c1>0, c2>0

x 2

x1

v1

l1

l2

FIGURE 5.3.10. Solution curves
x.t/ D .c1v1 C c2v2/ C c2v1t for the
system x0 D Ax when A has a repeated
zero eigenvalue with associated
eigenvector v1 and “generalized
eigenvector” v2. The emphasized point
on each solution curve corresponds to
t D 0.

Example 10 The solution curves in Fig. 5.3.10 correspond to the choice

A D
�

2 4

�1 �2
�

(43)

in the system x0 DAx. You can verify that v1 D


2 �1 �T is an eigenvector of A associated

with the repeated eigenvalue � D 0. Further, using the methods of Section 5.5 we can show
that v2 D



1 0

�T is a corresponding “generalized eigenvector” of A. According to Eq. (42)
the general solution of the system x0 D Ax is therefore

x.t/ D c1

�
2

�1
�
C c2

��
2

�1
�
t C

�
1

0

��
; (44)

or, in scalar form,

x1.t/ D 2c1 C .2t C 1/c2;
x2.t/ D �c1 � tc2:

Our gallery Fig. 5.3.16 shows a more complete set of solution curves, together with a direc-
tion field, for the system x0 D Ax with A given by Eq. (43).

Complex Conjugate Eigenvalues and Eigenvectors
We turn now to the situation in which the eigenvalues �1 and �2 of the matrix A
are complex conjugate. As we noted at the beginning of this section, the general
solution of the system x0 D Ax is given by Eq. (5):

x.t/ D c1e
pt .a cos qt � b sin qt/C c2e

pt .b cos qt C a sin qt/: (5)

Here the vectors a and b are the real and imaginary parts, respectively, of a (complex-
valued) eigenvector of A associated with the eigenvalue �1D pC iq. We will divide
the case of complex conjugate eigenvalues according to whether the real part p of
�1 and �2 is zero, positive, or negative:

� Pure imaginary (�1, �2 D ˙iq with q 6D 0)
� Complex with negative real part (�1, �2 D p ˙ iq with p < 0 and q 6D 0)
� Complex with positive real part (�1, �2 D p ˙ iq with p > 0 and q 6D 0)
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Pure Imaginary Eigenvalues: Centers and Elliptical Orbits

PURE IMAGINARY EIGENVALUES: Here we assume that the eigenvalues of the
matrix A are given by �1 �2 D ˙iq with q 6D 0. Taking p D 0 in Eq. (5) gives the
general solution

x.t/ D c1.a cos qt � b sin qt/C c2.b cos qt C a sin qt/ (45)

for the system x0 D Ax. Rather than directly analyze the trajectories given by
Eq. (45), as we have done in the previous cases, we begin instead with an exam-
ple that will shed light on the nature of these solution curves.

Example 11 Solve the initial value problem

x0 D
�
6 �17
8 �6

�
x; x.0/ D

�
4

2

�
: (46)

Solution The coefficient matrix

A D
�
6 �17
8 �6

�
(47)

has characteristic equation

jA � �Ij D
�
6 � � �17
8 �6 � �

�
D �2 C 100 D 0;

and hence has the complex conjugate eigenvalues �1, �2 D ˙10i . If v D 

a b

�T is an
eigenvector associated with � D 10i , then the eigenvector equation .A � �I/v D 0 yields



A � 10i � I � v D

�
6 � 10i �17
8 �6 � 10i

� �
a

b

�
D
�
0

0

�
:

Upon division of the second row by 2, this gives the two scalar equations

.6 � 10i/a � 17b D 0;
4a � .3C 5i/b D 0; (48)

each of which is satisfied by a D 3 C 5i and b D 4. Thus the desired eigenvector is v D

3C 5i 4

�T , with real and imaginary parts

a D
�
3

4

�
and b D

�
5

0

�
; (49)

respectively. Taking q D 10 in Eq. (45) therefore gives the general solution of the system
x0 D Ax:

x.t/ D c1

��
3

4

�
cos 10t �

�
5

0

�
sin 10t

�
C c2

��
5

0

�
cos 10t C

�
3

4

�
sin 10t

�
D
�
c1.3 cos 10t � 5 sin 10t/C c2.5 cos 10t C 3 sin 10t/

4c1 cos 10t C 4c2 sin 10t

�
:

(50)

To solve the given initial value problem it remains only to determine values of the coefficients
c1 and c2. The initial condition x.0/ D 
 4 2

�T readily yields c1 D c2 D 1
2 , and with these

values Eq. (50) becomes (in scalar form)

x1.t/ D 4 cos 10t � sin 10t;

x2.t/ D 2 cos 10t C 2 sin 10t:
(51)

Figure 5.3.11 shows the trajectory given by Eq. (51) together with the initial
point .4; 2/.

θ

v

(4, 2)
u

x 2

x1

FIGURE 5.3.11. Solution curve
x1.t/ D 4 cos 10t � sin 10t ,
x2.t/ D 2 cos 10t C 2 sin 10t for the
initial value problem in Eq. (46).
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This solution curve appears to be an ellipse rotated counterclockwise by the
angle � D arctan 2

4
� 0:4636. We can verify this by finding the equations of the

solution curve relative to the rotated u- and v-axes shown in Fig. 5.3.11. By a
standard formula from analytic geometry, these new equations are given by

u D x1 cos � C x2 sin � D 2p
5
x1 C

1p
5
x2;

v D �x1 sin � C x2 cos � D � 1p
5
x1 C

2p
5
x2:

(52)

In Problem 34 we ask you to substitute the expressions for x1 and x2 from Eq. (51)
into Eq. (52), leading (after simplification) to

u D 2
p
5 cos 10t; v D

p
5 sin 10t: (53)

Equation (53) not only confirms that the solution curve in Eq. (51) is indeed an
ellipse rotated by the angle � , but it also shows that the lengths of the semi-major
and semi-minor axes of the ellipse are 2

p
5 and

p
5, respectively.

Furthermore, we can demonstrate that any choice of initial point (apart from
the origin) leads to a solution curve that is an ellipse rotated by the same angle � and
“concentric” (in an obvious sense) with the trajectory in Fig. 5.3.11 (see Problems
35–37). All these concentric rotated ellipses are centered at the origin .0; 0/, which
is therefore called a center for the system x0 D Ax whose coefficient matrix A has
pure imaginary eigenvalues. Our gallery Fig. 5.3.16 shows a more complete set of
solution curves, together with a direction field, for the system x0 D Ax with A given
by Eq. (47).

Further investigation: Geometric significance of the eigenvector. Our general
solution in Eq. (50) was based upon the vectors a and b in Eq. (49), that is, the real
and imaginary parts of the complex eigenvector vD 
 3C 5i 4

�T of the matrix A.
We might therefore expect a and b to have some clear geometric connection to the
solution curve in Fig. 5.3.11. For example, we might guess that a and b would be
parallel to the major and minor axes of the elliptical trajectory. However, it is clear
from Fig. 5.3.12—which shows the vectors a and b together with the solution curve
given by Eq. (51)—that this is not the case. Do the eigenvectors of A, then, play
any geometric role in the phase portrait of the system x0 D Ax?

The (affirmative) answer lies in the fact that any nonzero real or complex
multiple of a complex eigenvector of the matrix A is still an eigenvector of A as-

x 2

x1

a

b

(4, 2)
u

v

θã
b̃

FIGURE 5.3.12. Solution curve for
the initial value problem in Eq. (46)
showing the vectors a, b, Qa, and Qb.

sociated with that eigenvalue. Perhaps, then, if we multiply the eigenvector v D

3C 5i 4

�T by a suitable nonzero complex constant ´, the resulting eigenvector
Qv will have real and imaginary parts Qa and Qb that can be readily identified with ge-
ometric features of the ellipse. To this end, let us multiply v by the complex scalar
´ D 1

2
.1C i/. (The reason for this particular choice will become clear shortly.) The

resulting new complex eigenvector Qv of the matrix A is

Qv D ´ � v D 1

2
.1C i/ �

�
3C 5i
4

�
D
� �1C 4i

2C 2i
�
;

and has real and imaginary parts

Qa D
� �1

2

�
and Qb D

�
4

2

�
:
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It is clear that the vector Qb is parallel to the major axis of our elliptical trajectory.
Further, you can easily check that Qa � Qb D 0, which means that Qa is perpendicular
to Qb, and hence is parallel to the minor axis of the ellipse, as Fig. 5.3.12 illustrates.
Moreover, the length of Qb is twice that of Qa, reflecting the fact that the lengths of
the major and minor axes of the ellipse are in this same ratio. Thus for a matrix A
with pure imaginary eigenvalues, the complex eigenvector of A used in the general
solution (45)—if suitably chosen—is indeed of great significance to the geometry
of the elliptical solution curves of the system x0 D Ax.

How was the value 1
2
.1 C i/ chosen for the scalar ´? In order that the real

and imaginary parts Qa and Qb of Qv D ´ � v be parallel to the axes of the ellipse, at a
minimum Qa and Qb must be perpendicular to each other. In Problem 38 we ask you
to show that this condition is satisfied if and only if ´ is of the form r.1˙ i/, where
r is a nonzero real number, and that if ´ is chosen in this way, then Qa and Qb are in
fact parallel to the axes of the ellipse. The value r D 1

2
then aligns the lengths of

Qa and Qb with those of the semi-minor and -major axes of the elliptical trajectory.
More generally, we can show that given any eigenvector v of a matrix A with pure
imaginary eigenvalues, there exists a constant ´ such that the real and imaginary
parts Qa and Qb of the eigenvector Qv D ´ � v are parallel to the axes of the (elliptical)
trajectories of the system x0 D Ax.

Further investigation: Direction of flow. Figs. 5.3.11 and 5.3.12 suggest that the
solution curve in Eq. (51) flows in a counterclockwise direction with increasing t .
However, you can check that the matrix

�A D
� �6 17

�8 6

�
has the same eigenvalues and eigenvectors as the matrix A in Eq. (47) itself, and yet
(by the principle of time reversal) the trajectories of the system x0 D �Ax are iden-
tical to those of x0 D Ax while flowing in the opposite direction, that is, clockwise.
Clearly, mere knowledge of the eigenvalues and eigenvectors of the matrix A is not
sufficient to predict the direction of flow of the elliptical trajectories of the system
x0 D Ax as t increases. How then can we determine this direction of flow?

One simple approach is to use the tangent vector x0 to monitor the direction in
which the solution curves flow as they cross the positive x1-axis. If s is any positive
number (so that the point .s; 0/ lies on the positive x1-axis), and if the matrix A is
given by

A D
�
a b

c d

�
;

then any trajectory for the system x0 D Ax passing through .s; 0/ satisfies

x0 D Ax D
�
a b

c d

� �
s

0

�
D
�
as

cs

�
D s

�
a

c

�
at the point .s; 0/. Therefore, at this point the direction of flow of the solution curve
is a positive scalar multiple of the vector



a c

�T . Since c cannot be zero (see
Problem 39), this vector either points “upward” into the first quadrant of the phase
plane (if c > 0 ), or “downward” into the fourth quadrant (if c < 0). If upward, then
the flow of the solution curve is counterclockwise; if downward, then clockwise.
For the matrix A in Eq. (47), the vector



a c

�T D 

6 8

�T points into the first
quadrant because c D 8 > 0, thus indicating a counterclockwise direction of flow
(as Figs. 5.3.11 and 5.3.12 suggest).
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Complex Eigenvalues: Spiral Sinks and Sources

COMPLEX EIGENVALUES WITH NEGATIVE REAL PART: Now we assume that
the eigenvalues of the matrix A are given by �1, �2 D p˙ iq with q 6D 0 and p < 0.
In this case the general solution of the system x0 D Ax is given directly by Eq. (5):

x.t/ D c1e
pt .a cos qt � b sin qt/C c2e

pt .b cos qt C a sin qt/; (5)

where the vectors a and b have their usual meaning. Once again we begin with an
example to gain an understanding of these solution curves.

Example 12 Solve the initial value problem

x0 D
�
5 �17
8 �7

�
x; x.0/ D

�
4

2

�
: (54)

Solution The coefficient matrix

A D
�
5 �17
8 �7

�
(55)

has characteristic equation

jA � �Ij D
ˇ̌̌̌
5 � � �17
8 �7 � �

ˇ̌̌̌
D .�C 1/2 C 100 D 0;

and hence has the complex conjugate eigenvalues �1, �2 D �1˙ 10i . If v D 

a b

�T is
an eigenvector associated with � D �1C 10i , then the eigenvector equation .A � �I/v D 0
yields the same system (48) of equations found in Example 11:

.6 � 10i/a � 17b D 0;
4a � .3C 5i/b D 0: (48)

As in Example 11, each of these equations is satisfied by a D 3C 5i and b D 4. Thus the
desired eigenvector, associated with �1 D �1C 10i , is once again v D 
 3C 5i 4

�T , with
real and imaginary parts

a D
�
3

4

�
and b D

�
5

0

�
; (56)

respectively. Taking p D �1 and q D 10 in Eq. (5) therefore gives the general solution of the
system x0 D Ax:

x.t/ D c1e
�t

��
3

4

�
cos 10t �

�
5

0

�
sin 10t

�
C c2e

�t

��
5

0

�
cos 10t C

�
3

4

�
sin 10t

�
D
�
c1e

�t .3 cos 10t � 5 sin 10t/C c2e
�t .5 cos 10t C 3 sin 10t/

4c1e
�t cos 10t C 4c2e

�t sin 10t

�
:

(57)

The initial condition x.0/ D 

4 2

�T gives c1 D c2 D 1
2 once again, and with these values

Eq. (57) becomes (in scalar form)

x1.t/ D e�t .4 cos 10t � sin 10t/;

x2.t/ D e�t .2 cos 10t C 2 sin 10t/:
(58)

Figure 5.3.13 shows the trajectory given by Eq. (58) together with the initial
point .4; 2/. It is noteworthy to compare this spiral trajectory with the elliptical

(4, 2)

x 2

x1

FIGURE 5.3.13. Solution curve
x1.t/ D e�t .4 cos 10t � sin 10t/,
x2.t/ D e�t .2 cos 10t C 2 sin 10t/
for the initial value problem in
Eq. (54). The dashed and solid portions
of the curve correspond to negative and
positive values of t , respectively.

trajectory in Eq. (51). The equations for x1.t/ and x2.t/ in (58) are obtained by
multiplying their counterparts in (51) by the common factor e�t , which is positive
and decreasing with increasing t . Thus for positive values of t , the spiral trajectory
is generated, so to speak, by standing at the origin and “reeling in” the point on the
elliptical trajectory (51) as it is traced out. When t is negative, the picture is rather
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one of “casting away” the point on the ellipse farther out from the origin to create
the corresponding point on the spiral.

Our gallery Fig. 5.3.16 shows a more complete set of solution curves, together
with a direction field, for the system x0 D Ax with A given by Eq. (55). Because the
solution curves all “spiral into” the origin, we call the origin in this a case a spiral
sink.

COMPLEX EIGENVALUES WITH POSITIVE REAL PART: We conclude with the
case where the eigenvalues of the matrix A are given by �1, �2 D p˙ iq with q 6D 0
and p > 0. Just as in the preceding case, the general solution of the system x0 D Ax
is given by Eq. (5):

x.t/ D c1e
pt .a cos qt � b sin qt/C c2e

pt .b cos qt C a sin qt/: (5)

An example will illustrate the close relation between the cases p > 0 and p < 0.

Example 13 Solve the initial value problem

x0 D
� �5 17

�8 7

�
x; x.0/ D

�
4

2

�
: (59)

Solution Although we could directly apply the eigenvalue/eigenvector method as in previous cases
(see Problem 40), here it is more convenient to notice that the coefficient matrix

A D
� �5 17

�8 7

�
(60)

is the negative of the matrix in Eq. (55) used in Example 12. By the principle of time reversal,

x1

x 2

(4, 2)

FIGURE 5.3.14. Solution curve
x1.t/ D et .4 cos 10t C sin 10t/,
x2.t/ D et .2 cos 10t � 2 sin 10t/ for
the initial value problem in Eq. (59).
The dashed and solid portions of the
curve correspond to negative and
positive values of t , respectively.

therefore, the solution of the initial value problem (59) is given by simply replacing t with �t
in the right-hand sides of the solution (58) of the initial value problem in that example:

x1.t/ D et .4 cos 10t C sin 10t/;

x2.t/ D et .2 cos 10t � 2 sin 10t/:
(61)

Figure 5.3.14 shows the trajectory given by Eq. (61) together with the initial
point .4; 2/. Our gallery Fig. 5.3.16 shows this solution curve together with a direc-
tion field for the system x0 D Ax with A given by Eq. (60). Because the solution
curve “spirals away from” the origin, we call the origin in this case a spiral source.

A 3-Dimensional Example
Figure 5.3.15 illustrates the space trajectories of solutions of the 3-dimensional sys-
tem x0 D Ax with constant coefficient matrix

A D
24 4 10 0

�5 �6 0

0 0 1

35 : (62)

To portray the motion in space of a point x.t/ moving on a trajectory of this system,
we can regard this trajectory as a necklace string on which colored beads are placed
to mark its successive positions at fixed increments of time (so the point is moving
fastest where the spacing between beads is greatest). In order to aid the eye in
following the moving point’s progress, the size of the beads decreases continuously
with the passage of time and motion along the trajectory.
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FIGURE 5.3.15. Three-dimensional trajectories for the system x0 D Ax
with the matrix A given by Eq. (62).

The matrix A has the single real eigenvalue �1 with the single (real) eigen-
vector



0 0 1

�T and the complex conjugate eigenvalues �1˙ 5i . The negative
real eigenvalue corresponds to trajectories that lie on the x3-axis and approach the
origin as t ! 0 (as illustrated by the beads on the vertical axis of the figure). Thus
the origin .0; 0; 0/ is a sink that “attracts” all the trajectories of the system.

The complex conjugate eigenvalues with negative real part correspond to tra-
jectories in the horizontal x1x2-plane that spiral around the origin while approaching
it. Any other trajectory—one which starts at a point lying neither on the ´-axis nor in
the x1x2-plane—combines the preceding behaviors by spiraling around the surface
of a cone while approaching the origin at its vertex.
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Gallery of Typical Phase Portraits for the System x0 D Ax: Nodes

Proper Nodal Source: A repeated posi-
tive real eigenvalue with two linearly in-
dependent eigenvectors.

Proper Nodal Sink: A repeated negative
real eigenvalue with two linearly indepen-
dent eigenvectors.

Improper Nodal Source: Distinct positive real eigenvalues (left) or a repeated positive real
eigenvalue without two linearly independent eigenvectors (right).

Improper Nodal Sink: Distinct negative real eigenvalues (left) or a repeated negative real
eigenvalue without two linearly independent eigenvectors (right).

FIGURE 5.3.16. Gallery of typical phase plane portraits for the system x0 D Ax.
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Gallery of Typical Phase Portraits for the System x0 D Ax:
Saddles, Centers, Spirals, and Parallel Lines

Saddle Point: Real eigenvalues of oppo-
site sign.

Center: Pure imaginary eigenvalues.

Spiral Source: Complex conjugate
eigenvalues with positive real part.

Spiral Sink: Complex conjugate eigen-
values with negative real part.

Parallel Lines: One zero and one neg-
ative real eigenvalue. (If the nonzero
eigenvalue is positive, then the trajecto-
ries flow away from the dotted line.)

Parallel Lines: A repeated zero eigen-
value without two linearly independent
eigenvectors.

FIGURE 5.3.16. (Continued)



5.3 A Gallery of Solution Curves of Linear Systems 317

5.3 Problems
For each of the systems in Problems 1 through 16 in Section
5.2, categorize the eigenvalues and eigenvectors of the coeffi-
cient matrix A according to Fig. 5.3.16 and sketch the phase
portrait of the system by hand. Then use a computer system or
graphing calculator to check your answer.

The phase portraits in Problem 17 through 28 corre-
spond to linear systems of the form x0DAx in which the matrix
A has two linearly independent eigenvectors. Determine the
nature of the eigenvalues and eigenvectors of each system. For
example, you may discern that the system has pure imaginary
eigenvalues, or that it has real eigenvalues of opposite sign;
that an eigenvector associated with the positive eigenvalue is

roughly


2 �1 �T , etc.

17.

18.

19.

20.

21.

22.

23.
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24.

25.

26.

27.

28.

29. We can give a simpler description of the general solution

x.t/ D c1

� �1
6

�
e�2t C c2

�
1

1

�
e5t (9)

of the system

x0 D
�
4 1

6 �1
�

x

in Example 1 by introducing the oblique uv-coordinate
system indicated in Fig. 5.3.17, in which the u-and v-

axes are determined by the eigenvectors v1 D
� �1

6

�
and

v2 D
�
1

1

�
, respectively.

v1

v2

u

v

u

v

FIGURE 5.3.17. The oblique uv-coordinate system
determined by the eigenvectors v1 and v2.

The uv-coordinate functions u.t/ and v.t/ of the
moving point x.t/ are simply its distances from the origin
measured in the directions parallel to v1 and v2. It follows
from (9) that a trajectory of the system is described by

u.t/ D u0e
�2t ; v.t/ D v0e

5t (63)

where u0 D u.0/ and v0 D v.0/. (a) Show that if v0 D 0,
then this trajectory lies on the u-axis, whereas if u0 D 0,
then it lies on the v-axis. (b) Show that if u0 and v0 are
both nonzero, then a “Cartesian” equation of the paramet-
ric curve in Eq. (63) is given by v D Cu�5=2.

30. Use the chain rule for vector-valued functions to verify the
principle of time reversal.
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In Problems 31–33 A represents a 2 � 2 matrix.

31. Use the definitions of eigenvalue and eigenvector (Section
5.2) to prove that if � is an eigenvalue of A with associ-
ated eigenvector v, then �� is an eigenvalue of the ma-
trix �A with associated eigenvector v. Conclude that if
A has positive eigenvalues 0 < �2 < �1 with associated
eigenvectors v1 and v2, then �A has negative eigenvalues
��1 < ��2 < 0 with the same associated eigenvectors.

32. Show that the system x0 DAx has constant solutions other
than x.t/ � 0 if and only if there exists a (constant) vector
x 6D 0 with AxD 0. (It is shown in linear algebra that such
a vector x exists exactly when det.A/ D 0.)

33. (a) Show that if A has the repeated eigenvalue � with two
linearly independent associated eigenvectors, then every
nonzero vector v is an eigenvector of A. (Hint: Express v
as a linear combination of the linearly independent eigen-
vectors and multiply both sides by A.) (b) Conclude that
A must be given by Eq. (22). (Suggestion: In the equation
Av D �v take v D 
 1 0

�T and v D 
 0 1
�T .)

34. Verify Eq. (53) by substituting the expressions for x1.t/

and x2.t/ from Eq. (51) into Eq. (52) and simplifying.

Problems 35–37 show that all nontrivial solution curves of the
system in Example 11 are ellipses rotated by the same angle
as the trajectory in Fig. 5.3.11.

35. The system in Example 11 can be rewritten in scalar form
as

x0
1 D 6x1 � 17x2;

x0
2 D 8x1 � 6x2;

leading to the first-order differential equation

dx2

dx1
D dx2=dt

dx1=dt
D 8x1 � 6x2

6x1 � 17x2
;

or, in differential form,

.6x2 � 8x1/ dx1 C .6x1 � 17x2/ dx2 D 0:
Verify that this equation is exact with general solution

�4x2
1 C 6x1x2 �

17

2
x2

2 D k; (64)

where k is a constant.

36. In analytic geometry it is shown that the general quadratic
equation

Ax2
1 C Bx1x2 C Cx2

2 D k (65)

represents an ellipse centered at the origin if and only if
Ak > 0 and the discriminant B2 � 4AC < 0 . Show that
Eq. (64) satisfies these conditions if k < 0, and thus con-
clude that all nondegenerate solution curves of the system
in Example 11 are elliptical.

37. It can be further shown that Eq. (65) represents in general
a conic section rotated by the angle � given by

tan 2� D B

A � C :

Show that this formula applied to Eq. (64) leads to the an-
gle � D arctan 2

4 found in Example 11, and thus conclude
that all elliptical solution curves of the system in Exam-
ple 11 are rotated by the same angle � . (Suggestion: You
may find useful the double-angle formula for the tangent
function.)

38. Let vD 
 3C 5i 4
�T be the complex eigenvector found

in Example 11 and let ´ be a complex number. (a) Show
that the real and imaginary parts Qa and Qb, respectively,
of the vector Qv D ´ � v are perpendicular if and only if
´ D r.1˙ i/ for some nonzero real number r . (b) Show
that if this is the case, then Qa and Qb are parallel to the
axes of the elliptical trajectory found in Example 11 (as
Fig. 5.3.12 indicates).

39. Let A denote the 2 � 2 matrix

A D
�
a b

c d

�
:

(a) Show that the characteristic equation of A (Eq. (8),
Section 5.2) is given by

�2 � .aC d/�C .ad � bc/ D 0:

(b) Suppose that the eigenvalues of A are pure imaginary.
Show that the trace T .A/ D aC d of A must be zero
and that the determinant D.A/ D ad � bc must be
positive. Conclude that c 6D 0.

40. Use the eigenvalue/eigenvector method to confirm the so-
lution in Eq. (61) of the initial value problem in Eq. (59).

5.3 Application Dynamic Phase Plane Graphics

Using computer systems we can “bring to life” the static gallery of phase portraits
in Fig. 5.3.16 by allowing initial conditions, eigenvalues, and even eigenvectors to
vary in “real time.” Such dynamic phase plane graphics afford additional insight
into the relationship between the algebraic properties of the 2 � 2 matrix A and the
phase plane portrait of the system x0 D Ax.



320 Chapter 5 Linear Systems of Differential Equations

For example, the basic linear system

dx1

dt
D �x1;

dx2

dt
D �kx2 (k a nonzero constant),

has general solution
x1.t/ D ae�t ; x2.t/ D be�kt ;

where .a; b/ is the initial point. If a 6D 0, then we can write

x2 D be�kt D b

ak
.ae�t / D cxk

1 ; (1)

where c D b=ak . A version of the Maple commands

with(plots):
createPlot := proc(k)

soln := plot([exp(--t), exp(--k*t),
t = --10..10], x = --5..5, y = --5..5):

return display(soln):
end proc:
Explore(createPlot(k),

parameters = [k = --2.0..2.0])

produces Fig. 5.3.18, which allows the user to vary the parameter k continuously
from k D �2 to k D 2, thus showing dynamically the changes in the solution curves
(1) in response to changes in k.

–4 –2

–2

–4

0

0.0 1.0–1.0–2.0 2.0

0

x1

x 2

2

2

4

4

k: –2.000

FIGURE 5.3.18. Interactive display
of the solution curves in Eq. (1). Using
the slider, the value of k can be varied
continuously from �2 to 2.

Figure 5.3.19 shows snapshots of the interactive display in Fig. 5.3.18 corre-
sponding to the values �1 , 1

2
, and 2 for the parameter k. Based on this progression,

how would you expect the solution curves in Eq. (1) to look when k D 1? Does
Eq. (1) corroborate your guess?

–4 –2

–2

–4

0

0

x1

x 2

2

2

4

4 –4 –2

–2

–4

0

0

x1

x 2

2

2

4

4 –4 –2

–2

–4

0

0

x1

x 2

2

2

4

4

FIGURE 5.3.19. Snapshots of the interactive display in Fig. 5.3.18 with the initial conditions held
fixed and the parameter k equal to �1 , 1

2
, and 2, respectively.

As another example, a version of the Mathematica commands

a = {{--5, 17}, {--8, 7}};
x[t ] := {x1[t], x2[t]};
Manipulate[

soln = DSolve[{x’[t] == a.x[t],
x[0] == pt[[1]]}, x[t], t];

ParametricPlot[x[t]/.soln, {t, --3.5, 10},
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PlotRange --> 5],
{{pt, {{4, 2}}}, Locator}]

was used to generate Fig. 5.3.20, which (like Figs. 5.3.13 and 5.3.14) shows the
solution curve of the initial value problem

x0 D
� �5 17

�8 7

�
x; x.0/ D

�
4

2

�
(2)

from Example 13 of the preceding section. However, in Fig. 5.3.20 the initial condi-
tion .4; 2/ is attached to a “locator point” which can be freely dragged to any desired
position in the phase plane, with the corresponding solution curve being instantly
redrawn—thus illustrating dynamically the effect of varying the initial conditions.

–4 –2

–2

–4

0

0

x1

x 2

2

2

4
(4, 2)

4

FIGURE 5.3.20. Interactive display
of the initial value problem in Eq. (2).
As the “locator point” is dragged to
different positions, the solution curve is
immediately redrawn, showing the
effect of changing the initial conditions.

–4 –2

–2

–4
0

0

x1

x 2

2

k

2

4

4

FIGURE 5.3.21. Interactive display
of the initial value problem x0 D Ax
with A given by Eq. (3). Both the
initial conditions and the value of the
parameter k can be varied
dynamically.

Finally, Fig. 5.3.21 shows a more sophisticated, yet perhaps more revealing,
demonstration. As you can verify, the matrix

A D 1

10

�
k C 9 3 � 3k
3 � 3k 9k C 1

�
(3)

has the variable eigenvalues 1 and k but with fixed associated eigenvectors


3 1

�T
and



1 �3 �T , respectively. Figure 5.3.21, which was generated by a version of

the Mathematica commands

a[k ] := (1/10){{k + 9, 3 -- 3k}, {3 -- 3k, 9k + 1}}
x[t ] := {x1[t], x2[t]}
Manipulate[

soln[k ] = DSolve[{x’[t] == a[k].x[t],
x[0] == #}, x[t], t]&/@pt;

curve = ParametricPlot
[Evaluate[x[t]/.soln[k]], {t, --10, 10},
PlotRange --> 4], {k, --1, 1},

{{pt, {{2, --1}, {1, 2}, {--1, --2}, {--2, 1}}},
Locator}]
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shows the phase portrait of the system x0 DAx with A given by Eq. (3). Not only are
the initial conditions of the individual trajectories controlled independently by the
“locator points,” but using the slider we can also vary the value of k continuously
from �1 to 1, with the solution curves being instantly redrawn. Thus for a fixed
value of k we can experiment with changing initial conditions throughout the phase
plane, or, conversely, we can hold the initial conditions fixed and observe the effect
of changing the value of k.

As a further example of what such a display can reveal, Fig. 5.3.22 consists
of a series of snapshots of Fig. 5.3.21 where the initial conditions are held fixed and
k progresses through the specific values �1, �0:25, 0, 0.5, 0.65, and 1. The result
is a “video” showing stages in a transition from a saddle point with “hyperbolic”
trajectories, to a pair of parallel lines, to an improper nodal source with “parabolic”
trajectories, and finally to the exploding star pattern of a proper nodal source with
straight-line trajectories. Perhaps these frames provide a new interpretation of the
description “dynamical system” for a collection of interdependent differential equa-
tions.
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FIGURE 5.3.22. Snapshots of the interactive display in Fig. 5.3.21 with the initial conditions held
fixed and the parameter k increasing from �1 to 1.

5.4 Second-Order Systems and Mechanical Applications�

In this section we apply the matrix methods of Sections 5.1 and 5.2 to investigate
the oscillations of typical mass-and-spring systems having two or more degrees of
freedom. Our examples are chosen to illustrate phenomena that are generally char-
acteristic of complex mechanical systems.

� This optional section may be omitted without loss of continuity. It provides a sample of the more
technical applications of eigenvalues to physics and engineering problems.
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Figure 5.4.1 shows three masses connected to each other and to two walls byk1

x1 x2 x3

k2 k3 k4
m1 m2 m3

FIGURE 5.4.1. Three
spring-coupled masses.

the four indicated springs. We assume that the masses slide without friction and
that each spring obeys Hooke’s law—its extension or compression x and force F
of reaction are related by the formula F D �kx. If the rightward displacements x1,
x2, and x3 of the three masses (from their respective equilibrium positions) are all
positive, then

� The first spring is stretched the distance x1;
� The second spring is stretched the distance x2 � x1;
� The third spring is stretched the distance x3 � x2;
� The fourth spring is compressed the distance x3.

Therefore, application of Newton’s law F D ma to the three masses (as in Example
1 of Section 4.1) yields their equations of motion:

m1x
00
1 D �k1x1 C k2.x2 � x1/,

m2x
00
2 D �k2.x2 � x1/ C k3.x3 � x2/,

m3x
00
3 D �k3.x3 � x2/ � k4x3.

(1)

Although we assumed in writing these equations that the displacements of the
masses are all positive, they actually follow similarly from Hooke’s and Newton’s
laws, whatever the signs of these displacements.

In terms of the displacement vector x D 
 x1 x2 x3

�T , the mass matrix

M D
24 m1 0 0

0 m2 0

0 0 m3

35 (2)

and the stiffness matrix

K D
24 �.k1 C k2/ k2 0

k2 �.k2 C k3/ k3

0 k3 �.k3 C k4/

35 ; (3)

the system in (1) takes the matrix form

Mx00 D Kx: (4)

The notation in Eqs. (1) through (4) generalizes in a natural way to the system
of n spring-coupled masses shown in Fig. 5.4.2. We need only write

x1 xn – 1

k2

xn

m1 m2

k1 kn
mnmn –1

kn + 1

x2

…

…

FIGURE 5.4.2. A system of n
spring-coupled masses.

M D

26664
m1 0 � � � 0

0 m2 � 0
:::

:::
:::

0 0 � � � mn

37775 (5)
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and

K D

26666666666666664

�.k1 C k2/ k2 0 � � � 0

k2 �.k2 C k3/ k3 � � � 0

0 k3 �.k3 C k4/ � � � 0

0 0 k4 � � � 0

:::
:::

:::

0 0 � � � �.kn�1 C kn/ kn

0 0 � � � kn �.kn C knC1/

37777777777777775
(6)

for the mass and stiffness matrices in Eq. (4).
The diagonal matrix M is obviously nonsingular; to get its inverse M�1 we

need only replace each diagonal element with its reciprocal. Hence multiplication
of each side in Eq. (4) by M�1 yields the homogeneous second-order system

x00 D Ax; (7)

where A D M�1K. There is a wide variety of frictionless mechanical systems for
which a displacement or position vector x, a nonsingular mass matrix M, and a
stiffness matrix K satisfying Eq. (4) can be defined.

Solution of Second-Order Systems
To seek a solution of Eq. (7), we substitute (as in Section 5.2 for a first-order system)
a trial solution of the form

x.t/ D ve˛t ; (8)

where v is a constant vector. Then x00 D ˛2ve˛t , so substitution of Eq. (8) in (7)
gives

˛2ve˛t D Ave˛t ;

which implies that

Av D ˛2v: (9)

Therefore x.t/ D ve˛t is a solution of x00 D Ax if and only if ˛2 D �, an eigenvalue
of the matrix A, and v is an associated eigenvector.

If x00 D Ax models a mechanical system, then it is typical that the eigenvalues
of A are negative real numbers. If

˛2 D � D �!2 < 0;

then ˛ D ˙!i . In this case the solution given by Eq. (8) is

x.t/ D vei!t D v.cos!t C i sin!t/:

The real and imaginary parts

x1.t/ D v cos!t and x2.t/ D v sin!t (10)

of x.t/ are then linearly independent real-valued solutions of the system. This anal-
ysis leads to the following theorem.
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THEOREM 1 Second-Order Homogeneous Linear Systems

If the n � n matrix A has distinct negative eigenvalues �!2
1 , �!2

2 , : : : ; �!2
n with

associated [real] eigenvectors v1, v2, : : : ; vn, then a general solution of

x00 D Ax

is given by

x.t/ D
nX

iD1

.ai cos!i t C bi sin!i t /vi (11)

with ai and bi arbitrary constants. In the special case of a nonrepeated zero
eigenvalue �0 with associated eigenvector v0,

x0.t/ D .a0 C b0t /v0 (12)

is the corresponding part of the general solution.

Remark The nonzero vector v0 is an eigenvector corresponding to �0 D 0 provided that
Av0 D 0. If x.t/ D .a0 C b0t /v0, then

x00 D 0 � v0 D .a0 C b0t / � 0 D .a0 C b0t / � .Av0/ D Ax;

thus verifying the form in Eq. (12).

Example 1 Consider the mass-and-spring system with n D 2 shown in Fig. 5.4.3. Because there is no
third spring connected to a right-hand wall, we set k3 D 0. If m1 D 2, m2 D 1, k1 D 100, and
k2 D 50, then the equation Mx00 D Kx is

k1 k2

Equilibrium positions

x2(t)x1(t)

m1 m2

FIGURE 5.4.3. The mass-and-
spring system of Example 1.

�
2 0

0 1

�
x00 D

� �150 50

50 �50
�

x; (13)

which reduces to x00 D Ax with

A D
� �75 25

50 �50
�
:

The characteristic equation of A is

.�75 � �/.�50 � �/ � 50 � 25 D �2 C 125�C 2500
D .�C 25/.�C 100/ D 0;

so A has the negative eigenvalues �1 D �25 and �2 D �100. By Theorem 1, the system in
(13) therefore has solutions with [circular] frequencies !1 D 5 and !2 D 10.

CASE 1: �1 D �25. The eigenvector equation .A � �I/v D 0 is� �50 25

50 �25
� �

a

b

�
D
�
0

0

�
;

so an eigenvector associated with �1 D �25 is v1 D


1 2

�T .
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CASE 2: �2 D �100. The eigenvector equation .A � �I/v D 0 is�
25 25

50 50

� �
a

b

�
D
�
0

0

�
;

so an eigenvector associated with �2 D �100 is v2 D


1 �1 �T .

By Eq. (11) it follows that a general solution of the system in (13) is given by

x.t/ D .a1 cos 5t C b1 sin 5t/v1 C .a2 cos 10t C b2 sin 10t/v2: (14)

As in the discussion of Example 3 of Section 4.2, the two terms on the right in Eq. (14)
represent free oscillations of the mass-and-spring system. They describe the physical sys-
tem’s two natural modes of oscillation at its two [circular] natural frequencies !1 D 5 and
!2 D 10. The natural mode

x1.t/ D .a1 cos 5t C b1 sin 5t/v1 D c1 cos.5t � ˛1/

�
1

2

�
(with c1 D

p
a2

1 C b2
1 , cos˛1 D a1=c1, and sin˛1 D b1=c1) has the scalar component equa-

x = x2(t)

x = x1(t)

0 2ππ

t

x

FIGURE 5.4.4. Oscillations in the
same direction with frequency !1 D 5;
the amplitude of motion of mass 2 is
twice that of mass 1.

tions

x1.t/ D c1 cos.5t � ˛1/;

x2.t/ D 2c1 cos.5t � ˛1/;
(15)

and therefore describes a free oscillation in which the two masses move in synchrony in the
same direction and with the same frequency !1 D 5, but with the amplitude of motion of m2

twice that of m1 (see Fig. 5.4.4). The natural mode

x2.t/ D .a2 cos 10t C b2 sin 10t/v2 D c2 cos.10t � ˛2/

�
1

�1
�

has the scalar component equations

x1.t/ D c2 cos.10t � ˛2/;

x2.t/ D �c2 cos.10t � ˛2/;
(16)

and therefore describes a free oscillation in which the two masses move in synchrony in
opposite directions with the same frequency !2 D 10 and with equal amplitudes of oscillation

x = x2(t)

x = x1(t)

π

t

x

0 3π/2π/2

FIGURE 5.4.5. Oscillations in
opposite directions with frequency
!2 D 10; the amplitudes of motion of
the two masses are the same.

(see Fig. 5.4.5).

Example 2 Figure 5.4.6 shows three railway cars connected by buffer springs that react when com-
pressed, but disengage instead of stretching. With n D 3, k2 D k3 D k, and k1 D k4 D 0 in
Eqs. (2) through (4), we get the system24 m1 0 0

0 m2 0

0 0 m3

35 x00 D
24 �k k 0

k �2k k

0 k �k

35 x; (17)

which is equivalent to

m1 m2 m3

k2 k3

FIGURE 5.4.6. The three railway
cars of Example 2.

x00 D
24 �c1 c1 0

c2 �2c2 c2

0 c3 �c3

35 x (18)

with

ci D
k

mi
.i D 1; 2; 3/: (19)

If we assume further that m1 D m3, so that c1 D c3, then a brief computation gives

��.�C c1/.�C c1 C 2c2/ D 0 (20)
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for the characteristic equation of the coefficient matrix A in Eq. (18). Hence the matrix A has
eigenvalues

�1 D 0; �2 D �c1; �3 D �c1 � 2c2 (21a)

corresponding to the natural frequencies

!1 D 0; !2 D
p
c1; !3 D

p
c1 C 2c2 (21b)

of the physical system.
For a numerical example, suppose that the first and third railway cars weigh 12 tons

each, that the middle car weighs 8 tons, and that the spring constant is k D 1:5 tons=ft; i.e.,
k D 3000 lb=ft. Then, using fps units with mass measured in slugs (a weight of 32 pounds
has a mass of 1 slug), we have

m1 D m3 D 750; m2 D 500;

and

c1 D
3000

750
D 4; c2 D

3000

500
D 6:

Hence the coefficient matrix A is

A D
24 �4 4 0

6 �12 6

0 4 �4

35 ; (22)

and the eigenvalue-frequency pairs given by (21a) and (21b) are �1 D 0, !1 D 0; �2 D �4,
!2 D 2; and �3 D �16, !3 D 4.

CASE 1: �1 D 0, !1 D 0. The eigenvector equation .A � �I/v D 0 is

Av D
24 �4 4 0

6 �12 6

0 4 �4

3524 ab
c

35 D
24 00
0

35 ;
so it is clear that v1 D



1 1 1

�T is an eigenvector associated with �1 D 0. According to
Theorem 1, the corresponding part of a general solution of x00 D Ax is

x1.t/ D .a1 C b1t /v1:

CASE 2: �2 D �4, !2 D 2. The eigenvector equation .A � �I/v D 0 is

.AC 4I/v D
24 0 4 0

6 �8 6

0 4 0

3524 ab
c

35 D
24 00
0

35 ;
so it is clear that v2D



1 0 �1 �T is an eigenvector associated with �2D�4. According

to Theorem 1, the corresponding part of a general solution of x00 D Ax is

x2.t/ D .a2 cos 2t C b2 sin 2t/v2:

CASE 3: �3 D �16, !3 D 4. The eigenvector equation .A � �I/v D 0 is

.AC 16I/v D
24 12 4 0

6 4 6

0 4 12

3524 ab
c

35 D
24 00
0

35 ;
so it is clear that v3 D



1 �3 1

�T is an eigenvector associated with �3 D�16. Accord-
ing to Theorem 1, the corresponding part of a general solution of x00 D Ax is

x3.t/ D .a3 cos 4t C b3 sin 4t/v3:
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The general solution x D x1 C x2 C x3 of x00 D Ax is therefore given by

x.t/ D a1

24 11
1

35C b1t

24 11
1

35C a2

24 1

0

�1

35 cos 2t

C b2

24 1

0

�1

35 sin 2t C a3

24 1

�3
1

35 cos 4t C b3

24 1

�3
1

35 sin 4t: (23)

To determine a particular solution, let us suppose that the leftmost car is moving to the right
with velocity v0 and at time t D 0 strikes the other two cars, which are together but at rest.
The corresponding initial conditions are

x1.0/ D x2.0/ D x3.0/ D 0; (24a)

x0
1.0/ D v0; x0

2.0/ D x0
3.0/ D 0: (24b)

Then substitution of (24a) in (23) gives the scalar equations

a1 C a2 C a3 D 0,
a1 � 3a3 D 0,
a1 � a2 C a3 D 0,

which readily yield a1 D a2 D a3 D 0. Hence the position functions of the three cars are

x1.t/ D b1t C b2 sin 2t C b3 sin 4t ,

x2.t/ D b1t � 3b3 sin 4t ,

x3.t/ D b1t � b2 sin 2t C b3 sin 4t ,

(25)

and their velocity functions are

x0
1.t/ D b1 C 2b2 cos 2t C 4b3 cos 4t;

x0
2.t/ D b1 � 12b3 cos 4t ,

x0
3.t/ D b1 � 2b2 cos 2t C 4b3 cos 4t .

(26)

Substitution of (24b) in (26) gives the equations

b1 C 2b2 C 4b3 D v0,

b1 � 12b3 D 0,

b1 � 2b2 C 4b3 D 0

that readily yield b1 D 3
8v0, b2 D 1

4v0, and b3 D 1
32v0. Finally, the position functions in (25)

are

x1.t/ D 1
32v0.12t C 8 sin 2t C sin 4t/,

x2.t/ D 1
32v0.12t � 3 sin 4t/,

x3.t/ D 1
32v0.12t � 8 sin 2t C sin 4t/.

(27)

But these equations hold only so long as the two buffer springs remain compressed;
that is, while both

x2 � x1 < 0 and x3 � x2 < 0:

To discover what this implies about t , we compute

x2.t/ � x1.t/ D 1
32v0.�8 sin 2t � 4 sin 4t/

D � 1
32v0.8 sin 2t C 8 sin 2t cos 2t/

D �1
4v0.sin 2t/.1C cos 2t/
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and, similarly,
x3.t/ � x2.t/ D �1

4v0.sin 2t/.1 � cos 2t/:

It follows that x2 � x1 < 0 and x3 � x2 < 0 until t D �=2 � 1:57 (seconds), at which time
the equations in (26) and (27) give the values

x1

��
2

�
D x2

��
2

�
D x3

��
2

�
D 3�v0

16
;

x0
1

��
2

�
D x0

2

��
2

�
D 0; x0

3

��
2

�
D v0:

We conclude that the three railway cars remain engaged and moving to the right until dis-
engagement occurs at time t D �=2. Thereafter, cars 1 and 2 remain at rest (!), while car 3
continues to the right with speed v0. If, for instance, v0 D 48 feet per second (about 33 miles
per hour), then the three cars travel a distance of 9� � 28:27 (ft) during their 1:57 seconds of
engagement, and

x1.t/ D x2.t/ D 9�; x3.t/ D 48t � 15� (270)

for t > �=2. Figure 5.4.7 illustrates the “before”and “after”situations, and Fig. 5.4.8 shows
the graphs of the functions x1.t/, x2.t/, and x3.t/ in Eqs. (27) and (270).

(b)

At rest

(a)

At rest

FIGURE 5.4.7. (a) Before; (b) after.

2.52.01.51.00.50
t

x
0

25

75

50

Cars 1 and 2
stop here

Car 3
continues

x = x1(t ) = x2(t )

x 
= 

x 3
(t

)

x 1
(t )

x 2
(t )

x 3
(t )

FIGURE 5.4.8. Position functions
of the three railway cars of Example 2.

Forced Oscillations and Resonance
Suppose now that the i th mass of the mass-and-spring system in Fig. 5.4.2 is subject
to an external force Fi (i D 1; 2; : : : ; n) in addition to the forces exerted by the
springs attached to it. Then the homogeneous equation Mx00 D Kx is replaced with
the nonhomogeneous equation

Mx00 D KxC F; (28)

where FD 
 F1 F2 : : : Fn

�T is the external force vector for the system. Mul-
tiplication by M�1 yields

x00 D AxC f; (29)

where f is the external force vector per unit mass. We are especially interested in
the case of a periodic external force

f.t/ D F0 cos!t (30)
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(where F0 is a constant vector). We then anticipate a periodic particular solution

xp.t/ D c cos!t (31)

with the known external frequency ! and with a coefficient vector c yet to be deter-
mined. Because x00

p D �!2c cos!t , substitution of (30) and (31) in (29), followed
by cancellation of the common factor cos!t , gives the linear system

.AC !2I/c D �F0 (32)

to be solved for c.
Observe that the matrix AC !2I is nonsingular—in which case Eq. (32) can

be solved for c—unless �!2 D �, an eigenvalue of A. Thus a periodic particular
solution of the form in Eq. (31) exists provided that the external forcing frequency
does not equal one of the natural frequencies !1; !2; : : : ; !n of the system. The case
in which ! is a natural frequency corresponds to the phenomenon of resonance
discussed in Section 3.6.

Example 3 Suppose that the second mass in Example 1 is subjected to the external periodic force
50 cos!t . Then with m1 D 2, m2 D 1, k1 D 100, k2 D 50, and F0 D 50 in Fig. 5.4.9,
Eq. (29) takes the formk1 k2

x2x1

m1 m2

F (t)

FIGURE 5.4.9. The forced
mass-and-spring system of Example 3.

x00 D
� �75 25

50 �50
�

xC
�
0

50

�
cos!t; (33)

and the substitution x D c cos!t leads to the equation�
!2 � 75 25

50 !2 � 50
�

c D
�

0

�50
�

(34)

for the coefficient vector c D 
 c1 c2

�T . This system is readily solved for

c1 D
1250

.!2 � 25/.!2 � 100/ ; c2 D �
50.!2 � 75/

.!2 � 25/.!2 � 100/ : (35)

For instance, if the external squared frequency is !2 D 50, then (35) yields c1 D �1,
c2 D �1. The resulting forced periodic oscillation is described by

x1.t/ D � cos!t; x2.t/ D � cos!t:

Thus the two masses oscillate in synchrony with equal amplitudes and in the same direction.
If the external squared frequency is !2 D 125, then (35) yields c1 D 1

2 , c2 D �1. The
resulting forced periodic oscillation is described by

x1.t/ D 1
2 cos!t; x2.t/ D � cos!t;

and now the two masses oscillate in synchrony in opposite directions, but with the amplitude
of motion of m2 twice that of m1.

It is evident from the denominators in (35) that c1 and c2 approach C1 as ! ap-
proaches either of the two natural frequencies !1 D 5 and !2 D 10 (found in Example
1). Figure 5.4.10 shows a plot of the amplitude

p
c2

1 C c2
2 of the forced periodic solution

x.t/ D c cos!t as a function of the forced frequency !. The peaks at !2 D 5 and !2 D 10

exhibit visually the phenomenon of resonance.

151050
Forced frequency

A
m

pl
itu

de

0

5

15

10

FIGURE 5.4.10. Frequency–
amplitude plot for Example 3.
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Periodic and Transient Solutions
It follows from Theorem 4 of Section 5.1 that a particular solution of the forced
system

x00 D AxC F0 cos!t (36)

will be of the form

x.t/ D xc.t/C xp.t/; (37)

where xp.t/ is a particular solution of the nonhomogeneous system and xc.t/ is a
solution of the corresponding homogeneous system. It is typical for the effects of
frictional resistance in mechanical systems to damp out the complementary function
solution xc.t/, so that

xc.t/! 0 as t !C1: (38)

Hence xc.t/ is a transient solution that depends only on the initial conditions; it
dies out with time, leaving the steady periodic solution xp.t/ resulting from the
external driving force:

x.t/! xp.t/ as t !C1: (39)

As a practical matter, every physical system includes frictional resistance (however
small) that damps out transient solutions in this manner.

5.4 Problems
Problems 1 through 7 deal with the mass-and-spring system
shown in Fig. 5.4.11 with stiffness matrix

K D
� �.k1 C k2/ k2

k2 �.k2 C k3/

�
and with the given mks values for the masses and spring con-
stants. Find the two natural frequencies of the system and de-
scribe its two natural modes of oscillation.

x1 x2

k1 k2 k3
m2m1

FIGURE 5.4.11. The
mass–and–spring system for Problems 1
through 6.

1. m1 D m2 D 1; k1 D 0, k2 D 2, k3 D 0 (no walls)
2. m1 D m2 D 1; k1 D 1, k2 D 4, k3 D 1
3. m1 D 1, m2 D 2; k1 D 1, k2 D k3 D 2
4. m1 D m2 D 1; k1 D 1, k2 D 2, k3 D 1
5. m1 D m2 D 1; k1 D 2, k2 D 1, k3 D 2
6. m1 D 1, m2 D 2; k1 D 2, k2 D k3 D 4
7. m1 D m2 D 1; k1 D 4, k2 D 6, k3 D 4

In Problems 8 through 10 the indicated mass-and-spring sys-
tem is set in motion from rest .x0

1.0/ D x0
2.0/ D 0) in its equi-

librium position (x1.0/ D x2.0/ D 0) with the given external
forces F1.t/ and F2.t/ acting on the masses m1 and m2, re-
spectively. Find the resulting motion of the system and de-
scribe it as a superposition of oscillations at three different
frequencies.

8. The mass-and-spring system of Problem 2, with F1.t/ D
96 cos 5t , F2.t/ � 0

9. The mass-and-spring system of Problem 3, with F1.t/� 0,
F2.t/ D 120 cos 3t

10. The mass-and-spring system of Problem 7, with F1.t/ D
30 cos t , F2.t/ D 60 cos t

11. Consider a mass-and-spring system containing two
massesm1 D 1 andm2 D 1 whose displacement functions
x.t/ and y.t/ satisfy the differential equations

x00 D �40x C 8y,

y00 D 12x � 60y.

(a) Describe the two fundamental modes of free oscilla-
tion of the system. (b) Assume that the two masses start
in motion with the initial conditions

x.0/ D 19; x0.0/ D 12

and

y.0/ D 3; y0.0/ D 6
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and are acted on by the same force, F1.t/ D F2.t/ D
�195 cos 7t . Describe the resulting motion as a superpo-
sition of oscillations at three different frequencies.

In Problems 12 and 13, find the natural frequencies of the
three-mass system of Fig. 5.4.1, using the given masses and
spring constants. For each natural frequency !, give the ra-
tio a1:a2:a3 of amplitudes for a corresponding natural mode
x1 D a1 cos!t , x2 D a2 cos!t , x3 D a3 cos!t .

12. m1 D m2 D m3 D 1; k1 D k2 D k3 D k4 D 1
13. m1 D m2 D m3 D 1; k1 D k2 D k3 D k4 D 2

(Hint: One eigenvalue is � D �4.)
14. In the system of Fig. 5.4.12, assume thatm1 D 1, k1 D 50,

k2 D 10, and F0 D 5 in mks units, and that ! D 10. Then
findm2 so that in the resulting steady periodic oscillations,
the mass m1 will remain at rest(!). Thus the effect of the
second mass-and-spring pair will be to neutralize the ef-
fect of the force on the first mass. This is an example of
a dynamic damper. It has an electrical analogy that some
cable companies use to prevent your reception of certain
cable channels.

x1 x2

k1 k2

F (t ) = F0 cos ω t

m1 m2

FIGURE 5.4.12. The mechanical system
of Problem 14.

15. Suppose thatm1D 2,m2D 1
2 , k1D 75, k2D 25, F0D 100,

and ! D 10 (all in mks units) in the forced mass-and-
spring system of Fig. 5.4.9. Find the solution of the sys-
tem Mx00 D Kx C F that satisfies the initial conditions
x.0/ D x0.0/ D 0.

16. Figure 5.4.13 shows two railway cars with a buffer spring.
We want to investigate the transfer of momentum that oc-
curs after car 1 with initial velocity v0 impacts car 2 at
rest. The analog of Eq. (18) in the text is

x00 D
� �c1 c1

c2 �c2

�
x

with ci D k=mi for i D 1, 2. Show that the eigenvalues
of the coefficient matrix A are �1 D 0 and �2 D �c1 � c2,
with associated eigenvectors v1 D



1 1

�T and v2 D

c1 �c2

�T .

k
m1 m2

x1' (0) = 0 x2' (0) = 0

x1(t ) x2(t )

FIGURE 5.4.13. The two railway cars of
Problems 16 through 19.

17. If the two cars of Problem 16 both weigh 16 tons (so that
m1 D m2 D 1000 (slugs)) and k D 1 ton=ft (that is, 2000

lb=ft), show that the cars separate after �=2 seconds, and
that x0

1.t/D 0 and x0
2.t/D v0 thereafter. Thus the original

momentum of car 1 is completely transferred to car 2.
18. If cars 1 and 2 weigh 8 and 16 tons, respectively, and

k D 3000 lb=ft, show that the two cars separate after �=3
seconds, and that

x0
1.t/ D �1

3v0 and x0
2.t/ D C2

3v0

thereafter. Thus the two cars rebound in opposite direc-
tions.

19. If cars 1 and 2 weigh 24 and 8 tons, respectively, and
k D 1500 lb=ft, show that the cars separate after �=2 sec-
onds, and that

x0
1.t/ D C1

2v0 and x0
2.t/ D C3

2v0

thereafter. Thus both cars continue in the original direc-
tion of motion, but with different velocities.

Problems 20 through 23 deal with the same system of three
railway cars (same masses) and two buffer springs (same
spring constants) as shown in Fig. 5.4.6 and discussed in
Example 2. The cars engage at time t D 0 with x1.0/ D
x2.0/ D x3.0/ D 0 and with the given initial velocities (where
v0 D 48 ft/s). Show that the railway cars remain engaged until
t D �=2 (s), after which time they proceed in their respective
ways with constant velocities. Determine the values of these
constant final velocities x0

1.t/, x
0
2.t/, and x0

3.t/ of the three
cars for t > �=2. In each problem you should find (as in Exam-
ple 2) that the first and third railway cars exchange behaviors
in some appropriate sense.

20. x0
1.0/ D v0, x0

2.0/ D 0, x0
3.0/ D �v0

21. x0
1.0/ D 2v0, x0

2.0/ D 0, x0
3.0/ D �v0

22. x0
1.0/ D v0, x0

2.0/ D v0, x0
3.0/ D �2v0

23. x0
1.0/ D 3v0, x0

2.0/ D 2v0, x0
3.0/ D 2v0

24. In the three-railway-car system of Fig. 5.4.6, suppose that
cars 1 and 3 each weigh 32 tons, that car 2 weighs 8 tons,
and that each spring constant is 4 tons=ft. If x0

1.0/ D v0

and x0
2.0/D x0

3.0/D 0, show that the two springs are com-
pressed until t D �=2 and that

x0
1.t/ D �1

9v0 and x0
2.t/ D x0

3.t/ D C8
9v0

thereafter. Thus car 1 rebounds, but cars 2 and 3 continue
with the same velocity.

The Two-Axle Automobile
In Example 4 of Section 3.6 we investigated the vertical oscil-
lations of a one-axle car—actually a unicycle. Now we can
analyze a more realistic model: a car with two axles and with
separate front and rear suspension systems. Figure 5.4.14 rep-
resents the suspension system of such a car. We assume that
the car body acts as would a solid bar of mass m and length
L D L1 C L2. It has moment of inertia I about its center of
mass C , which is at distance L1 from the front of the car. The
car has front and back suspension springs with Hooke’s con-
stants k1 and k2, respectively. When the car is in motion, let
x.t/ denote the vertical displacement of the center of mass of
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the car from equilibrium; let �.t/ denote its angular displace-
ment (in radians) from the horizontal. Then Newton’s laws of
motion for linear and angular acceleration can be used to de-
rive the equations

mx00 D �.k1 C k2/x C .k1L1 � k2L2/�;

I� 00 D .k1L1 � k2L2/x � .k1L
2
1 C k2L

2
2/�:

(40)

Equilibrium
positionk1 k2

x1

x2
L1

L2
C q

x

FIGURE 5.4.14. Model of the
two-axle automobile.

25. Suppose that m D 75 slugs (the car weighs 2400 lb),
L1D 7 ft,L2D 3 ft (it’s a rear-engine car), k1D k2D 2000
lb=ft, and I D 1000 ft�lb�s2. Then the equations in (40)
take the form

75x00 C 4000x � 8000� D 0,

1000� 00 � 8000x C 116;000� D 0.
(a) Find the two natural frequencies !1 and !2 of the car.
(b) Now suppose that the car is driven at a speed of v feet

per second along a washboard surface shaped like a sine
curve with a wavelength of 40 ft. The result is a periodic
force on the car with frequency ! D 2�v=40 D �v=20.
Resonance occurs when ! D !1 or ! D !2. Find the
corresponding two critical speeds of the car (in feet per
second and in miles per hour).

26. Suppose that k1 D k2 D k and L1 D L2 D 1
2L in

Fig. 5.4.14 (the symmetric situation). Then show that ev-
ery free oscillation is a combination of a vertical oscilla-
tion with frequency

!1 D
p
2k=m

and an angular oscillation with frequency

!2 D
q
kL2=.2I /:

In Problems 27 through 29, the system of Fig. 5.4.14 is taken
as a model for an undamped car with the given parameters in
fps units. (a) Find the two natural frequencies of oscillation
(in hertz). (b) Assume that this car is driven along a sinu-
soidal washboard surface with a wavelength of 40 ft. Find the
two critical speeds.

27. m D 100, I D 800, L1 D L2 D 5, k1 D k2 D 2000
28. m D 100, I D 1000, L1 D 6, L2 D 4, k1 D k2 D 2000
29. m D 100, I D 800, L1 D L2 D 5, k1 D 1000, k2 D 2000

5.4 Application Earthquake-Induced Vibrations of Multistory Buildings
In this application you are to investigate the response to transverse earthquake

x7(t )

x6(t )

x5(t )

x4(t )

x3(t )

x2(t )

x1(t )m

Earthquake
oscillation

Ground

m

m

m

m

m

m

FIGURE 5.4.15. The seven-story
building.

ground oscillations of the seven-story building illustrated in Fig. 5.4.15. Suppose
that each of the seven (above-ground) floors weighs 16 tons, so the mass of each is
m D 1000 (slugs). Also assume a horizontal restoring force of k D 5 (tons per foot)
between adjacent floors. That is, the internal forces in response to horizontal dis-
placements of the individual floors are those shown in Fig. 5.4.16. It follows that the
free transverse oscillations indicated in Fig. 5.4.15 satisfy the equation Mx00 D Kx
with n D 7, mi D 1000 (for each i), and ki D 10; 000 (lb=ft) for 1 5 i 5 7. The
system then reduces to the form x00 D Ax with

A D

2666666664

�20 10 0 0 0 0 0

10 �20 10 0 0 0 0

0 10 �20 10 0 0 0

0 0 10 �20 10 0 0

0 0 0 10 �20 10 0

0 0 0 0 10 �20 10

0 0 0 0 0 10 �10

3777777775
: (1)

Once the matrix A has been entered, the TI-Nspire command eigVl(A)
instantly computes the seven eigenvalues shown in the �-column of the table in

k (x i + 1 – x i)k (x i – x i –1)
m

FIGURE 5.4.16. Forces on the i th
floor.

Fig. 5.4.17. Alternatively, you can use the Maple command eigenvals(A), the
MATLAB command eig(A), or the Mathematica command Eigenvalues[A].
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Eigenvalue Frequency Period

i � ! D

p

�� P D

2�

!
(sec)

1

2

3

4

5

6

7

�38:2709
�33:3826
�26:1803
�17:9094
�10:0000
�3:8197
�0:4370

6.1863

5.7778

5.1167

4.2320

3.1623

1.9544

0.6611

1.0157

1.0875

1.2280

1.4847

1.9869

3.2149

9.5042

FIGURE 5.4.17. Frequencies and periods of natural oscillations of the
seven-story building.

Then calculate the entries in the remaining columns of the table showing the nat-
ural frequencies and periods of oscillation of the seven-story building. Note that a
typical earthquake producing ground oscillations with a period of 2 seconds is un-
comfortably close to the fifth natural frequency (with period 1:9869 seconds) of the
building.

A horizontal earthquake oscillation E cos!t of the ground, with amplitude E
and acceleration a D �E!2 cos!t , produces an opposite inertial force F D ma D
mE!2 cos!t on each floor of the building. The resulting nonhomogeneous system
is

x00 D AxC .E!2 cos!t/b; (2)

where b D 
 1 1 1 1 1 1 1
�T and A is the matrix of Eq. (1). Figure 5.4.18

shows a plot of maximal amplitude (for the forced oscillations of any single floor)

543210
Period (s)
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FIGURE 5.4.18. Resonance
vibrations of a seven-story
building—maximal amplitude as a
function of period.

versus the period of the earthquake vibrations. The spikes correspond to the first
six of the seven resonant frequencies. We see, for instance, that whereas an earth-
quake with period 2 (s) likely would produce destructive resonance vibrations in
the building, it probably would be unharmed by an earthquake with period 2:5 (s).
Different buildings have different natural frequencies of vibration, and so a given
earthquake may demolish one building but leave untouched the one next door. This
seeming anomaly was observed in Mexico City after the devastating earthquake of
September 19, 1985.

For your personal seven-story building to investigate, let the weight (in tons)
of each story equal the largest digit of your student ID number and let k (in tons=ft)
equal the smallest nonzero digit. Produce numerical and graphical results like those
illustrated in Figs. 5.4.17 and 5.4.18. Is your building susceptible to likely damage
from an earthquake with period in the 2- to 3-second range?

You might like to begin by working manually the following warm-up prob-
lems.

1. Find the periods of the natural vibrations of a building with two above-ground
floors, each weighing 16 tons and with each restoring force being k D 5

tons=ft.
2. Find the periods of the natural vibrations of a building with three above-

ground floors, with each weighing 16 tons and with each restoring force being
k D 5 tons=ft.
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3. Find the natural frequencies and natural modes of vibration of a building with
three above-ground floors as in Problem 2, except that the upper two floors
weigh 8 tons each instead of 16. Give the ratios of the amplitudes A, B , and
C of oscillations of the three floors in the form A :B :C with A D 1.

4. Suppose that the building of Problem 3 is subject to an earthquake in which
the ground undergoes horizontal sinusoidal oscillations with a period of 3 s
and an amplitude of 3 in. Find the amplitudes of the resulting steady periodic
oscillations of the three above-ground floors. Assume the fact that a motion
E sin!t of the ground, with acceleration a D �E!2 sin!t , produces an op-
posite inertial force F D �ma D mE!2 sin!t on a floor of mass m.

5.5 Multiple Eigenvalue Solutions
In Section 5.2 we saw that if the n � n matrix A has n distinct (real or complex)
eigenvalues �1, �2, : : : ; �n with respective associated eigenvectors v1, v2, : : : ; vn,
then a general solution of the system

dx
dt
D Ax (1)

is given by

x.t/ D c1v1e
�1t C c2v2e

�2t C � � � C cnvne
�nt (2)

with arbitrary constants c1, c2, : : : ; cn. In this section we discuss the situation when
the characteristic equation

jA � �Ij D 0 (3)

does not have n distinct roots, and thus has at least one repeated root.
An eigenvalue is of multiplicity k if it is a k-fold root of Eq. (3). For each

eigenvalue �, the eigenvector equation

.A � �I/v D 0 (4)

has at least one nonzero solution v, so there is at least one eigenvector associated
with �. But an eigenvalue of multiplicity k > 1 may have fewer than k linearly
independent associated eigenvectors. In this case we are unable to find a “complete
set” of n linearly independent eigenvectors of A, as needed to form the general
solution in (2).

Let us call an eigenvalue of multiplicity k complete if it has k linearly in-
dependent associated eigenvectors. If every eigenvalue of the matrix A is com-
plete, then—because eigenvectors associated with different eigenvalues are linearly
independent—it follows that A does have a complete set of n linearly independent
eigenvectors v1, v2, : : : ; vn associated with the eigenvalues �1, �2, : : : ; �n (each
repeated with its multiplicity). In this case a general solution of x0 D Ax is still
given by the usual combination in (2).

Example 1 Find a general solution of the system

x0 D
24 9 4 0

�6 �1 0

6 4 3

35 x: (5)
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Solution The characteristic equation of the coefficient matrix A in Eq. (5) is

jA � �Ij D
ˇ̌̌̌
ˇ̌ 9 � � 4 0

�6 �1 � � 0

6 4 3 � �

ˇ̌̌̌
ˇ̌

D .3 � �/Œ.9 � �/.�1 � �/C 24�
D .3 � �/.15 � 8�C �2/

D .5 � �/.3 � �/2 D 0:
Thus A has the distinct eigenvalue �1 D 5 and the repeated eigenvalue �2 D 3 of multiplicity
k D 2.

CASE 1: �1 D 5. The eigenvector equation .A � �I/v D 0, where v D Œa b c�T , is

.A � 5I/v D
24 4 4 0

�6 �6 0

6 4 �2

3524 ab
c

35 D
24 00
0

35 :
Each of the first two equations, 4aC 4b D 0 and �6a� 6b D 0, yields b D�a. Then the third
equation reduces to 2a � 2c D 0, so that c D a. The choice a D 1 then yields the eigenvector

v1 D


1 �1 1

�T
associated with the eigenvalue �1 D 5.

CASE 2: �2 D 3. Now the eigenvector equation is

.A � 3I/v D
24 6 4 0

�6 �4 0

6 4 0

3524 ab
c

35 D
24 00
0

35 ;
so the nonzero vector v D 
 a b c

�T is an eigenvector if and only if

6aC 4b D 0I (6)

that is, b D �3
2a. The fact that Eq. (6) does not involve c means that c is arbitrary, subject to

the condition v 6D 0. If c D 1, then we may choose a D b D 0; this gives the eigenvector

v2 D


0 0 1

�T
associated with �2 D 3. If c D 0, then we must choose a to be nonzero. For instance, if a D 2
(to avoid fractions), then b D �3, so

v3 D


2 �3 0

�T
is a second linearly independent eigenvector associated with the multiplicity 2 eigenvalue
�2 D 3.

Thus we have found a complete set v1, v2, v3 of three eigenvectors associated with the
eigenvalues 5, 3, 3. The corresponding general solution of Eq. (5) is

x.t/ D c1v1e
5t C c2v2e

3t C c3v3e
3t (7)

D c1

24 1

�1
1

35 e5t C c2

24 00
1

35 e3t C c3

24 2

�3
0

35 e3t ;

with scalar component functions given by

x1.t/ D c1e
5t C 2c3e

3t ;

x2.t/ D �c1e5t � 3c3e
3t ;

x3.t/ D c1e
5t C c2e

3t :
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Remark Our choice in Example 1 of the two eigenvectors

v2 D


0 0 1

�T and v3 D


2 �3 0

�T
associated with the repeated eigenvalue �2 D 3 bears comment. The fact that b D �3

2a for
any eigenvector associated with �2 D 3 means that any such eigenvector can be written as

v D

26664
a

�3
2a

c

37775 D c
26664
0

0

1

37775C 1
2a

26664
2

�3
0

37775 D cv2 C 1
2av3;

and thus is a linear combination of v2 and v3. Therefore, given a and c not both zero, we
could choose v rather than v3 as our third eigenvector, and the new general solution

x.t/ D c1v1e
5t C c2v2e

3t C c3ve3t

would be equivalent to the one in Eq. (7). Thus we need not worry about making the “right”
choice of independent eigenvectors associated with a multiple eigenvalue. Any choice will
do; we generally make the simplest one we can.

Defective Eigenvalues
The following example shows that—unfortunately—not all multiple eigenvalues are
complete.

Example 2 The matrix

A D
�
1 �3
3 7

�
(8)

has characteristic equation

jA � �Ij D
ˇ̌̌̌
1 � � �3
3 7 � �

ˇ̌̌̌
D .1 � �/.7 � �/C 9
D �2 � 8�C 16 D .� � 4/2 D 0:

Thus A has the single eigenvalue �1 D 4 of multiplicity 2. The eigenvector equation

.A � 4I/v D
� �3 �3

3 3

� �
a

b

�
D
�
0

0

�
then amounts to the equivalent scalar equations

�3a � 3b D 0; 3aC 3b D 0:
Hence b D �a if v D 


a b
�T is to be an eigenvector of A. Therefore any eigenvector

associated with �1 D 4 is a nonzero multiple of v D 

1 �1 �T . Thus the multiplicity 2

eigenvalue �1 D 4 has only one independent eigenvector, and hence is incomplete.

An eigenvalue � of multiplicity k > 1 is called defective if it is not complete.
If � has only p < k linearly independent eigenvectors, then the number

d D k � p (9)

of “missing” eigenvectors is called the defect of the defective eigenvalue �. Thus
the defective eigenvalue �1 D 4 in Example 2 has multiplicity k D 2 and defect
d D 1, because we saw that it has only p D 1 associated eigenvector.

If the eigenvalues of the n � n matrix A are not all complete, then the eigen-
value method as yet described will produce fewer than the needed n linearly inde-
pendent solutions of the system x0 D Ax. We therefore need to discover how to find
the “missing solutions” corresponding to a defective eigenvalue � of multiplicity
k > 1.
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The Case of Multiplicity k D 2
Let us begin with the case k D 2, and suppose that we have found (as in Example 2)
that there is only a single eigenvector v1 associated with the defective eigenvalue �.
Then at this point we have found only the single solution

x1.t/ D v1e
�t (10)

of x0 D Ax. By analogy with the case of a repeated characteristic root for a single
linear differential equation (Section 3.3), we might hope to find a second solution
of the form

x2.t/ D .v2t /e
�t D v2te

�t : (11)

When we substitute x D v2te
�t in x0 D Ax, we get the equation

v2e
�t C �v2te

�t D Av2te
�t :

But because the coefficients of both e�t and te�t must balance, it follows that v2D 0,
and hence that x2.t/ � 0. This means that—contrary to our hope—the system
x0 D Ax does not have a nontrivial solution of the form assumed in (11).

Instead of simply giving up on the idea behind Eq. (11), let us extend it slightly
and replace v2t with v1t C v2. Thus we explore the possibility of a second solution
of the form

x2.t/ D .v1t C v2/e
�t D v1te

�t C v2e
�t (12)

where v1 and v2 are nonzero constant vectors. When we substitute x D v1te
�t C

v2e
�t in x0 D Ax, we get the equation

v1e
�t C �v1te

�t C �v2e
�t D Av1te

�t CAv2e
�t : (13)

We equate coefficients of e�t and te�t here, and thereby obtain the two equations

.A � �I/v1 D 0 (14)

and

.A � �I/v2 D v1 (15)

that the vectors v1 and v2 must satisfy in order for (12) to give a solution of x0 DAx.
Note that Eq. (14) merely confirms that v1 is an eigenvector of A associated

with the eigenvalue �. Then Eq. (15) says that the vector v2 satisfies the equation

.A � �I/2v2 D .A � �I/Œ.A � �I/v2� D .A � �I/v1 D 0:

It follows that, in order to solve simultaneously the two equations in (14) and (15),
it suffices to find a solution v2 of the single equation .A � �I/2v2 D 0 such that the
resulting vector v1 D .A� �I/v2 is nonzero. It turns out that this is always possible
if the defective eigenvalue � of A is of multiplicity 2. Consequently, the procedure
described in the following algorithm always succeeds in finding two independent
solutions associated with such an eigenvalue.
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ALGORITHM Defective Multiplicity 2 Eigenvalues

1. First find a nonzero solution v2 of the equation

.A � �I/2v2 D 0 (16)

such that

.A � �I/v2 D v1 (17)

is nonzero, and therefore is an eigenvector v1 associated with �.
2. Then form the two independent solutions

x1.t/ D v1e
�t (18)

and

x2.t/ D .v1t C v2/e
�t (19)

of x0 D Ax corresponding to �.

Example 3 Find a general solution of the system

x0 D
�
1 �3
3 7

�
x: (20)

Solution In Example 2 we found that the coefficient matrix A in Eq. (20) has the defective eigenvalue
� D 4 of multiplicity 2. We therefore begin by calculating

.A � 4I/2 D
� �3 �3

3 3

� � �3 �3
3 3

�
D
�
0 0

0 0

�
:

Hence Eq. (16) is �
0 0

0 0

�
v2 D 0;

and therefore is satisfied by any choice of v2. In principle, it could happen that .A� 4I/v2 is
nonzero (as desired) for some choices of v2 though not for others. If we try v2 D



1 0

�T
we find that

.A � 4I/v2 D
� �3 �3

3 3

� �
1

0

�
D
� �3

3

�
D v1

is nonzero, and therefore is an eigenvector associated with � D 4. (It is �3 times the eigen-
vector found in Example 2.) Therefore the two solutions of Eq. (20) given by Eqs. (18) and
(19) are

x1.t/ D v1e
4t D

� �3
3

�
e4t ;

x2.t/ D .v1t C v2/e
4t D

� �3t C 1
3t

�
e4t :

The resulting general solution

x.t/ D c1x1.t/C c2x2.t/

has scalar component functions

x1.t/ D .�3c2t C c2 � 3c1/e
4t ;

x2.t/ D .3c2t C 3c1/e
4t :
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With c2 D 0 these solution equations reduce to the equations x1.t/ D �3c1e
4t , x2.t/ D

3c1e
4t , which parametrize the line x1 D�x2 in the x1x2-plane. The point .x1.t/; x2.t// then

recedes along this line away from the origin as t ! C1, to the northwest if c1 > 0 and to
the southeast if c1 < 0. As indicated in Fig. 5.5.1, each solution curve with c2 ¤ 0 is tangent
to the line x1 D �x2 at the origin; the point .x1.t/; x2.t// approaches the origin as t ! �1
and approaches C1 along the solution curve as t !C1.

x 2

x1

0–4 2 4–2 1–3 3–1

0

–4

1

–3

2

–2

3

4

–1

FIGURE 5.5.1. Direction field and
solution curves for the linear system
x0

1
D x1 � 3x2, x0

2
D 3x1 C 7x2 of

Example 3.

Generalized Eigenvectors
The vector v2 in Eq. (16) is an example of a generalized eigenvector. If � is an
eigenvalue of the matrix A, then a rank r generalized eigenvector associated with
� is a vector v such that

.A � �I/rv D 0 but .A � �I/r�1v ¤ 0: (21)

If r D 1, then (21) simply means that v is an eigenvector associated with � (recalling
the convention that the 0th power of a square matrix is the identity matrix). Thus a
rank 1 generalized eigenvector is an ordinary eigenvector. The vector v2 in (16) is a
rank 2 generalized eigenvector (and not an ordinary eigenvector).

The multiplicity 2 method described earlier boils down to finding a pair
fv1; v2g of generalized eigenvectors, one of rank 1 and one of rank 2, such that
.A � �I/v2 D v1. Higher multiplicity methods involve longer “chains” of gener-
alized eigenvectors. A length k chain of generalized eigenvectors based on the
eigenvector v1 is a set fv1; v2; : : : ; vkg of k generalized eigenvectors such that

.A � �I/vk D vk�1;

.A � �I/vk�1 D vk�2;

:::

.A � �I/v2 D v1:

(22)

Because v1 is an ordinary eigenvector, .A � �I/v1 D 0. Therefore, it follows from
(22) that

.A � �I/kvk D 0: (23)

If fv1; v2; v3g is a length 3 chain of generalized eigenvectors associated with
the multiple eigenvalue � of the matrix A, then it is easy to verify that three linearly
independent solutions of x0 D Ax are given by

x1.t/ D v1e
�t ;

x2.t/ D .v1t C v2/e
�t ;

x3.t/ D
�

1
2

v1t
2 C v2t C v3

	
e�t :

(24)

For instance, the equations in (22) give

Av3 D v2 C �v3; Av2 D v1 C �v2; Av1 D �v1;

so

Ax3 D



1
2

Av1t
2 CAv2t CAv3

�
e�t

D 
1
2
�v1t

2 C .v1 C �v2/t C .v2 C �v3/
�
e�t

D .v1t C v2/e
�t C � �1

2
v1t

2 C v2t C v3

	
e�t

D x0
3:

Therefore, x3.t/ in (24) does, indeed, define a solution of x0 D Ax.
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Consequently, in order to “handle” a multiplicity 3 eigenvalue �, it suffices
to find a length 3 chain fv1; v2; v3g of generalized eigenvalues associated with �.
Looking at Eq. (23), we see that we need only find a solution v3 of

.A � �I/3v3 D 0

such that the vectors

v2 D .A � �I/v3 and v1 D .A � �I/v2

are both nonzero (although, as we will see, this is not always possible).

Example 4 Find three linearly independent solutions of the system

x0 D
24 0 1 2

�5 �3 �7
1 0 0

35 x: (25)

Solution The characteristic equation of the coefficient matrix in Eq. (25) is

jA � �Ij D
24 �� 1 2

�5 �3 � � �7
1 0 ��

35
D 1 � Œ�7 � 2 � .�3 � �/�C .��/Œ.��/.�3 � �/C 5�
D ��3 � 3�2 � 3� � 1 D �.�C 1/3 D 0;

and thus A has the eigenvalue �D�1 of multiplicity 3. The eigenvector equation .A��I/vD
0 for an eigenvector v D 
 a b c

�T is

.AC I/v D
24 1 1 2

�5 �2 �7
1 0 1

3524 ab
c

35 D
24 00
0

35 :
The third row aC c D 0 gives c D�a, then the first row aC bC 2c D 0 gives b D a. Thus, to
within a constant multiple, the eigenvalue � D �1 has only the single associated eigenvector
v D 
 a a �a �T with a 6D 0, and so the defect of � D �1 is 2.

To apply the method described here for triple eigenvalues, we first calculate

.AC I/2 D
24 1 1 2

�5 �2 �7
1 0 1

3524 1 1 2

�5 �2 �7
1 0 1

35 D
24 �2 �1 �3
�2 �1 �3
2 1 3

35
and

.AC I/3 D
24 1 1 2

�5 �2 �7
1 0 1

3524 �2 �1 �3
�2 �1 �3
2 1 3

35 D
24 0 0 0

0 0 0

0 0 0

35 :
Thus any nonzero vector v3 will be a solution of the equation .AC I/3v3 D 0. Beginning

with v3 D


1 0 0

�T , for instance, we calculate

v2 D .AC I/v3 D
24 1 1 2

�5 �2 �7
1 0 1

3524 10
0

35 D
24 1

�5
1

35 ;

v1 D .AC I/v2 D
24 1 1 2

�5 �2 �7
1 0 1

3524 1

�5
1

35 D
24 �2�2

2

35 :
Note that v1 is the previously found eigenvector v with a D �2; this agreement serves as a
check of the accuracy of our matrix computations.
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Thus we have found a length 3 chain fv1; v2; v3g of generalized eigenvectors associated
with the triple eigenvalue � D �1. Substitution in (24) now yields the linearly independent
solutions

x1.t/ D v1e
�t D

24 �2�2
2

35 e�t ;

x2.t/ D .v1t C v2/e
�t D

24 �2t C 1�2t � 5
2t C 1

35 e�t ;

x3.t/ D
�

1
2 v1t

2 C v2t C v3

�
e�t D

24 �t2 C t C 1�t2 � 5t
t2 C t

35 e�t

of the system x0 D Ax.

The General Case
A fundamental theorem of linear algebra states that every n � n matrix A has n
linearly independent generalized eigenvectors. These n generalized eigenvectors
may be arranged in chains, with the sum of the lengths of the chains associated
with a given eigenvalue � equal to the multiplicity of �. But the structure of these
chains depends on the defect of �, and can be quite complicated. For instance, a
multiplicity 4 eigenvalue can correspond to

� Four length 1 chains (defect 0);
� Two length 1 chains and a length 2 chain (defect 1);
� Two length 2 chains (defect 2);
� A length 1 chain and a length 3 chain (defect 2); or
� A length 4 chain (defect 3).

Note that, in each of these cases, the length of the longest chain is at most d C 1,
where d is the defect of the eigenvalue. Consequently, once we have found all the
ordinary eigenvectors associated with a multiple eigenvalue �, and therefore know
the defect d of �, we can begin with the equation

.A � �I/dC1u D 0 (26)

to start building the chains of generalized eigenvectors associated with �.

ALGORITHM Chains of Generalized Eigenvectors

Begin with a nonzero solution u1 of Eq. (26) and successively multiply by the
matrix A � �I until the zero vector is obtained. If

.A � �I/u1 D u2 ¤ 0;
:::

.A � �I/uk�1 D uk ¤ 0;

but .A � �I/uk D 0, then the vectors

fv1; v2; : : : ; vkg D fuk ;uk�1; : : : ;u2;u1g
(listed in reverse order of their appearance) form a length k chain of generalized
eigenvectors based on the (ordinary) eigenvector v1.
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Each length k chain fv1; v2; : : : ; vkg of generalized eigenvectors (with v1 an
ordinary eigenvector associated with �) determines a set of k independent solutions
of x0 D Ax corresponding to the eigenvalue �:

x1.t/ D v1e
�t ;

x2.t/ D .v1t C v2/e
�t ;

x3.t/ D
�

1
2

v1t
2 C v2t C v3

	
e�t ;

:::

xk.t/ D
 

v1t
k�1

.k � 1/Š C � � � C
vk�2t

2

2Š
C vk�1t C vk

!
e�t :

(27)

Note that (27) reduces to Eqs. (18) through (19) and (24) in the cases k D 2 and
k D 3, respectively.

To ensure that we obtain n generalized eigenvectors of the n� n matrix A that
are actually linearly independent, and therefore produce a complete set of n linearly
independent solutions of x0 D Ax when we amalgamate all the “chains of solutions”
corresponding to different chains of generalized eigenvectors, we may rely on the
following two facts:

� Any chain of generalized eigenvectors constitutes a linearly independent set
of vectors.

� If two chains of generalized eigenvectors are based on linearly independent
eigenvectors, then the union of these two chains is a linearly independent set
of vectors (whether the two base eigenvectors are associated with different
eigenvalues or with the same eigenvalue).

Example 5 Suppose that the 6 � 6 matrix A has two multiplicity 3 eigenvalues �1 D �2 and �2 D 3

with defects 1 and 2, respectively. Then �1 must have an associated eigenvector u1 and a
length 2 chain fv1; v2g of generalized eigenvectors (with the eigenvectors u1 and v1 being
linearly independent), whereas �2 must have a length 3 chain fw1;w2;w3g of generalized
eigenvectors based on its single eigenvector w1. The six generalized eigenvectors u1, v1,
v2, w1, w2, and w3 are then linearly independent and yield the following six independent
solutions of x0 D Ax:

x1.t/ D u1e
�2t ;

x2.t/ D v1e
�2t ;

x3.t/ D .v1t C v2/e
�2t ;

x4.t/ D w1e
3t ;

x5.t/ D .w1t Cw2/e
3t ;

x6.t/ D
�

1
2 w1t

2 Cw2t Cw3

�
e3t :

As Example 5 illustrates, the computation of independent solutions corre-
sponding to different eigenvalues and chains of generalized eigenvalues is a routine
matter. The determination of the chain structure associated with a given multiple
eigenvalue can be more interesting (as in Example 6).

An Application
Figure 5.5.2 shows two railway cars that are connected with a spring (permanently

k

c

x1(t ) x2(t )

c1x '1 c2x '2
m1 m2

FIGURE 5.5.2. The railway cars of
Example 6.

attached to both cars) and with a damper that exerts opposite forces on the two cars,
of magnitude c.x0

1�x0
2/ proportional to their relative velocity. The two cars are also
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subject to frictional resistance forces c1x
0
1 and c2x

0
2 proportional to their respective

velocities. An application of Newton’s law ma D F (as in Example 1 of Section
4.1) yields the equations of motion

m1x
00
1 D k.x2 � x1/ � c1x

0
1 � c.x0

1 � x0
2/,

m2x
00
2 D k.x1 � x2/ � c2x

0
2 � c.x0

2 � x0
1/.

(28)

In terms of the position vector x.t/ D 

x1.t/ x2.t/

�T , these equations can be
written in the matrix form

Mx00 D KxCRx0; (29)

where M and K are mass and stiffness matrices (as in Eqs. (2) and (3) of Section
5.4), and

R D
� �.c C c1/ c

c �.c C c2/

�
is the resistance matrix. Unfortunately, because of the presence of the term involv-
ing x0, the methods of Section 5.4 cannot be used.

Instead, we write (28) as a first-order system in the four unknown functions
x1.t/, x2.t/, x3.t/ D x0

1.t/, and x4.t/ D x0
2.t/. If m1 D m2 D 1 we get

x0 D Ax; (30)

where now x D 
 x1 x2 x3 x4

�T and

A D

2664
0 0 1 0

0 0 0 1

�k k �.c C c1/ c

k �k c �.c C c2/

3775 : (31)

Example 6 With m1 D m2 D c D 1 and k D c1 D c2 D 2, the system in Eq. (30) is

x0 D

2664
0 0 1 0

0 0 0 1

�2 2 �3 1

2 �2 1 �3

3775 x: (32)

It is not too tedious to calculate manually—although a computer algebra system such as
Maple, Mathematica, or MATLAB is useful here—the characteristic equation

�4 C 6�3 C 12�2 C 8� D �.�C 2/3 D 0
of the coefficient matrix A in Eq. (32). Thus A has the distinct eigenvalue �0 D 0 and the
triple eigenvalue �1 D �2.

CASE 1: �0 D 0. The eigenvalue equation .A � �I/v D 0 for the eigenvector v D

a b c d

�T is

Av D

2664
0 0 1 0

0 0 0 1

�2 2 �3 1

2 �2 1 �3

3775
2664
a

b

c

d

3775 D
2664
0

0

0

0

3775 :
The first two rows give c D d D 0, then the last two rows yield a D b. Thus

v0 D


1 1 0 0

�T
is an eigenvector associated with �0 D 0.
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CASE 2: �1 D �2. The eigenvalue equation .A � �I/v D 0 is

.AC 2I/v D

2664
2 0 1 0

0 2 0 1

�2 2 �1 1

2 �2 1 �1

3775
2664
a

b

c

d

3775 D
2664
0

0

0

0

3775 :
The third and fourth scalar equations here are the differences of the first and second equations,
and therefore are redundant. Hence v is determined by the first two equations,

2aC c D 0 and 2b C d D 0:

We can choose a and b independently, then solve for c and d . Thereby we obtain two eigen-
vectors associated with the triple eigenvalue �1 D�2. The choice aD 1, b D 0 yields c D�2,
d D 0 and thereby the eigenvector

u1 D


1 0 �2 0

�T
:

The choice a D 0, b D 1 yields c D 0, d D �2 and thereby the eigenvector

u2 D


0 1 0 �2 �T :

Because �1 D �2 has defect 1, we need a generalized eigenvector of rank 2, and hence
a nonzero solution v2 of the equation

.AC 2I/2v2 D

2664
2 2 1 1

2 2 1 1

0 0 0 0

0 0 0 0

3775 v2 D 0:

Obviously,
v2 D



0 0 1 �1 �T

is such a vector, and we find that

.AC 2I/v2 D

2664
2 0 1 0

0 2 0 1

�2 2 �1 1

2 �2 1 �1

3775
2664

0

0

1

�1

3775 D
2664

1

�1
�2
2

3775 D v1

is nonzero, and therefore is an eigenvector associated with �1 D �2. Then fv1; v2g is the
length 2 chain we need.

The eigenvector v1 just found is neither of the two eigenvectors u1 and u2 found pre-
viously, but we observe that v1 D u1 � u2. For a length 1 chain w1 to complete the picture
we can choose any linear combination of u1 and u2 that is independent of v1. For instance,
we could choose either w1 D u1 or w1 D u2. However, we will see momentarily that the
particular choice

w1 D u1 C u2 D


1 1 �2 �2 �T

yields a solution of the system that is of physical interest.
Finally, the chains fv0g, fw1g, and fv1; v2g yield the four independent solutions

x1.t/ D v0e
0�t D 
 1 1 0 0

�T
;

x2.t/ D w1e
�2t D 
 1 1 �2 �2 �T e�2t ;

x3.t/ D v1e
�2t D 
 1 �1 �2 2

�T
e�2t ;

x4.t/ D .v1t C v2/e
�2t

D 
 t �t �2t C 1 2t � 1 �T e�2t

(33)

of the system x0 D Ax in (32).



346 Chapter 5 Linear Systems of Differential Equations

The four scalar components of the general solution

x.t/ D c1x1.t/C c2x2.t/C c3x3.t/C c4x4.t/

are described by the equations

x1.t/ D c1 C e�2t .c2 C c3 C c4t /;
x2.t/ D c1 C e�2t .c2 � c3 � c4t /;

x3.t/ D e�2t .�2c2 � 2c3 C c4 � 2c4t /;
x4.t/ D e�2t .�2c2 C 2c3 � c4 C 2c4t /:

(34)

Recall that x1.t/ and x2.t/ are the position functions of the two masses, whereas x3.t/D x0
1.t/

and x4.t/ D x0
2.t/ are their respective velocity functions.

For instance, suppose that x1.0/ D x2.0/ D 0 and that x0
1.0/ D x0

2.0/ D v0. Then the
equations

x1.0/ D c1 C c2 C c3 D 0,

x2.0/ D c1 C c2 � c3 D 0,

x0
1.0/ D � 2c2 � 2c3 C c4 D v0,

x0
2.0/ D � 2c2 C 2c3 � c4 D v0

are readily solved for c1 D 1
2v0, c2 D �1

2v0, and c3 D c4 D 0, so

x1.t/ D x2.t/ D 1
2v0

�
1 � e�2t

�
;

x0
1.t/ D x0

2.t/ D v0e
�2t :

In this case the two railway cars continue in the same direction with equal but exponentially
damped velocities, approaching the displacements x1 D x2 D 1

2v0 as t !C1.
It is of interest to interpret physically the individual generalized eigenvector solutions

given in (33). The degenerate (�0 D 0) solution

x1.t/ D


1 1 0 0

�T
describes the two masses at rest with position functions x1.t/� 1 and x2.t/� 1. The solution

x2.t/ D


1 1 �2 �2 �T e�2t

corresponding to the carefully chosen eigenvector w1 describes damped motions x1.t/ D
e�2t and x2.t/D e�2t of the two masses, with equal velocities in the same direction. Finally,
the solutions x3.t/ and x4.t/ resulting from the length 2 chain fv1; v2g both describe damped
motion with the two masses moving in opposite directions.

The methods of this section apply to complex multiple eigenvalues just as to
real multiple eigenvalues (although the necessary computations tend to be somewhat
lengthy). Given a complex conjugate pair ˛ ˙ ˇi of eigenvalues of multiplicity k,
we work with one of them (say, ˛ � ˇi) as if it were real to find k independent
complex-valued solutions. The real and imaginary parts of these complex-valued
solutions then provide 2k real-valued solutions associated with the two eigenvalues
� D ˛ � ˇi and � D ˛ C ˇi each of multiplicity k. See Problems 33 and 34.

5.5 Problems
Find general solutions of the systems in Problems 1 through
22. In Problems 1 through 6, use a computer system or graph-
ing calculator to construct a direction field and typical solution
curves for the given system.

1. x0 D
� �2 1

�1 �4
�

x 2. x0 D
�
3 �1
1 1

�
x

3. x0 D
�
1 �2
2 5

�
x 4. x0 D

�
3 �1
1 5

�
x
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5. x0 D
�

7 1

�4 3

�
x 6. x0 D

�
1 �4
4 9

�
x

7. x0 D
24 2 0 0

�7 9 7

0 0 2

35 x

8. x0 D
24 25 12 0

�18 �5 0

6 6 13

35 x

9. x0 D
24 �19 12 84

0 5 0

�8 4 33

35 x

10. x0 D
24 �13 40 �48
�8 23 �24
0 0 3

35 x

11. x0 D
24 �3 0 �4
�1 �1 �1
1 0 1

35 x

12. x0 D
24 �1 0 1

0 �1 1

1 �1 �1

35 x

13. x0 D
24 �1 0 1

0 1 �4
0 1 �3

35 x

14. x0 D
24 0 0 1

�5 �1 �5
4 1 �2

35 x

15. x0 D
24 �2 �9 0

1 4 0

1 3 1

35 x

16. x0 D
24 1 0 0

�2 �2 �3
2 3 4

35 x

17. x0 D
24 1 0 0

18 7 4

�27 �9 �5

35 x

18. x0 D
24 1 0 0

1 3 1

�2 �4 �1

35 x

19. x0 D

2664
1 �4 0 �2
0 1 0 0

6 �12 �1 �6
0 �4 0 �1

3775 x

20. x0 D

2664
2 1 0 1

0 2 1 0

0 0 2 1

0 0 0 2

3775 x

21. x0 D

2664
�1 �4 0 0

1 3 0 0

1 2 1 0

0 1 0 1

3775 x

22. x0 D

2664
1 3 7 0

0 �1 �4 0

0 1 3 0

0 �6 �14 1

3775 x

In Problems 23 through 32 the eigenvalues of the coefficient
matrix A are given. Find a general solution of the indicated
system x0 D Ax. Especially in Problems 29 through 32, use of
a computer algebra system (as in the application material for
this section) may be useful.

23. x0 D
24 39 8 �16
�36 �5 16

72 16 �29

35 x; � D �1, 3, 3

24. x0 D
24 28 50 100

15 33 60

�15 �30 �57

35 x; � D �2, 3, 3

25. x0 D
24 �2 17 4

�1 6 1

0 1 2

35 x; � D 2, 2, 2

26. x0 D
24 5 �1 1

1 3 0

�3 2 1

35 x; � D 3, 3, 3

27. x0 D
24 �3 5 �5

3 �1 3

8 �8 10

35 x; � D 2, 2, 2

28. x0 D
24 �15 �7 4

34 16 �11
17 7 5

35 x; � D 2, 2, 2

29. x0 D

2664
�1 1 1 �2
7 �4 �6 11

5 �1 1 3

6 �2 �2 6

3775 x; � D �1, �1, 2, 2

30. x0 D

2664
2 1 �2 1

0 3 �5 3

0 �13 22 �12
0 �27 45 �25

3775 x; � D �1, �1, 2, 2

31. x0 D

2664
35 �12 4 30

22 �8 3 19

�10 3 0 �9
�27 9 �3 �23

3775 x; � D 1, 1, 1, 1

32. x0 D

266664
11 �1 26 6 �3
0 3 0 0 0

�9 0 �24 �6 3

3 0 9 5 �1
�48 �3 �138 �30 18

377775 x;

� D 2, 2, 3, 3, 3
33. The characteristic equation of the coefficient matrix A of

the system

x0 D

2664
3 �4 1 0

4 3 0 1

0 0 3 �4
0 0 4 3

3775 x

is
�.�/ D .�2 � 6�C 25/2 D 0:
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Therefore, A has the repeated complex conjugate pair
3 ˙ 4i of eigenvalues. First show that the complex vec-
tors

v1 D


1 i 0 0

�T and v2 D


0 0 1 i

�T
form a length 2 chain fv1; v2g associated with the eigen-
value � D 3 � 4i . Then calculate the real and imaginary
parts of the complex-valued solutions

v1e
�t and .v1t C v2/e

�t

to find four independent real-valued solutions of x0 D Ax.

34. The characteristic equation of the coefficient matrix A of
the system

x0 D

2664
2 0 �8 �3

�18 �1 0 0

�9 �3 �25 �9
33 10 90 32

3775 x

is
�.�/ D .�2 � 4�C 13/2 D 0:

Therefore, A has the repeated complex conjugate pair
2 ˙ 3i of eigenvalues. First show that the complex vec-
tors

v1 D

 �i 3C 3i 0 �1 �T ;

v2 D


3 �10C 9i �i 0

�T
form a length 2 chain fv1; v2g associated with the eigen-
value � D 2C 3i . Then calculate (as in Problem 33) four
independent real-valued solutions of x0 D Ax.

35. Find the position functions x1.t/ and x2.t/ of the railway
cars of Fig. 5.5.2 if the physical parameters are given by

m1 D m2 D c1 D c2 D c D k D 1

and the initial conditions are

x1.0/ D x2.0/ D 0; x0
1.0/ D x0

2.0/ D v0:

How far do the cars travel before stopping?
36. Repeat Problem 35 under the assumption that car 1 is

shielded from air resistance by car 2, so now c1 D 0. Show
that, before stopping, the cars travel twice as far as those
of Problem 35.

5.5 Application Defective Eigenvalues and Generalized Eigenvectors
A typical computer algebra system can calculate both the eigenvalues of a given
matrix A and the linearly independent (ordinary) eigenvectors associated with each
eigenvalue. For instance, consider the 4 � 4 matrix

A D

2664
35 �12 4 30

22 �8 3 19

�10 3 0 �9
�27 9 �3 �23

3775 (1)

of Problem 31 in this section. When the matrix A has been entered, the Maple
calculation

with(linalg): eigenvectors(A);
[1, 4, {[--1, 0, 1, 1], [0, 1, 3, 0]}]

or the Mathematica calculation

Eigensystem[A]
{{1,1,1,1},
{{--3,--1,0,3}, {0,1,3,0}, {0,0,0,0}, {0,0,0,0}}}

reveals that the matrix A in Eq. (1) has the single eigenvalue � D 1 of multiplic-
ity 4 with only two independent associated eigenvectors v1 and v2. The MATLAB

command

[V, D] = eig(sym(A))

provides the same information. The eigenvalue � D 1 therefore has defect d D 2. If
B D A � .1/I, you should find that B2 6D 0 but B3 D 0. If

u1 D


1 0 0 0

�T
; u2 D Bu1; u3 D Bu2;
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then fu1;u2;u3g should be a length 3 chain of generalized eigenvectors based on
the ordinary eigenvector u3 (which should be a linear combination of the original
eigenvectors v1 and v2). Use your computer algebra system to carry out this con-
struction, and finally write four linearly independent solutions of the linear system
x0 D Ax.

For a more exotic matrix to investigate, consider the MATLAB’s gallery(5)
example matrix

A D

2666664
�9 11 �21 63 �252
70 �69 141 �421 1684

�575 575 �1149 3451 �13801
3891 �3891 7782 �23345 93365

1024 �1024 2048 �6144 24572

3777775 : (2)

Use appropriate commands like those illustrated here to show that A has a single
eigenvalue � D 0 of multiplicity 5 and defect 4. Noting that A � .0/I D A, you
should find that A4 6D 0 but that A5 D 0. Hence calculate the vectors

u1 D


1 0 0 0 0

�T
; u2 D Au1; u3 D Au2; u4 D Au3; u5 D Au4:

You should find that u5 is a nonzero vector such that Au5 D 0, and is there-
fore an (ordinary) eigenvector of A associated with the eigenvalue � D 0. Thus
fu1;u2;u3;u4;u5g is a length 5 chain of generalized eigenvectors of the matrix A
in Eq. (2), and you can finally write five linearly independent solutions of the linear
system x0 D Ax.

5.6 Matrix Exponentials and Linear Systems
The solution vectors of an n � n homogeneous linear system

x0 D Ax (1)

can be used to construct a square matrix X D ˆ.t/ that satisfies the matrix differen-
tial equation

X0 D AX .10/

associated with Eq. (1). Suppose that x1.t/; x2.t/; : : : ; xn.t/ are n linearly indepen-
dent solutions of Eq. (1). Then the n � n matrix

ˆ.t/ D

26664
ˇ̌ ˇ̌ ˇ̌

x1.t/ x2.t/ � � � xn.t/ˇ̌ ˇ̌ ˇ̌
37775 ; (2)

having these solution vectors as its column vectors, is called a fundamental matrix
for the system in (1).
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Fundamental Matrix Solutions
Because the column vector xD xj .t/ of the fundamental matrix ˆ.t/ in (2) satisfies
the differential equation x0 D Ax, it follows (from the definition of matrix multi-
plication) that the matrix X D ˆ.t/ itself satisfies the matrix differential equation
X0 D AX. Because its column vectors are linearly independent, it also follows that
the fundamental matrix ˆ.t/ is nonsingular, and therefore has an inverse matrix
ˆ.t/�1. Conversely, any nonsingular matrix solution ‰.t/ of Eq. (10) has linearly
independent column vectors that satisfy Eq. (1), so ‰.t/ is a fundamental matrix for
the system in (1).

In terms of the fundamental matrix ˆ.t/ in (2), the general solution

x.t/ D c1x1.t/C c2x2.t/C � � � C cnxn.t/ (3)

of the system x0 D Ax can be written in the form

x.t/ D ˆ.t/c (4)

where c D Œc1 c2 : : : cn�
T is an arbitrary constant vector. If ‰.t/ is any other

fundamental matrix for (1), then each column vector of ‰.t/ is a linear combination
of the column vectors of ˆ.t/, so it follows from Eq. (4) that

‰.t/ D ˆ.t/C .40/

for some n � n matrix C of constants.
In order that the solution x.t/ in (3) satisfy a given initial condition

x.0/ D x0; (5)

it suffices that the coefficient vector c in (4) be such that ˆ.0/c D x0; that is, that

c D ˆ.0/�1x0: (6)

When we substitute (6) in Eq. (4), we get the conclusion of the following theorem.

THEOREM 1 Fundamental Matrix Solutions

Let ˆ.t/ be a fundamental matrix for the homogeneous linear system x0 D Ax.
Then the [unique] solution of the initial value problem

x0 D Ax; x.0/ D x0 (7)

is given by

x.t/ D ˆ.t/ˆ.0/�1x0: (8)

Section 5.2 tells us how to find a fundamental matrix for the system

x0 D Ax (9)

with constant n � n coefficient matrix A, at least in the case where A has a com-
plete set of n linearly independent eigenvectors v1, v2, : : : ; vn associated with the
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(not necessarily distinct) eigenvalues �1, �2, : : : ; �n, respectively. In this event the
corresponding solution vectors of Eq. (9) are given by

xi .t/ D vie
�i t

for i D 1, 2, : : : ; n. Therefore, the n � n matrix

ˆ.t/ D

26664
ˇ̌ ˇ̌ ˇ̌

v1e
�1t v2e

�2t � � � vne
�ntˇ̌ ˇ̌ ˇ̌

37775 (10)

having the solutions x1, x2, : : : ; xn as column vectors is a fundamental matrix for
the system x0 D Ax.

In order to apply Eq. (8), we must be able to compute the inverse matrix
ˆ.0/�1. The inverse of the nonsingular 2 � 2 matrix

A D
�
a b

c d

�
is

A�1 D 1

�

�
d �b
�c a

�
; (11)

where � D det.A/ D ad � bc ¤ 0. The inverse of the nonsingular 3 � 3 matrix
A D Œaij � is given by

A�1 D 1

�

26664
CA11 �A12 CA13

�A21 CA22 �A23

CA31 �A32 CA33

37775
T

; (12)

where � D det.A/ 6D 0 and Aij denotes the determinant of the 2� 2 submatrix of A
obtained by deleting the i th row and j th column of A. (Do not overlook the symbol
T for transpose in Eq. (12).) The formula in (12) is also valid upon generalization to
n � n matrices, but in practice inverses of larger matrices are usually computed in-
stead by row reduction methods (see any linear algebra text) or by using a calculator
or computer algebra system.

Example 1 Find a fundamental matrix for the system

x0 D 4x C 2y;
y0 D 3x � y;

(13)

and then use it to find the solution of (13) that satisfies the initial conditions x.0/D 1, y.0/D
�1.

Solution The linearly independent solutions

x1.t/ D
�

e�2t

�3e�2t

�
and x2.t/ D

�
2e5t

e5t

�
found in Example 1 of Section 5.2 yield the fundamental matrix

ˆ.t/ D
�

e�2t 2e5t

�3e�2t e5t

�
: (14)
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Then

ˆ.0/ D
�

1 2

�3 1

�
;

and the formula in (11) gives the inverse matrix

ˆ.0/�1 D 1

7

�
1 �2
3 1

�
: (15)

Hence the formula in (8) gives the solution

x.t/ D
�

e�2t 2e5t

�3e�2t e5t

��
1

7

��
1 �2
3 1

� �
1

�1
�
D
�
1

7

��
e�2t 2e5t

�3e�2t e5t

� �
3

2

�
;

and so

x.t/ D 1

7

�
3e�2t C 4e5t

�9e�2t C 2e5t

�
:

Thus the solution of the original initial value problem is given by

x.t/ D 3
7e

�2t C 4
7e

5t ; y.t/ D �9
7e

�2t C 2
7e

5t :

Remark An advantage of the fundamental matrix approach is this: Once we know the fun-
damental matrix ˆ.t/ and the inverse matrix ˆ.0/�1, we can calculate rapidly by matrix
multiplication the solutions corresponding to different initial conditions. For example, sup-
pose that we seek the solution of the system in (13) satisfying the new initial conditions
x.0/ D 77, y.0/ D 49. Then substitution of (14) and (15) in (8) gives the new particular
solution

x.t/ D 1

7

�
e�2t 2e5t

�3e�2t e5t

� �
1 �2
3 1

� �
77

49

�

D 1

7

�
e�2t 2e5t

�3e�2t e5t

� � �21
280

�
D
� �3e�2t C 80e5t

9e�2t C 40e5t

�
:

Exponential Matrices
We now discuss the possibility of constructing a fundamental matrix for the
constant-coefficient linear system x0 D Ax directly from the coefficient matrix A—
that is, without first applying the methods of earlier sections to find a linearly inde-
pendent set of solution vectors.

We have seen that exponential functions play a central role in the solution of
linear differential equations and systems, ranging from the scalar equation x0 D kx
with solution x.t/ D x0e

kt to the vector solution x.t/ D ve�t of the linear system
x0 D Ax whose coefficient matrix A has eigenvalue � with associated eigenvector v.
We now define exponentials of matrices in such a way that

X.t/ D eAt

is a matrix solution of the matrix differential equation

X0 D AX

with n � n coefficient matrix A—in analogy with the fact that the ordinary expo-
nential function x.t/D eat is a scalar solution of the first-order differential equation
x0 D ax.
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The exponential e´ of the complex number ´ may be defined (as in Section
3.3) by means of the exponential series

e´ D 1C ´C ´2

2Š
C ´3

3Š
C � � � C ´n

nŠ
C � � � : (16)

Similarly, if A is an n�nmatrix, then the exponential matrix eA is the n�nmatrix
defined by the series

eA D ICAC A2

2Š
C � � � C An

nŠ
C � � � ; (17)

where I is the identity matrix. The meaning of the infinite series on the right in (17)
is given by

1X
nD0

An

nŠ
D lim

k!1

 
kX

nD0

An

nŠ

!
; (18)

where A0 D I, A2 D AA, A3 D AA2, and so on; inductively, AnC1 D AAn if n = 0.
It can be shown that the limit in (18) exists for every n� n square matrix A. That is,
the exponential matrix eA is defined (by Eq. (17)) for every square matrix A.

Example 2 Consider the 2 � 2 diagonal matrix

A D
�
a 0

0 b

�
:

Then it is apparent that

An D
�
an 0

0 bn

�
for each integer n = 1. It therefore follows that

eA D ICAC A2

2Š
C � � �

D
"
1 0

0 1

#
C
"
a 0

0 b

#
C
"
a2=2Š 0

0 b2=2Š

#
C � � �

D
"
1C aC a2=2ŠC � � � 0

0 1C b C b2=2ŠC � � �

#
:

Thus

eA D
�
ea 0

0 eb

�
;

so the exponential of the diagonal 2 � 2 matrix A is obtained simply by exponentiating each
diagonal element of A.

The n � n analog of the 2 � 2 result in Example 2 is established in the same
way. The exponential of the n � n diagonal matrix

D D

26664
a1 0 � � � 0

0 a2 � � � 0
:::

:::
:::

0 0 � � � an

37775 (19)
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is the n � n diagonal matrix

eD D

26664
ea1 0 � � � 0

0 ea2 � � � 0
:::

:::
:::

0 0 � � � ean

37775 ; (20)

obtained by exponentiating each diagonal element of D.
The exponential matrix eA satisfies most of the exponential relations that are

familiar in the case of scalar exponents. For instance, if 0 is the n � n zero matrix,
then Eq. (17) yields

e0 D I; (21)

the n � n identity matrix. In Problem 31 we ask you to show that a useful law of
exponents holds for n � n matrices that commute:

If AB D BA, then eACB D eAeB. (22)

In Problem 32 we ask you to conclude that�
eA
��1

D e�A: (23)

In particular, the matrix eA is nonsingular for every n � n matrix A (reminiscent of
the fact that e´ ¤ 0 for all ´). It follows from elementary linear algebra that the
column vectors of eA are always linearly independent.

If t is a scalar variable, then substitution of At for A in Eq. (17) gives

eAt D ICA t CA2 t
2

2Š
C � � � CAn t

n

nŠ
C � � � : (24)

(Of course, At is obtained simply by multiplying each element of A by t .)

Example 3 If

A D
24 0 3 4

0 0 6

0 0 0

35 ;
then

A2 D
24 0 0 18

0 0 0

0 0 0

35 and A3 D
24 0 0 0

0 0 0

0 0 0

35 ;
so An D 0 for n = 3. It therefore follows from Eq. (24) that

eAt D ICA t C 1
2 A2 t2

D
24 1 0 0

0 1 0

0 0 1

35C
24 0 3 4

0 0 6

0 0 0

35 t C 1
2

24 0 0 18

0 0 0

0 0 0

35t2I
that is,

eAt D
24 1 3t 4t C 9t2
0 1 6t

0 0 1

35 :
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Remark If AnD 0 for some positive integer n, then the exponential series in (24) terminates
after a finite number of terms, so the exponential matrix eA (or eAt ) is readily calculated as
in Example 3. Such a matrix—with a vanishing power—is said to be nilpotent.

Example 4 If

A D
24 2 3 4

0 2 6

0 0 2

35 ;
then

A D
24 2 0 0

0 2 0

0 0 2

35C
24 0 3 4

0 0 6

0 0 0

35 D DC B;

where D D 2I is a diagonal matrix and B is the nilpotent matrix of Example 3. Therefore,
(20) and (22) give

eAt D e.DCB/t D eDt eBt D
24 e2t 0 0

0 e2t 0

0 0 e2t

3524 1 3t 4t C 9t2
0 1 6t

0 0 1

35 I
thus

eAt D
24 e2t 3te2t .4t C 9t2/e2t

0 e2t 6te2t

0 0 e2t

35 :

Matrix Exponential Solutions
It happens that term-by-term differentiation of the series in (24) is valid, with the
result

d

dt

�
eAt
�
D ACA2t CA3 t

2

2Š
C � � � D A

�
ICAt CA2 t

2

2Š
C � � �

�
I

that is,

d

dt

�
eAt
�
D AeAt ; (25)

in analogy to the formula Dt

�
ekt
	 D kekt from elementary calculus. Thus the

matrix-valued function

X.t/ D eAt

satisfies the matrix differential equation

X0 D AX:

Because the matrix eAt is nonsingular, it follows that the matrix exponential eAt is a
fundamental matrix for the linear system x0DAx. In particular, it is the fundamental
matrix X.t/ such that X.0/ D I. Therefore, Theorem 1 implies the following result.
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THEOREM 2 Matrix Exponential Solutions

If A is an n � n matrix, then the solution of the initial value problem

x0 D Ax; x.0/ D x0 (26)

is given by

x.t/ D eAt x0; (27)

and this solution is unique.

Thus the solution of homogeneous linear systems reduces to the task of com-
puting exponential matrices. Conversely, if we already know a fundamental matrix
ˆ.t/ for the linear system x0 D Ax, then the facts that eAt Dˆ.t/C (by Eq. (40)) and
eA�0 D e0 D I (the identity matrix) yield

eAt D ˆ.t/ˆ.0/�1: (28)

So we can find the matrix exponential eAt by solving the linear system x0 D Ax.

Example 5 In Example 1 we found that the system x0 D Ax with

A D
�
4 2

3 �1
�

has fundamental matrix

ˆ.t/ D
�

e�2t 2e5t

�3e�2t e5t

�
with ˆ.0/�1 D 1

7

�
1 �2
3 1

�
:

Hence Eq. (28) gives

eAt D 1
7

�
e�2t 2e5t

�3e�2t e5t

� �
1 �2
3 1

�

D 1
7

�
e�2t C 6e5t �2e�2t C 2e5t

�3e�2t C 3e5t 6e�2t C e5t

�
:

Example 6 Use an exponential matrix to solve the initial value problem

x0 D
24 2 3 4

0 2 6

0 0 2

35 x; x.0/ D
24 1929
39

35 : (29)

Solution The coefficient matrix A in (29) evidently has characteristic equation .2 � �/3 D 0 and thus
the triple eigenvalue � D 2, 2, 2. It is easy to see that the eigenvector equation

.A � 2I/v D
24 0 3 4

0 0 6

0 0 0

3524 ab
c

35 D
24 00
0

35
has (to within a constant multiple) the single solution vD 
 1 0 0

�T . Thus there is only a
single eigenvector associated with the eigenvalue � D 2, and so we do not yet have the three
linearly independent solutions needed for a fundamental matrix. But we note that A is the
same matrix whose matrix exponential

eAt D

264 e
2t 3te2t .4t C 9t2/e2t

0 e2t 6te2t

0 0 e2t

375
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was calculated in Example 4. Hence, using Theorem 2, the solution of the initial value
problem in (29) is given by

x.t/ D eAt x.0/ D

264 e
2t 3te2t .4t C 9t2/e2t

0 e2t 6te2t

0 0 e2t

375
264 1929
39

375

D

264 .19C 243t C 351t
2/e2t

.29C 234t/e2t

39e2t

375 :
Remark The same particular solution x.t/ as in Example 6 could be found using the gener-
alized eigenvector method of Section 5.5. One would start by finding the chain of generalized
eigenvectors

v1 D
24 180
0

35 ; v2 D
24 46
0

35 ; v3 D
24 00
1

35
corresponding to the triple eigenvalue � D 2 of the matrix A. Then one would—using
Eqs. (27) in Section 5.5—assemble the linearly independent solutions

x1.t/ D v1e
2t ; x2.t/ D .v1t C v2/e

2t ; x3.t/ D
�

1
2 v1t

2 C v2t C v3

�
e2t

of the differential equation x0 D Ax in (29). The final step would be to determine values of
the coefficients c1, c2, c3 so that the particular solution x.t/ D c1x1.t/C c2x2.t/C c3x3.t/

satisfies the initial condition in (29). At this point it should be apparent that—especially if the
matrix exponential eAt is readily available (for instance, from a computer algebra system)—
the method illustrated in Example 6 can well be more “computationally routine” than the
generalized eigenvector method.

General Matrix Exponentials
The relatively simple calculation of eAt carried out in Example 4 (and used in Ex-
ample 6) was based on the observation that if

A D
24 2 3 4

0 2 6

0 0 2

35 ;
then A � 2I is nilpotent:

.A � 2I/3 D
24 0 3 4

0 0 6

0 0 0

353

D
24 0 0 0

0 0 0

0 0 0

35 D 0: (30)

A similar result holds for any 3 � 3 matrix A having a triple eigenvalue r , in
which case its characteristic equation reduces to .�� r/3 D 0. For such a matrix, an
explicit computation similar to that in Eq. (30) will show that

.A � rI/3 D 0: (31)

(This particular result is a special case of the Cayley-Hamilton theorem of advanced
linear algebra, according to which every matrix satisfies its own characteristic equa-
tion.) Thus the matrix A � rI is nilpotent, and it follows that

eAt D e.rICA�rI/t D erIt � e.A�rI/t D ert I � 
IC .A � rI/t C 1
2
.A � rI/2t2� ; (32)
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the exponential series here terminating because of Eq. (31). In this way, we can
rather easily calculate the matrix exponential eAt for any square matrix having only
a single eigenvalue.

The calculation in Eq. (32) motivates a method of calculating eAt for any n�n
matrix A whatsoever. As we saw in Section 5.5, A has n linearly independent gen-
eralized eigenvectors u1, u2, : : : ; un. Each generalized eigenvector u is associated
with an eigenvalue � of A and has a rank r = 1 such that

.A � �I/ru D 0 but .A � �I/r�1u ¤ 0: (33)

(If r D 1, then u is an ordinary eigenvector such that Au D �u.)
Even if we do not yet know eAt explicitly, we can consider the function x.t/D

eAt u, which is a linear combination of the column vectors of eAt and is therefore
a solution of the linear system x0 D Ax with x.0/ D u. Indeed, we can calculate x
explicitly in terms of A, u, �, and r :

x.t/ D eAt u D e.�ICA��I/t u D e�Ite.A��I/t u

D e�t I
�

IC .A � �I/t C � � � C .A � �I/r�1 t r�1

.r � 1/Š C � � �
�

u;

so

x.t/ D e�t

�
uC .A � �I/ut C .A � �I/2u

t2

2Š
C � � �

C .A � �I/r�1u
t r�1

.r � 1/Š

�
; (34)

using (33) and the fact that e�It D e�t I.
If the linearly independent solutions x1.t/, x2.t/, : : : , xn.t/ of x0 D Ax are

calculated using (34) with the linearly independent generalized eigenvectors u1, u2,
: : : ; un, then the n � n matrix

ˆ.t/ D 
 x1.t/ x2.t/ � � � xn.t/
�

(35)

is a fundamental matrix for the system x0 D Ax. Finally, the specific fundamental
matrix X.t/ D ˆ.t/ˆ.0/�1 satisfies the initial condition X.0/ D I, and thus is the
desired matrix exponential eAt . We have therefore outlined a proof of the following
theorem.

THEOREM 3 Computation of eAt

Let u1, u2, : : : ; un be n linearly independent generalized eigenvectors of the n�n
matrix A. For each i , 15 i 5 n, let xi .t/ be the solution of x0 DAx given by (34),
substituting uD ui and the associated eigenvalue � and rank r of the generalized
eigenvector ui . If the fundamental matrix ˆ.t/ is defined by (35), then

eAt D ˆ.t/ˆ.0/�1: (36)

Example 7 Find eAt if

A D
24 3 4 5

0 5 4

0 0 3

35 : (37)
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Solution Theorem 3 would apply even if the matrix A were not upper triangular. But because A is
upper triangular, this fact enables us to see quickly that its characteristic equation is

.5 � �/.3 � �/2 D 0:

Thus A has the distinct eigenvalue �1 D 5 and the repeated eigenvalue �2 D 3.

CASE 1: �1 D 5. The eigenvector equation .A � �I/u D 0 for u D 
 a b c
�T is

.A � 5I/u D
24 �2 4 5

0 0 4

0 0 �2

3524 ab
c

35 D
24 00
0

35 :
The last two scalar equations 4c D 0 and �2c D 0 give c D 0. Then the first equation
�2aC 4b D 0 is satisfied by a D 2 and b D 1. Thus the eigenvalue �1 D 5 has the (ordinary)
eigenvector u1 D



2 1 0

�T . The corresponding solution of the system x0 D Ax is

x1.t/ D e5t u1 D e5t


2 1 0

�T
: (38)

CASE 2: �2 D 3. The eigenvector equation .A � �I/u D 0 for u D 
 a b c
�T is

.A � 3I/u D
24 0 4 5

0 2 4

0 0 0

3524 ab
c

35 D
24 00
0

35 :
The first two equations 4bC5cD 0 and 2bC4cD 0 imply that bD cD 0, but leave a arbitrary.

Thus the eigenvalue �2 D 3 has the single (ordinary) eigenvector u2 D


1 0 0

�T . The
corresponding solution of the system x0 D Ax is

x2.t/ D e3t u2 D e3t


1 0 0

�T
: (39)

To look for a generalized eigenvector of rank r D 2 in Eq. (33), we consider the equation

.A � 3I/2u D
24 0 8 16

0 4 8

0 0 0

3524 ab
c

35 D
24 00
0

35 :
The first two equations 8b C 16c D 0 and 4b C 8c D 0 are satisfied by b D 2 and c D �1,
but leave a arbitrary. With a D 0 we get the generalized eigenvector u3 D



0 2 �1 �T of

rank r D 2 associated with the eigenvalue � D 3. Because .A � 3I/2u D 0, Eq. (34) yields
the third solution

x3.t/ D e3t Œu3 C .A � 3I/u3t �

D e3t

0@24 0

2

�1

35C
24 0 4 5

0 2 4

0 0 0

3524 0

2

�1

35 t
1A D e3t

24 3t

2

�1

35 : (40)

With the solutions listed in Eqs. (39) and (40), the fundamental matrix

ˆ.t/ D 
 x1.t/ x2.t/ x3.t/
�

defined by Eq. (35) is

ˆ.t/ D
24 2e5t e3t 3te3t

e5t 0 2e3t

0 0 �e3t

35 with ˆ.0/�1 D
24 0 1 2

1 �2 �4
0 0 �1

35 :
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Hence Theorem 3 finally yields

eAt D ˆ.t/ˆ.0/�1

D
24 2e5t e3t 3te3t

e5t 0 2e3t

0 0 �e3t

3524 0 1 2

1 �2 �4
0 0 �1

35

D
24 e3t 2e5t � 2e3t 4e5t � .4C 3t/e3t

0 e5t 2e5t � 2e3t

0 0 e3t

35 :
Remark As in Example 7, Theorem 3 suffices for the computation of eAt provided that a
basis consisting of generalized eigenvectors of A can be found. Alternatively, a computer
algebra system can be used as indicated in the project material for this section.

5.6 Problems
Find a fundamental matrix of each of the systems in Problems
1 through 8, then apply Eq. (8) to find a solution satisfying the
given initial conditions.

1. x0 D
�
2 1

1 2

�
x, x.0/ D

�
3

�2
�

2. x0 D
�

2 �1
�4 2

�
x, x.0/ D

�
2

�1
�

3. x0 D
�
2 �5
4 �2

�
x, x.0/ D

�
0

1

�
4. x0 D

�
3 �1
1 1

�
x, x.0/ D

�
1

0

�
5. x0 D

� �3 �2
9 3

�
x, x.0/ D

�
1

�1
�

6. x0 D
�
7 �5
4 3

�
x, x.0/ D

�
2

0

�

7. x0 D
24 5 0 �6
2 �1 �2
4 �2 �4

35 x, x.0/ D
24 21
0

35
8. x0 D

24 3 2 2

�5 �4 �2
5 5 3

35 x, x.0/ D
24 1

0

�1

35
Compute the matrix exponential eAt for each system x0 D Ax
given in Problems 9 through 20.

9. x0
1 D 5x1 � 4x2, x0

2 D 2x1 � x2

10. x0
1 D 6x1 � 6x2, x0

2 D 4x1 � 4x2

11. x0
1 D 5x1 � 3x2, x0

2 D 2x1

12. x0
1 D 5x1 � 4x2, x0

2 D 3x1 � 2x2

13. x0
1 D 9x1 � 8x2, x0

2 D 6x1 � 5x2

14. x0
1 D 10x1 � 6x2, x0

2 D 12x1 � 7x2

15. x0
1 D 6x1 � 10x2, x0

2 D 2x1 � 3x2

16. x0
1 D 11x1 � 15x2, x0

2 D 6x1 � 8x2

17. x0
1 D 3x1 C x2, x0

2 D x1 C 3x2

18. x0
1 D 4x1 C 2x2, x0

2 D 2x1 C 4x2

19. x0
1 D 9x1 C 2x2, x0

2 D 2x1 C 6x2

20. x0
1 D 13x1 C 4x2, x0

2 D 4x1 C 7x2

In Problems 21 through 24, show that the matrix A is nilpo-
tent and then use this fact to find (as in Example 3) the matrix
exponential eAt .

21. A D
�
1 �1
1 �1

�
22. A D

�
6 4

�9 �6
�

23. A D
24 1 �1 �1
1 �1 1

0 0 0

35 24. A D
24 3 0 �3
5 0 7

3 0 �3

35
Each coefficient matrix A in Problems 25 through 30 is the
sum of a nilpotent matrix and a multiple of the identity matrix.
Use this fact (as in Example 6) to solve the given initial value
problem.

25. x0 D
�
2 5

0 2

�
x; x.0/ D

�
4

7

�
26. x0 D

�
7 0

11 7

�
x; x.0/ D

�
5

�10
�

27. x0 D
24 1 2 3

0 1 2

0 0 1

35 x; x.0/ D
24 45
6

35
28. x0 D

24 5 0 0

10 5 0

20 30 5

35 x; x.0/ D
24 4050
60

35

29. x0 D

2664
1 2 3 4

0 1 6 3

0 0 1 2

0 0 0 1

3775 x; x.0/ D

2664
1

1

1

1

3775

30. x0 D

2664
3 0 0 0

6 3 0 0

9 6 3 0

12 9 6 3

3775 x; x.0/ D

2664
1

1

1

1

3775
31. Suppose that the n � n matrices A and B commute; that

is, that AB D BA. Prove that eACB D eAeB. (Suggestion:
Group the terms in the product of the two series on the
right-hand side to obtain the series on the left.)
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32. Deduce from the result of Problem 31 that, for ev-
ery square matrix A, the matrix eA is nonsingular with�
eA
��1
D e�A.

33. Suppose that

A D
�
0 1

1 0

�
:

Show that A2n D I and that A2nC1 D A if n is a positive
integer. Conclude that

eAt D I cosh t CA sinh t;

and apply this fact to find a general solution of x0 D Ax.
Verify that it is equivalent to the general solution found by
the eigenvalue method.

34. Suppose that

A D
�

0 2

�2 0

�
:

Show that eAt D I cos 2t C 1
2 A sin 2t . Apply this fact to

find a general solution of x0 D Ax, and verify that it is
equivalent to the solution found by the eigenvalue method.

Apply Theorem 3 to calculate the matrix exponential eAt for
each of the matrices in Problems 35 through 40.

35. A D
�
3 4

0 3

�
36. A D

24 1 2 3

0 1 4

0 0 1

35
37. A D

24 2 3 4

0 1 3

0 0 1

35 38. A D
24 5 20 30

0 10 20

0 0 5

35

39. A D

2664
1 3 3 3

0 1 3 3

0 0 2 3

0 0 0 2

3775 40. A D

2664
2 4 4 4

0 2 4 4

0 0 2 4

0 0 0 3

3775

5.6 Application Automated Matrix Exponential Solutions
If A is an n� nmatrix, then a computer algebra system can be used first to calculate
the fundamental matrix eAt for the system

x0 D Ax; (1)

then to calculate the matrix product x.t/ D eAt x0 to obtain a solution satisfying the
initial condition x.0/ D x0. For instance, suppose that we want to solve the initial
value problem

x0
1 D 13x1 C 4x2;

x0
2 D 4x1 C 7x2I

x1.0/ D 11; x2.0/ D 23:

After the matrices

A D
�
13 4

4 7

�
; x0 D

�
11

23

�
(2)

have been entered, either the Maple command

with(linalg): exponential(A*t)

the Mathematica command

MatrixExp[A t]

or the MATLAB command

syms t, expm(A*t)

yields the matrix exponential

expAt D 1
5

"
e5t C 4e15t �2e5t C 2e15t

�2e5t C 2e15t 4e5t C e15t

#
:
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Then either the Maple product multiply(expAt,x0), the Mathematica product
expAt.x0, or the MATLAB product expAt*x0 gives the solution vector

x D
"
�7e5t C 18e15t

14e5t C 9e15t

#
:

Obviously this, finally, is the way to do it!
Matrix exponentials also allow for convenient interactive exploration of the

system (1). For example, a version of the Mathematica commands

A = {{13, 4}, {4, 7}};
field = VectorPlot[A.{x, y}, {x, --25, 25},

{y, --25, 25}];
Manipulate[

curves = ParametricPlot[
MatrixExp[A t, #]&/@pt, {t, --1, 1},
PlotRange --> 25];

Show[curves, field],
{{pt, {{11, 23}, {20, --10}, {--20, --10},
{--20, 10}}}, Locator}]

was used to generate Fig. 5.6.1, which shows four solution curves of the system
(1) with the matrix A chosen as in Eq. (2). The initial conditions for each solution
curve—one of which initially passes through the point .11; 23/ of our initial value
problem, while the other three pass through the points .20;�10/, .�20;�10/, and
.20; 10/—are specified by a “locator point” which can be freely dragged to any
desired position in the phase plane, with the corresponding solution curve being
instantly redrawn.

(11, 23)

(20, –10)(–20, –10)

(–20, 10)

10–10

–10

10

20

–20

–20 20

FIGURE 5.6.1. Interactive display of
the linear system (1). As the “locator
points” are dragged to different
positions, the solution curves are
immediately redrawn, illustrating the
behavior of the system.

Experimenting with such interactive displays can shed considerable light on
the behavior of linear systems. For example, notice the straight line solution in
Fig. 5.6.1; if you could drag the corresponding locator point around the phase plane,
what other straight line solution could you find? How could you have predicted this
by examining the matrix A?

For a three-dimensional example, solve the initial value problem

x0
1 D �149x1 � 50x2 � 154x3,
x0

2 D 537x1 C 180x2 C 546x3,
x0

3 D �27x1 � 9x2 � 25x3;

x1.0/ D 17; x2.0/ D 43; x3.0/ D 79:
And here’s a four-dimensional problem:

x0
1 D 4x1 C x2 C x3 C 7x4,
x0

2 D x1 C 4x2 C 10x3 C x4,
x0

3 D x1 C 10x2 C 4x3 C x4,
x0

4 D 7x1 C x2 C x3 C 4x4;

x1.0/ D 15; x2.0/ D 35; x3.0/ D 55; x4.0/ D 75:
If at this point you’re having too much fun with matrix exponentials to stop,

make up some problems of your own. For instance, choose any homogeneous linear
system appearing in this chapter and experiment with different initial conditions.
The exotic 5� 5 matrix A of the Section 5.5 application may suggest some interest-
ing possibilities.
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5.7 Nonhomogeneous Linear Systems
In Section 3.5 we exhibited two techniques for finding a single particular solution
of a single nonhomogeneous nth-order linear differential equation—the method of
undetermined coefficients and the method of variation of parameters. Each of these
may be generalized to nonhomogeneous linear systems. In a linear system mod-
eling a physical situation, nonhomogeneous terms typically correspond to external
influences, such as the inflow of liquid to a cascade of brine tanks or an external
force acting on a mass-and-spring system.

Given the nonhomogeneous first-order linear system

x0 D AxC f.t/ (1)

where A is an n� n constant matrix and the “nonhomogeneous term” f.t/ is a given
continuous vector-valued function, we know from Theorem 4 of Section 5.1 that a
general solution of Eq. (1) has the form

x.t/ D xc.t/C xp.t/; (2)

where

� xc.t/ D c1x1.t/C c2x2.t/C � � � C cnxn.t/ is a general solution of the associ-
ated homogeneous system x0 D Ax, and

� xp.t/ is a single particular solution of the original nonhomogeneous system in
(1).

Preceding sections have dealt with xc.t/, so our task now is to find xp.t/.

Undetermined Coefficients
First we suppose that the nonhomogeneous term f.t/ in (1) is a linear combination
(with constant vector coefficients) of products of polynomials, exponential func-
tions, and sines and cosines. Then the method of undetermined coefficients for
systems is essentially the same as for a single linear differential equation. We make
an intelligent guess as to the general form of a particular solution xp, then attempt
to determine the coefficients in xp by substitution in Eq. (1). Moreover, the choice
of this general form is essentially the same as in the case of a single equation (dis-
cussed in Section 3.5); we modify it only by using undetermined vector coefficients
rather than undetermined scalars. We will therefore confine the present discussion
to illustrative examples.

Example 1 Find a particular solution of the nonhomogeneous system

x0 D
�
3 2

7 5

�
xC

�
3

2t

�
: (3)

Solution The nonhomogeneous term f D 
 3 2t
�T is linear, so it is reasonable to select a linear trial

particular solution of the form

xp.t/ D at C b D
�
a1

a2

�
t C

�
b1

b2

�
: (4)

Upon substitution of x D xp in Eq. (3), we get�
a1

a2

�
D
�
3 2

7 5

� �
a1t C b1

a2t C b2

�
C
�
3

2t

�

D
�

3a1 C 2a2

7a1 C 5a2 C 2
�
t C

�
3b1 C 2b2 C 3
7b1 C 5b2

�
:
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We equate the coefficients of t and the constant terms (in both x1- and x2-compon-ents) and
thereby obtain the equations

3a1 C 2a2 D 0;
7a1 C 5a2 C 2 D 0;
3b1 C 2b2 C 3 D a1;

7b1 C 5b2 D a2:

(5)

We solve the first two equations in (5) for a1 D 4 and a2 D �6. With these values we can
then solve the last two equations in (5) for b1 D 17 and b2 D �25. Substitution of these
coefficients in Eq. (4) gives the particular solution xD 
 x1 x2

�T of (3) described in scalar
form by

x1.t/ D 4t C 17;
x2.t/ D �6t � 25:

Example 2 Figure 5.7.1 shows the system of three brine tanks investigated in Example 2 of Section 5.2.
The volumes of the three tanks are V1 D 20, V2 D 40, and V3 D 50 (gal), and the common
flow rate is r D 10 (gal=min). Suppose that all three tanks contain fresh water initially, but
that the inflow to tank 1 is brine containing 2 pounds of salt per gallon, so that 20 pounds of

r (gal/min)

r

r

r

Tank 1
V1 (gal)

Tank 2
V2

Tank 3
V3

FIGURE 5.7.1. The three brine
tanks of Example 2.

salt flow into tank 1 per minute. Referring to Eq. (18) in Section 5.2, we see that the vector

x.t/ D 

x1.t/ x2.t/ x3.t/

�T of amounts of salt (in pounds) in the three tanks at time t
satisfies the nonhomogeneous initial value problem

dx
dt
D
24 �0:5 0 0

0:5 �0:25 0

0 0:25 �0:2

35 xC
24 200

0

35 ; x.0/ D
24 00
0

35 : (6)

The nonhomogeneous term f D 

20 0 0

�T here corresponds to the 20 lb/min inflow of
salt to tank 1, with no (external) inflow of salt into tanks 2 and 3.

Because the nonhomogeneous term is constant, we naturally select a constant trial
function xp D



a1 a2 a3

�T , for which x0
p � 0. Then substitution of xD xp in (6) yields

the system 24 00
0

35 D
24 �0:5 0 0

0:5 �0:25 0

0 0:25 �0:2

3524 a1

a2

a3

35C
24 200

0

35
that we readily solve for a1 D 40, a2 D 80, and a3 D 100 in turn. Thus our particular solution

is xp.t/ D


40 80 100

�T .
In Example 2 of Section 5.2 we found the general solution

xc.t/ D c1

24 3

�6
5

35 e�t=2 C c2

24 0

1

�5

35 e�t=4 C c3

24 00
1

35 e�t=5

of the associated homogeneous system, so a general solution x D xc C xp of the nonhomo-
geneous system in (6) is given by

x.t/ D c1

24 3

�6
5

35 e�t=2 C c2

24 0

1

�5

35 e�t=4 C c3

24 00
1

35 e�t=5 C
24 40

80

100

35 : (7)

When we apply the zero initial conditions in (6), we get the scalar equations

3c1 C 40 D 0,
�6c1 C c2 C 80 D 0,
5c1 � 5c2 C c3 C 100 D 0
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that are readily solved for c1 D �40
3 , c2 D �160, and c3 D �2500

3 . Substituting these
coefficients in Eq. (7), we find that the amounts of salt in the three tanks at time t are given
by

x1.t/ D 40 � 40e�t=2;

x2.t/ D 80C 80e�t=2 � 160e�t=4;

x3.t/ D 100C 100
3

�
�2e�t=2 C 24e�t=4 � 25e�t=5

�
:

(8)

As illustrated in Fig. 5.7.2, we see the salt in each of the three tanks approaching, as t!C1,
a uniform density of 2 lb=gal—the same as the salt density in the inflow to tank 1.6050403020100

t

x

0

40

120

80

20

100

60

x3(t)   100

x2(t)   80

x1(t)   40

FIGURE 5.7.2. Solution curves for
the amount of salt defined in (8).

In the case of duplicate expressions in the complementary function and the
nonhomogeneous terms, there is one difference between the method of undeter-
mined coefficients for systems and for single equations (Rule 2 in Section 3.5). For
a system, the usual first choice for a trial solution must be multiplied not only by
the smallest integral power of t that will eliminate duplication, but also by all lower
(nonnegative integral) powers of t as well, and all the resulting terms must be in-
cluded in the trial solution.

Example 3 Consider the nonhomogeneous system

x0 D
�
4 2

3 �1
�

x �
�
15

4

�
te�2t : (9)

In Example 1 of Section 5.2 we found the solution

xc.t/ D c1

�
1

�3
�
e�2t C c2

�
2

1

�
e5t (10)

of the associated homogeneous system. A preliminary trial solution xp.t/D ate�2t C be�2t

exhibits duplication with the complementary function in (10). We would therefore select

xp.t/ D at2e�2t C bte�2t C ce�2t

as our trial solution, and we would then have six scalar coefficients to determine. It is simpler
to use the method of variation of parameters, our next topic.

Variation of Parameters
Recall from Section 3.5 that the method of variation of parameters may be applied
to a linear differential equation with variable coefficients and is not restricted to
nonhomogeneous terms involving only polynomials, exponentials, and sinusoidal
functions. The method of variation of parameters for systems enjoys the same flexi-
bility and has a concise matrix formulation that is convenient for both practical and
theoretical purposes.

We want to find a particular solution xp of the nonhomogeneous linear system

x0 D P.t/xC f.t/; (11)

given that we have already found a general solution

xc.t/ D c1x1.t/C c2x2.t/C � � � C cnxn.t/ (12)

of the associated homogeneous system

x0 D P.t/x: (13)
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We first use the fundamental matrix ˆ.t/ with column vectors x1, x2, : : : ; xn

to rewrite the complementary function in (12) as

xc.t/ D ˆ.t/c; (14)

where c denotes the column vector whose entries are the coefficients c1; c2; : : : ; cn.
Our idea is to replace the vector “parameter” c with a variable vector u.t/. Thus we
seek a particular solution of the form

xp.t/ D ˆ.t/u.t/: (15)

We must determine u.t/ so that xp does, indeed, satisfy Eq. (11).
The derivative of xp.t/ is (by the product rule)

x0
p.t/ D ˆ0.t/u.t/Cˆ.t/u0.t/: (16)

Hence substitution of Eqs. (15) and (16) in (11) yields

ˆ0.t/u.t/Cˆ.t/u0.t/ D P.t/ˆ.t/u.t/C f.t/: (17)

But

ˆ0.t/ D P.t/ˆ.t/ (18)

because each column vector of ˆ.t/ satisfies Eq. (13). Therefore, Eq. (17) reduces
to

ˆ.t/u0.t/ D f.t/: (19)

Thus it suffices to choose u.t/ so that

u0.t/ D ˆ.t/�1f.t/I (20)

that is, so that

u.t/ D
Z

ˆ.t/�1f.t/ dt: (21)

Upon substitution of (21) in (15), we finally obtain the desired particular solution,
as stated in the following theorem.

THEOREM 1 Variation of Parameters

If ˆ.t/ is a fundamental matrix for the homogeneous system x0 D P.t/x on some
interval where P.t/ and f.t/ are continuous, then a particular solution of the non-
homogeneous system

x0 D P.t/xC f.t/

is given by

xp.t/ D ˆ.t/

Z
ˆ.t/�1f.t/ dt: (22)
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This is the variation of parameters formula for first-order linear systems. If
we add this particular solution and the complementary function in (14), we get the
general solution

x.t/ D ˆ.t/cCˆ.t/

Z
ˆ.t/�1f.t/ dt (23)

of the nonhomogeneous system in (11).
The choice of the constant of integration in Eq. (22) is immaterial, for we

need only a single particular solution. In solving initial value problems it often is
convenient to choose the constant of integration so that xp.a/D 0, and thus integrate
from a to t :

xp.t/ D ˆ.t/

Z t

a

ˆ.s/�1f.s/ ds: (24)

If we add the particular solution of the nonhomogeneous problem

x0 D P.t/xC f.t/; x.a/ D 0

in (24) to the solution xc.t/ D ˆ.t/ˆ.a/�1xa of the associated homogeneous prob-
lem x0 D P.t/x, x.a/ D xa, we get the solution

x.t/ D ˆ.t/ˆ.a/�1xa Cˆ.t/

Z t

a

ˆ.s/�1f.s/ ds (25)

of the nonhomogeneous initial value problem

x0 D P.t/xC f.t/; x.a/ D xa: (26)

Equations (22) and (25) hold for any fundamental matrix ˆ.t/ of the homo-
geneous system x0 D P.t/x. In the constant-coefficient case P.t/ � A we can use
for ˆ.t/ the exponential matrix eAt —that is, the particular fundamental matrix such
that ˆ.0/ D I. Then, because .eAt /�1 D e�At , substitution of ˆ.t/ D eAt in (22)
yields the particular solution

xp.t/ D eAt

Z
e�At f.t/ dt (27)

of the nonhomogeneous system x0 D P.t/xC f.t/. Similarly, substitution of ˆ.t/ D
eAt in Eq. (25) with a D 0 yields the solution

x.t/ D eAt x0 C eAt

Z t

0

e�At f.t/ dt (28)

of the initial value problem

x0 D P.t/xC f.t/; x.0/ D x0: (29)

Remark If we retain t as the independent variable but use s for the variable of integration,
then the solutions in (27) and (28) can be rewritten in the forms

xp.t/ D
Z
e�A.s�t/f.s/ ds and x.t/ D eAt x0 C

Z t

0
e�A.s�t/f.s/ ds:
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Example 4 Solve the initial value problem

x0 D
�
4 2

3 �1
�

x �
�
15

4

�
te�2t ; x.0/ D

�
7

3

�
: (30)

Solution The solution of the associated homogeneous system is displayed in Eq. (10). It gives the
fundamental matrix

ˆ.t/ D
�

e�2t 2e5t

�3e�2t e5t

�
with ˆ.0/�1 D 1

7

�
1 �2
3 1

�
:

It follows by Eq. (28) in Section 5.6 that the matrix exponential for the coefficient matrix A
in (30) is

eAt D ˆ.t/ˆ.0/�1 D
�

e�2t 2e5t

�3e�2t e5t

�
� 1

7

�
1 �2
3 1

�

D 1
7

�
e�2t C 6e5t �2e�2t C 2e5t

�3e�2t C 3e5t 6e�2t C e5t

�
:

Then the variation of parameters formula in Eq. (28) gives

e�At x.t/ D x0 C
Z t

0
e�Asf.s/ ds

D
�
7

3

�
C
Z t

0

1
7

�
e2s C 6e�5s �2e2s C 2e�5s

�3e2s C 3e�5s 6e2s C e�5s

� � �15se�2s

�4se�2s

�
ds

D
�
7

3

�
C
Z t

0

� �s � 14se�7s

3s � 7se�7s

�
ds

D
�
7

3

�
C 1

14

� �4 � 7t2 C 4e�7t C 28te�7t

�2C 21t2 C 2e�7t C 14te�7t

�
:

Therefore,

e�At x.t/ D 1
14

�
94 � 7t2 C 4e�7t C 28te�7t

40C 21t2 C 2e�7t C 14te�7t

�
:

Upon multiplication of the right-hand side here by eAt , we find that the solution of the initial
value problem in (30) is given by

x.t/ D 1
7

�
e�2t C 6e5t �2e�2t C 2e5t

�3e�2t C 3e5t 6e�2t C e5t

�
� 1

14

�
94 � 7t2 C 4e�7t C 28te�7t

40C 21t2 C 2e�7t C 14te�7t

�

D 1
14

�
.6C 28t � 7t2/e�2t C 92e5t

.�4C 14t C 21t2/e�2t C 46e5t

�
:

In conclusion, let us investigate how the variation of parameters formula in
(22) “reconciles” with the variation of parameters formula in Theorem 1 of Sec-
tion 3.5 for the second-order linear differential equation

y00 C Py0 CQy D f .t/: (31)

If we write y D x1, y0 D x0
1 D x2, y00 D x00

1 D x0
2, then the single equation in (31) is

equivalent to the linear system x0
1 D x2, x0

2 D �Qx1 � Px2 C f .t/, that is,

x0 D P.t/xC f.t/; (32)

where

x D
�
x1

x2

�
D
�
y

y0

�
; P.t/ D

�
0 1

�Q �P
�
; and f.t/ D

�
0

f .t/

�
:
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Now two linearly independent solutions y1 and y2 of the homogeneous system
y00CPy0CQy D 0 associated with (31) provide two linearly independent solutions

x1 D
�
y1

y0
1

�
and x2 D

�
y2

y0
2

�
of the homogeneous system x0 D P.t/x associated with (32). Observe that the de-
terminant of the fundamental matrix ˆ D 
 x1 x2

�
is simply the Wronskian

W D
ˇ̌̌̌
ˇ y1 y2

y0
1 y0

2

ˇ̌̌̌
ˇ

of the solutions y1 and y2, so the inverse fundamental matrix is

ˆ�1 D 1

W

ˇ̌̌̌
ˇ y0

2 �y2

�y0
1 y1

ˇ̌̌̌
ˇ :

Therefore the variation of parameters formula xp D ˆ
R

ˆ�1fdt in (22) yields"
yp

y0
p

#
D
"
y1 y2

y0
1 y0

2

#Z
1

W

"
y0

2 �y2

�y0
1 y1

#"
0

f

#
dt

D
"
y1 y2

y0
1 y0

2

#Z
1

W

"
�y2f

y1f

#
dt:

The first component of this column vector is

yp D


y1 y2

� Z 1

W

"
�y2f

y1f

#
dt D �y1

Z
y2f

W
dt C y2

Z
y1f

W
dt:

If, finally, we supply the independent variable t throughout, the final result on the
right-hand side here is simply the variation of parameters formula in Eq. (33) of
Section 3.5 (where, however, the independent variable is denoted by x).

5.7 Problems
Apply the method of undetermined coefficients to find a par-
ticular solution of each of the systems in Problems 1 through
14. If initial conditions are given, find the particular solution
that satisfies these conditions. Primes denote derivatives with
respect to t .

1. x0 D x C 2y C 3, y0 D 2x C y � 2
2. x0 D 2x C 3y C 5, y0 D 2x C y � 2t
3. x0 D 3x C 4y, y0 D 3x C 2y C t2I x.0/ D y.0/ D 0
4. x0 D 4x C y C et , y0 D 6x � y � et I x.0/ D y.0/ D 1
5. x0 D 6x � 7y C 10, y0 D x � 2y � 2e�t

6. x0 D 9x C y C 2et , y0 D �8x � 2y C tet

7. x0 D �3x C 4y C sin t , y0 D 6x � 5yI x.0/ D 1, y.0/ D 0
8. x0 D x � 5y C 2 sin t , y0 D x � y � 3 cos t
9. x0 D x � 5y C cos 2t , y0 D x � y

10. x0 D x � 2y, y0 D 2x � y C et sin t
11. x0 D 2x C 4y C 2, y0 D x C 2y C 3I x.0/ D 1, y.0/ D �1
12. x0 D x C y C 2t , y0 D x C y � 2t
13. x0 D 2x C y C 2et , y0 D x C 2y � 3et

14. x0 D 2x C y C 1, y0 D 4x C 2y C e4t

Problems 15 and 16 are similar to Example 2, but with two
brine tanks (having volumes V1 and V2 gallons as in Fig. 5.7.1)
instead of three tanks. Each tank initially contains fresh water,
and the inflow to tank 1 at the rate of r gallons per minute has
a salt concentration of c0 pounds per gallon. (a) Find the
amounts x1.t/ and x2.t/ of salt in the two tanks after t min-
utes. (b) Find the limiting (long-term) amount of salt in each
tank. (c) Find how long it takes for each tank to reach a salt
concentration of 1 lb=gal.
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15. V1 D 100, V2 D 200, r D 10, c0 D 2
16. V1 D 200, V2 D 100, r D 10, c0 D 3

In Problems 17 through 34, use the method of variation of pa-
rameters (and perhaps a computer algebra system) to solve the
initial value problem

x0 D AxC f.t/; x.a/ D xa:

In each problem we provide the matrix exponential eAt as pro-
vided by a computer algebra system.

17. A D
�
6 �7
1 �2

�
, f.t/ D

�
60

90

�
, x.0/ D

�
0

0

�
,

eAt D 1
6

� �e�t C 7e5t 7e�t � 7e5t

�e�t C e5t 7e�t � e5t

�
18. Repeat Problem 17, but with f.t/ replaced with

�
100t

�50t
�

.

19. A D
�
1 2

2 �2
�

, f.t/ D
�
180t

90

�
, x.0/ D

�
0

0

�
,

eAt D 1
5

�
e�3t C 4e2t �2e�3t C 2e2t

�2e�3t C 2e2t 4e�3t C e2t

�
20. Repeat Problem 19, but with f.t/ replaced with

�
75e2t

0

�
.

21. A D
�
4 �1
5 �2

�
, f.t/ D

�
18e2t

30e2t

�
, x.0/ D

�
0

0

�
,

eAt D 1
4

� �e�t C 5e3t e�t � e3t

�5e�t C 5e3t 5e�t � e3t

�
22. Repeat Problem 21, but with f.t/ replaced with

�
28e�t

20e3t

�
.

23. A D
�
3 �1
9 �3

�
, f.t/ D

�
7

5

�
, x.0/ D

�
3

5

�
,

eAt D
�
1C 3t �t
9t 1 � 3t

�
24. Repeat Problem 23, but with f.t/ D

�
0

t�2

�
and x.1/ D�

3

7

�
.

25. A D
�
2 �5
1 �2

�
, f.t/ D

�
4t

1

�
, x.0/ D

�
0

0

�
,

eAt D
�

cos t C 2 sin t �5 sin t
sin t cos t � 2 sin t

�
26. Repeat Problem 25, but with f.t/ D

�
4 cos t
6 sin t

�
and x.0/ D�

3

5

�
.

27. A D
�
2 �4
1 �2

�
, f.t/ D

�
36t2

6t

�
, x.0/ D

�
0

0

�
,

eAt D
�
1C 2t �4t
t 1 � 2t

�
28. Repeat Problem 27, but with f.t/ D

�
4 ln t
t�1

�
and x.1/ D�

1

�1
�

.

29. A D
�
0 �1
1 0

�
, f.t/ D

�
sec t
0

�
, x.0/ D

�
0

0

�
,

eAt D
�

cos t � sin t
sin t cos t

�
30. A D

�
0 �2
2 0

�
, f.t/ D

�
t cos 2t
t sin 2t

�
, x.0/ D

�
0

0

�
,

eAt D
�

cos 2t � sin 2t
sin 2t cos 2t

�

31. A D
24 1 2 3

0 1 2

0 0 1

35, f.t/ D
24 0

0

6et

35, x.0/ D
24 00
0

35,

eAt D
24 et 2tet .3t C 2t2/et

0 et 2tet

0 0 et

35
32. A D

24 1 3 4

0 1 3

0 0 2

35, f.t/ D
24 0

0

2e2t

35, x.0/ D
24 00
0

35,

eAt D
24 et 3tet .�13 � 9t/et C 13e2t

0 et �3et C 3e2t

0 0 e2t

35

33. A D

2664
0 4 8 0

0 0 3 8

0 0 0 4

0 0 0 0

3775, f.t/ D 30

2664
t

t
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5.7 Application Automated Variation of Parameters

The application of the variation of parameters formula in Eq. (28) encourages so
mechanical an approach as to encourage especially the use of a computer algebra
system. The following Mathematica commands were used to check the results in
Example 4 of this section.
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A = {{4,2}, {3,--1}};
x0 ={{7}, {3}};
f[t ] := {{--15 t Exp[--2t]},{--4 t Exp[--2t]}};
exp[A ] := MatrixExp[A]
x = exp[A*t].(x0 + Integrate[exp[--A*s].f[s], {s,0,t}])

The matrix exponential commands illustrated in the Section 5.6 application provide
the basis for analogous Maple and MATLAB computations. You can then check
routinely the answers for Problems 17 through 34 of this section.



66 Nonlinear Systems
and Phenomena

6.1 Stability and the Phase Plane

Awide variety of natural phenomena are modeled by two-dimensional first-order
systems of the form

dx

dt
D F.x; y/;

dy

dt
D G.x; y/

(1)

in which the independent variable t does not appear explicitly. We usually think
of the dependent variables x and y as position variables in the xy-plane and of t
as a time variable. We will see that the absence of t on the right-hand sides in (1)
makes the system easier to analyze and its solutions easier to visualize. Using the
terminology of Section 2.2, such a system of differential equations in which the
derivative values are independent (or “autonomous”) of time t is often called an
autonomous system.

We generally assume that the functions F and G are continuously differen-
tiable in some region R of the xy-plane. Then according to the existence and
uniqueness theorems of the Appendix, given t0 and any point .x0; y0/ of R, there is
a unique solution x D x.t/, y D y.t/ of (1) that is defined on some open interval
.a; b/ containing t0 and satisfies the initial conditions

x.t0/ D x0; y.t0/ D y0: (2)

The equations x D x.t/, y D y.t/ then describe a parametrized solution curve in the
phase plane. Any such solution curve is called a trajectory of the system in (1), and
precisely one trajectory passes through each point of the region R (Problem 29). A
critical point of the system in (1) is a point .x?; y?/ such that

F.x?; y?/ D G.x?; y?/ D 0: (3)

372
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If .x?; y?/ is a critical point of the system, then the constant-valued functions

x.t/ � x?; y.t/ � y? (4)

have derivatives x0.t/ � 0 and y0.t/ � 0, and therefore automatically satisfy the
equations in (1). Such a constant-valued solution is called an equilibrium solution
of the system. Note that the trajectory of the equilibrium solution in (4) consists of
the single point .x?; y?/.

In some practical situations these very simple solutions and trajectories are
the ones of greatest interest. For example, suppose that the system x0 D F.x; y/,
y0 DG.x; y/models two populations x.t/ and y.t/ of animals that cohabit the same
environment, and perhaps compete for the same food or prey on one another; x.t/
might denote the number of rabbits and y.t/ the number of squirrels present at time
t . Then a critical point .x?; y?/ of the system specifies a constant population x? of
rabbits and a constant population y? of squirrels that can coexist with one another
in the environment. If .x0; y0/ is not a critical point of the system, then it is not
possible for constant populations of x0 rabbits and y0 squirrels to coexist; one or
both must change with time.

Example 1 Find the critical points of the system

dx

dt
D 14x � 2x2 � xy;

dy

dt
D 16y � 2y2 � xy:

(5)

Solution When we look at the equations

14x � 2x2 � xy D x.14 � 2x � y/ D 0;
16y � 2y2 � xy D y.16 � 2y � x/ D 0

that a critical point .x; y/ must satisfy, we see that either

x D 0 or 14 � 2x � y D 0; (6a)

and either

y D 0 or 16 � 2y � x D 0: (6b)

If x D 0 and y ¤ 0, then the second equation in (6b) gives y D 8. If y D 0 and x ¤ 0,
then the second equation in (6a) gives x D 7. If both x and y are nonzero, then we solve the
simultaneous equations

2x C y D 14; x C 2y D 16
for x D 4, y D 6. Thus the system in (5) has the four critical points .0; 0/, .0; 8/, .7; 0/, and
.4; 6/. If x.t/ and y.t/ denote the number of rabbits and the number of squirrels, respectively,
and if both populations are constant, it follows that the equations in (5) allow only three
nontrivial possibilities: either no rabbits and 8 squirrels, or 7 rabbits and no squirrels, or 4
rabbits and 6 squirrels. In particular, the critical point .4; 6/ describes the only possibility for
the coexistence of constant nonzero populations of both species.

Phase Portraits
If the initial point .x0; y0/ is not a critical point, then the corresponding trajectory is
a curve in the xy-plane along which the point .x.t/; y.t// moves as t increases. It
turns out that any trajectory not consisting of a single point is a nondegenerate curve
with no self-intersections (Problem 30). We can exhibit qualitatively the behavior
of solutions of the autonomous system in (1) by constructing a picture that shows
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its critical points together with a collection of typical solution curves or trajectories
in the xy-plane. Such a picture is called a phase portrait (or phase plane picture)
because it illustrates “phases” or xy-states of the system, and indicates how they
change with time.

Another way of visualizing the system is to construct a slope field in the xy-
phase plane by drawing typical line segments having slope

dy

dx
D y0

x0 D
G.x; y/

F.x; y/
;

or a direction field by drawing typical vectors pointing the same direction at each
point .x; y/ as does the vector .F.x; y/;G.x; y//. Such a vector field then indicates
which direction along a trajectory to travel in order to “go with the flow” described
by the system.
Remark It is worth emphasizing that if our system of differential equations were not au-
tonomous, then its critical points, trajectories, and direction vectors would generally be
changing with time. In this event, the concrete visualization afforded by a (fixed) phase
portrait or direction field would not be available to us. Indeed, this is a principal reason why
an introductory study of nonlinear systems concentrates on autonomous ones.

Figure 6.1.1 shows a direction field and phase portrait for the rabbit-squirrel
system of Example 1. The direction field arrows indicate the direction of motion of
the point .x.t/; y.t//. We see that, given any positive initial numbers x0 6D 4 and
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FIGURE 6.1.1. Direction field and
phase portrait for the rabbit–squirrel
system x0 D 14x � 2x2 � xy,
y0 D 16y � 2y2 � xy
of Example 1.

y0 6D 6 of rabbits and squirrels, this point moves along a trajectory approaching the
critical point .4; 6/ as t increases.

Example 2 For the system

x0 D x � y;
y0 D 1 � x2

(7)

we see from the first equation that x D y and from the second that x D ˙1 at each critical
point. Thus this system has the two critical points .�1;�1/ and .1; 1/. The direction field in
Fig. 6.1.2 suggests that trajectories somehow “circulate” counterclockwise around the critical
point .�1;�1/, whereas it appears that some trajectories may approach, while others recede
from, the critical point .1; 1/. These observations are corroborated by the phase portrait in
Fig. 6.1.3 for the system in (7).
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FIGURE 6.1.2. Direction field for
the system in Eq. (7).
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FIGURE 6.1.3. Phase portrait for
the system in Eq. (7).

Remark One could carelessly write the critical points in Example 2 as .˙1;˙1/ and then
jump to the erroneous conclusion that the system in (7) has four rather than just two criti-
cal points. When feasible, a sure-fire way to determine the number of critical points of an
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autonomous system is to plot the curves F.x; y/ D 0 and G.x; y/ D 0 and then note their

x = y

x = +1

x = –1

(+1, +1)

(–1, –1)

x 
F (x, y) = x – y = 0

G (x, y) = 1 – x2 = 0

G (x, y) = 1 – x2 = 0

y

FIGURE 6.1.4. The two critical
points .�1; �1/ and .C1; C1/ in
Example 2 as the intersection of the
curves F .x; y/ D x � y D 0 and
G.x; y/ D 1 � x2 D 0.

intersections, each of which represents a critical point of the system. For instance, Fig. 6.1.4
shows the curve (line) F.x; y/ D x � y D 0 and the pair of lines x D C1 and x D �1 that
constitute the “curve” G.x; y/ D 1 � x2 D 0. The (only) two points of intersection .�1;�1/
and .C1;C1/ are then apparent.

Critical Point Behavior
The behavior of the trajectories near an isolated critical point of an autonomous
system is of particular interest. Figure 6.1.5 is a close-up view of Fig. 6.1.1 near the
critical point .4; 6/, and similarly Figs. 6.1.6 and 6.1.7 are close-ups of Fig. 6.1.3
near the critical points .�1;�1/ and .1; 1/, respectively. We notice immediately that
although the systems underlying these phase portraits are nonlinear, each of these
three magnifications bears a striking resemblance to one of the cases in our “gallery”
Fig. 5.3.16 of phase plane portraits for linear constant-coefficient systems. Indeed,
the three figures strongly resemble a nodal sink, a spiral source, and a saddle point,
respectively.
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FIGURE 6.1.5. Close-up view of
Fig. 6.1.1 near the critical point .4; 6/.
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FIGURE 6.1.6. Close-up view of
Fig. 6.1.3 near the critical point
.�1; �1/.
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FIGURE 6.1.7. Close-up view of
Fig. 6.1.3 near the critical point .1; 1/.

These similarities are not a coincidence. Indeed, as we will explore in detail in
the next section, the behavior of a nonlinear system near a critical point is generally
similar to that of a corresponding linear constant-coefficient system near the origin.
For this reason it is useful to extend the language of nodes, sinks, etc., introduced in
Section 5.3 for linear constant-coefficient systems to the broader context of critical
points of the two-dimensional system (1).

In general, the critical point .x?; y?/ of the autonomous system in (1) is called
a node provided that

� Either every trajectory approaches .x?; y?/ as t ! C1 or every trajectory
recedes from .x?; y?/ as t !C1, and

� Every trajectory is tangent at .x?; y?/ to some straight line through the critical
point.

As with linear constant-coefficient systems, a node is said to be proper pro-
vided that no two different pairs of “opposite” trajectories are tangent to the same
straight line through the critical point. On the other hand, the critical point .4; 6/ of
the system in Eq. (5), shown in Figs. 6.1.1 and 6.1.5, is an improper node; as those
figures suggest, virtually all of the trajectories approaching this critical point share
a common tangent line at that point.

Likewise, a node is further called a sink if all trajectories approach the critical
point, a source if all trajectories recede (or emanate) from it. Thus the critical point
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.4; 6/ in Figs. 6.1.1 and 6.1.5 is a nodal sink, whereas the critical point .�1;�1/ in
Figs. 6.1.3 and 6.1.6 is a source (more specifically, a spiral source). The critical
point .1; 1/ in Figs. 6.1.3 and 6.1.7, on the other hand, is a saddle point.

Stability
A critical point .x?; y?/ of the autonomous system in (1) is said to be stable provided
that if the initial point .x0; y0/ is sufficiently close to .x?; y?/, then .x.t/; y.t// re-
mains close to .x?; y?/ for all t > 0. In vector notation, with x.t/ D .x.t/; y.t//, the
distance between the initial point x0 D .x0; y0/ and the critical point x? D .x?; y?/

is
jx0 � x?j D

p
.x0 � x?/2 C .y0 � y?/2 :

Thus the critical point x? is stable provided that, for each 
 > 0, there exists ı > 0

such that

jx0 � x?j < ı implies that jx.t/ � x?j < 
 (8)

for all t > 0. Note that the condition in (8) certainly holds if x.t/! x? as t !C1,
as in the case of a nodal sink such as the critical point .4; 6/ in Figs. 6.1.1 and 6.1.5.
Thus this nodal sink can also be described as a stable node.

The critical point .x?; y?/ is called unstable if it is not stable. The two critical
points at .�1;�1/ and .1; 1/ shown in Figs. 6.1.3, 6.1.6, and 6.1.7 are both unstable,
because, loosely speaking, in neither of these cases can we guarantee that a trajec-
tory will remain near the critical point simply by requiring the trajectory to begin
near the critical point.

If .x?; y?/ is a critical point, then the equilibrium solution x.t/ � x?, y.t/ �
y? is called stable or unstable depending on the nature of the critical point. In
applications the stability of an equilibrium solution is often a crucial matter. For
instance, suppose in Example 1 that x.t/ and y.t/ denote the rabbit and squirrel
populations, respectively, in hundreds. We will see in Section 6.3 that the critical
point .4; 6/ in Fig. 6.1.1 is stable. It follows that if we begin with close to 400
rabbits and 600 squirrels—rather than exactly these equilibrium values—then for
all future time there will remain close to 400 rabbits and close to 600 squirrels. Thus
the practical consequence of stability is that slight changes (perhaps due to random
births and deaths) in the equilibrium populations will not so upset the equilibrium
as to result in large deviations from the equilibrium solutions.

It is possible for trajectories to remain near a stable critical point without ap-
proaching it, as Example 3 shows.

Example 3 Consider a mass m that oscillates without damping on a spring with Hooke’s constant k,
so that its position function x.t/ satisfies the differential equation x00 C !2x D 0 (where
!2 D k=m). If we introduce the velocity y D dx=dt of the mass, we get the system

dx

dt
D y;

dy

dt
D �!2x

(9)

with general solution

x.t/ D A cos!t C B sin!t; (10a)

y.t/ D �A! sin!t C B! cos!t: (10b)
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With C D
p
A2 C B2, A D C cos˛, and B D C sin˛, we can rewrite the solution in (10) in

the form

x.t/ D C cos.!t � ˛/; (11a)

y.t/ D �!C sin.!t � ˛/; (11b)

so it becomes clear that each trajectory other than the critical point .0; 0/ is an ellipse with
equation of the form

x2

C 2
C y2

!2C 2
D 1: (12)

As illustrated by the phase portrait in Fig. 6.1.8 (where ! D 1
2 ), each point .x0; y0/ other than
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FIGURE 6.1.8. Direction field and
elliptical trajectories for the system
x0 D y, y0 D � 1

4
x. The origin is a

stable center.

the origin in the xy-plane lies on exactly one of these ellipses, and each solution .x.t/; y.t//
traverses the ellipse through its initial point .x0; y0/ in the clockwise direction with period
P D 2�=!. (It is clear from (11) that x.t C P / D x.t/ and y.t C P / D y.t/ for all t .) Thus
each nontrivial solution of the system in (9) is periodic and its trajectory is a simple closed
curve enclosing the critical point at the origin.

Figure 6.1.9 shows a typical elliptical trajectory in Example 3, with its minor

x

y

ε

δ

FIGURE 6.1.9. If the initial point
.x0; y0/ lies within distance ı of the
origin, then the point .x.t/; y.t//
stays within distance 	 of the origin.

semiaxis denoted by ı and its major semiaxis by 
. We see that if the initial point
.x0; y0/ lies within distance ı of the origin—so that its elliptical trajectory lies in-
side the one shown—then the point .x.t/; y.t// always remains within distance 
 of
the origin. Hence the origin .0; 0/ is a stable critical point of the system x0 D y,
y0 D �!2x, despite the fact that no single trajectory approaches the point .0; 0/. A
stable critical point surrounded by simple closed trajectories representing periodic
solutions is called a (stable) center.

Asymptotic Stability
The critical point .x?; y?/ is called asymptotically stable if it is stable and, more-
over, every trajectory that begins sufficiently close to .x?; y?/ also approaches
.x?; y?/ as t !C1. That is, there exists ı > 0 such that

jx � x?j < ı implies that lim
t!1 x.t/ D x?; (13)

where x0 D .x0; y0/, x? D .x?; y?/, and x.t/D .x.t/; y.t// is a solution with x.0/D
x0.
Remark The stable node shown in Figs. 6.1.1 and 6.1.5 is asymptotically stable because
every trajectory approaches the critical point .4; 6/ as t ! C1. The center .0; 0/ shown
in Fig. 6.1.8 is stable but not asymptotically stable, because however small an elliptical tra-
jectory we consider, a point moving around this ellipse does not approach the origin. Thus
asymptotic stability is a stronger condition than mere stability.

Now suppose that x.t/ and y.t/ denote coexisting populations for which
.x?; y?/ is an asymptotically stable critical point. Then if the initial populations
x0 and y0 are sufficiently close to x? and y?, respectively, it follows that both

lim
t!1 x.t/ D x? and lim

t!1 y.t/ D y?: (14)

That is, x.t/ and y.t/ actually approach the equilibrium populations x? and y? as
t !C1, rather than merely remaining close to those values.

For a mechanical system as in Example 3, a critical point represents an equi-
librium state of the system—if the velocity y D x0 and the acceleration y0 D x00
vanish simultaneously, then the mass remains at rest with no net force acting on
it. Stability of a critical point concerns the question whether, when the mass is
displaced slightly from its equilibrium, it
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1. Moves back toward the equilibrium point as t !C1,
2. Merely remains near the equilibrium point without approaching it, or
3. Moves farther away from equilibrium.

In Case 1 the critical [equilibrium] point is asymptotically stable; in Case 2
it is stable but not asymptotically so; in Case 3 it is an unstable critical point. A
marble balanced on the top of a soccer ball is an example of an unstable critical
point. A mass on a spring with damping illustrates the case of asymptotic stability
of a mechanical system. The mass-and-spring without damping in Example 3 is an
example of a system that is stable but not asymptotically stable.

Example 4 Suppose that m D 1 and k D 2 for the mass and spring of Example 3 and that the mass is
attached also to a dashpot with damping constant c D 2. Then its displacement function x.t/
satisfies the second-order equation

x00.t/C 2x0.t/C 2x.t/ D 0: (15)

With y D x0 we obtain the equivalent first-order system

dx

dt
D y;

dy

dt
D �2x � 2y

(16)

with critical point .0; 0/. The characteristic equation r2 C 2r C 2 D 0 of Eq. (15) has roots
�1C i and �1 � i , so the general solution of the system in (16) is given by

x.t/ D e�t .A cos t C B sin t / D Ce�t cos.t � ˛/; (17a)

y.t/ D e�t Œ.B � A/ cos t � .AC B/ sin t �

D �C
p
2e�t sin

�
t � ˛ C 1

4�
�
;

(17b)

where C D
p
A2 C B2 and ˛ D tan�1.B=A/. We see that x.t/ and y.t/ oscillate between

positive and negative values and that both approach zero as t!C1. Thus a typical trajectory
spirals inward toward the origin, as illustrated by the spiral in Fig. 6.1.10.

x

y

FIGURE 6.1.10. A stable spiral
point and one nearby trajectory.

It is clear from (17) that the point .x.t/; y.t// approaches the origin as t !
C1, so it follows that .0; 0/ is an asymptotically stable critical point for the system
x0 D y, y0 D�2x � 2y of Example 4. Such an asymptotically stable critical point—
around which the trajectories spiral as they approach it—is called a stable spiral
point (or a spiral sink). In the case of a mass–spring–dashpot system, a spiral sink
is the manifestation in the phase plane of the damped oscillations that occur because
of resistance.

If the arrows in Fig. 6.1.10 were reversed, we would see a trajectory spiraling
outward from the origin. An unstable critical point—around which the trajectories
spiral as they emanate and recede from it—is called an unstable spiral point (or
a spiral source). Example 5 shows that it also is possible for a trajectory to spiral
into a closed trajectory—a simple closed solution curve that represents a periodic
solution (like the elliptical trajectories in Fig. 6.1.8).

Example 5 Consider the system

dx

dt
D �ky C x.1 � x2 � y2/;

dy

dt
D kx C y.1 � x2 � y2/:

(18)
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In Problem 21 we ask you to show that .0; 0/ is its only critical point. This system can be
solved explicitly by introducing polar coordinates x D r cos � , y D r sin � , as follows. First
note that

d�

dt
D d

dt

�
arctan

y

x

�
D xy0 � x0y

x2 C y2
:

Then substitute the expressions given in (18) for x0 and y0 to obtain

d�

dt
D k.x2 C y2/

x2 C y2
D k:

It follows that

�.t/ D kt C �0; where �0 D �.0/: (19)

Then differentiation of r2 D x2 C y2 yields

2r
dr

dt
D 2x dx

dt
C 2y dy

dt

D 2.x2 C y2/.1 � x2 � y2/ D 2r2.1 � r2/;

so r D r.t/ satisfies the differential equation

dr

dt
D r.1 � r2/: (20)

In Problem 22 we ask you to derive the solution

r.t/ D r0q
r2
0 C .1 � r2

0 /e
�2t

; (21)

where r0 D r.0/. Thus the typical solution of Eq. (18) may be expressed in the form

x.t/ D r.t/ cos.kt C �0/;

y.t/ D r.t/ sin.kt C �0/:
(22)

If r0 D 1, then Eq. (21) gives r.t/ � 1 (the unit circle). Otherwise, if r0 > 0, then Eq. (21)
implies that r.t/! 1 as t ! C1. Hence the trajectory defined in (22) spirals in toward the
unit circle if r0 > 1 and spirals out toward this closed trajectory if 0 < r0 < 1. Figure 6.1.11
shows a trajectory spiraling outward from the origin and four trajectories spiraling inward,
all approaching the closed trajectory r.t/ � 1.
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FIGURE 6.1.11. Spiral trajectories
of the system in Eq. (18) with k D 5.

Under rather general hypotheses it can be shown that there are four possibili-
ties for a nondegenerate trajectory of the autonomous system

dx

dt
D F.x; y/; dy

dt
D G.x; y/:

The four possibilities are these:

1. .x.t/; y.t// approaches a critical point as t !C1.
2. .x.t/; y.t// is unbounded with increasing t .
3. .x.t/; y.t// is a periodic solution with a closed trajectory.
4. .x.t/; y.t// spirals toward a closed trajectory as t !C1.

As a consequence, the qualitative nature of the phase plane picture of the
trajectories of an autonomous system is determined largely by the locations of its
critical points and by the behavior of its trajectories near its critical points. We will
see in Section 6.2 that, subject to mild restrictions on the functions F and G, each
isolated critical point of the system x0 D F.x; y/, y0 D G.x; y/ resembles qualita-
tively one of the examples of this section—it is either a node (proper or improper),
a saddle point, a center, or a spiral point.
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6.1 Problems
In Problems 1 through 8, find the critical point or points of the
given autonomous system, and thereby match each system with
its phase portrait among Figs. 6.1.12 through 6.1.19.

1.
dx

dt
D 2x � y,

dy

dt
D x � 3y

2.
dx

dt
D x � y,

dy

dt
D x C 3y � 4

3.
dx

dt
D x � 2y C 3, dy

dt
D x � y C 2

4.
dx

dt
D 2x � 2y � 4, dy

dt
D x C 4y C 3

5.
dx

dt
D 1 � y2,

dy

dt
D x C 2y

6.
dx

dt
D 2 � 4x � 15y,

dy

dt
D 4 � x2
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FIGURE 6.1.12. Spiral point .�2; 1/
and saddle point .2; �1/.
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FIGURE 6.1.13. Spiral point
.1; �1/.
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FIGURE 6.1.14. Saddle point .0; 0/.
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FIGURE 6.1.15. Spiral point .0; 0/;
saddle points .�2; �1/ and .2; 1/.
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FIGURE 6.1.16. Node .1; 1/.
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FIGURE 6.1.17. Spiral point
.�1; �1/, saddle point .0; 0/, and
node .1; �1/.
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FIGURE 6.1.19. Stable center
.�1; 1/.
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7.
dx

dt
D x � 2y,

dy

dt
D 4x � x3

8.
dx

dt
D x � y � x2 C xy,

dy

dt
D �y � x2

In Problems 9 through 12, find each equilibrium solution
x.t/ � x0 of the given second-order differential equation
x00 C f .x; x0/ D 0. Use a computer system or graphing cal-
culator to construct a phase portrait and direction field for the
equivalent first-order system x0 D y, y0 D �f .x; y/. Thereby
ascertain whether the critical point .x0; 0/ looks like a center,
a saddle point, or a spiral point of this system.

9. x00 C 4x � x3 D 0
10. x00 C 2x0 C x C 4x3 D 0
11. x00 C 3x0 C 4 sin x D 0
12. x00 C .x2 � 1/x0 C x D 0

Solve each of the linear systems in Problems 13 through 20 to
determine whether the critical point .0; 0/ is stable, asymptot-
ically stable, or unstable. Use a computer system or graphing
calculator to construct a phase portrait and direction field for
the given system. Thereby ascertain the stability or instabil-
ity of each critical point, and identify it visually as a node, a
saddle point, a center, or a spiral point.

13.
dx

dt
D �2x,

dy

dt
D �2y

14.
dx

dt
D 2x,

dy

dt
D �2y

15.
dx

dt
D �2x,

dy

dt
D �y

16.
dx

dt
D x,

dy

dt
D 3y

17.
dx

dt
D y,

dy

dt
D �x

18.
dx

dt
D �y,

dy

dt
D 4x

19.
dx

dt
D 2y,

dy

dt
D �2x

20.
dx

dt
D y,

dy

dt
D �5x � 4y

21. Verify that .0; 0/ is the only critical point of the system in
Example 6.

22. Separate variables in Eq. (20) to derive the solution in
(21).

In Problems 23 through 26, a system dx=dt DF.x; y/, dy=dt D
G.x; y/ is given. Solve the equation

dy

dx
D G.x; y/

F.x; y/

to find the trajectories of the given system. Use a computer sys-
tem or graphing calculator to construct a phase portrait and
direction field for the system, and thereby identify visually the
apparent character and stability of the critical point .0; 0/ of
the given system.

23.
dx

dt
D y,

dy

dt
D �x

24.
dx

dt
D y.1C x2 C y2/,

dy

dt
D x.1C x2 C y2/

25.
dx

dt
D 4y.1C x2 C y2/,

dy

dt
D �x.1C x2 C y2/

26.
dx

dt
D y3exCy ,

dy

dt
D �x3exCy

27. Let .x.t/; y.t// be a nontrivial solution of the nonau-
tonomous system

dx

dt
D y; dy

dt
D tx:

Suppose that �.t/D x.t C �/ and  .t/D y.t C �/, where
� 6D 0. Show that .�.t/;  .t// is not a solution of the sys-
tem.

Problems 28 through 30 deal with the system

dx

dt
D F.x; y/; dy

dt
D G.x; y/

in a region where the functions F and G are continuously dif-
ferentiable, so for each number a and point .x0; y0/, there is
a unique solution with x.a/ D x0 and y.a/ D y0.

28. Suppose that .x.t/; y.t// is a solution of the autonomous
system and that � 6D 0. Define �.t/ D x.t C �/ and
 .t/ D y.t C �/. Then show (in contrast with the situ-
ation in Problem 27) that .�.t/;  .t// is also a solution
of the system. Thus autonomous systems have the simple
but important property that a “t-translate” of a solution is
again a solution.

29. Let .x1.t/; y1.t// and .x2.t/; y2.t// be two solutions hav-
ing trajectories that meet at the point .x0; y0/; thus
x1.a/ D x2.b/ D x0 and y1.a/ D y2.b/ D y0 for some
values a and b of t . Define

x3.t/ D x2.t C �/ and y3.t/ D y2.t C �/;

where � D b � a, so .x2.t/; y2.t// and .x3.t/; y3.t// have
the same trajectory. Apply the uniqueness theorem to
show that .x1.t/; y1.t// and .x3.t/; y3.t// are identical so-
lutions. Hence the original two trajectories are identical.
Thus no two different trajectories of an autonomous sys-
tem can intersect.

30. Suppose that the solution .x1.t/; y1.t// is defined for all t
and that its trajectory has an apparent self-intersection:

x1.a/ D x1.aC P / D x0; y1.a/ D y1.aC P / D y0

for some P > 0. Introduce the solution

x2.t/ D x1.t C P /; y2.t/ D y1.t C P /;

and then apply the uniqueness theorem to show that

x1.t C P / D x1.t/ and y1.t/ D y1.t C P /

for all t . Thus the solution .x1.t/; y1.t// is periodic with
period P and has a closed trajectory. Consequently a so-
lution of an autonomous system either is periodic with
a closed trajectory, or else its trajectory never passes
through the same point twice.
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6.1 Application Phase Plane Portraits and First-Order Equations
Consider a first-order differential equation of the form

dy

dx
D G.x; y/

F.x; y/
; (1)

which may be difficult or impossible to solve explicitly. Its solution curves can
nevertheless be plotted as trajectories of the corresponding autonomous two-dimen-
sional system

dx

dt
D F.x; y/; dy

dt
D G.x; y/: (2)

Most ODE plotters can routinely generate phase portraits for autonomous sys-
tems. Many of those appearing in this chapter were plotted using (as illustrated
in Fig. 6.1.20) John Polking’s MATLAB-based pplane program that is available
free for educational use (math.rice.edu/~dfield). Another freely available
and user-friendly MATLAB-based ODE package with similar graphical capabilities
is Iode (www.math.uiuc.edu/iode).

FIGURE 6.1.20. MATLAB pplane menu entries to plot a direction field and phase
portrait for the system x0 D y, y0 D � 1

4
x (as shown in Fig. 6.1.8).

For example, to plot solution curves for the differential equation

dy

dx
D 2xy � y2

x2 � 2xy ; (3)

we plot trajectories of the system

dx

dt
D x2 � 2xy; dy

dt
D 2xy � y2: (4)

The result is shown in Fig. 6.1.21.
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FIGURE 6.1.21. Phase portrait for
the system in Eq. (4).

http://www.math.uiuc.edu/iode
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Plot similarly some solution curves for the following differential equations.

1.
dy

dx
D 4x � 5y
2x C 3y

2.
dy

dx
D 4x � 5y
2x � 3y

3.
dy

dx
D 4x � 3y
2x � 5y

4.
dy

dx
D 2xy

x2 � y2

5.
dy

dx
D x2 C 2xy
y2 C 2xy

Now construct some examples of your own. Homogeneous functions like
those in Problems 1 through 5—rational functions with numerator and denominator
of the same degree in x and y—work well. The differential equation

dy

dx
D 25x C y.1 � x2 � y2/.4 � x2 � y2/

�25y C x.1 � x2 � y2/.4 � x2 � y2/
(5)

of this form generalizes Example 5 in this section but would be inconvenient to solve
explicitly. Its phase portrait (Fig. 6.1.22) shows two periodic closed trajectories—
the circles r D 1 and r D 2. Anyone want to try for three circles?
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FIGURE 6.1.22. Phase portrait for
the system corresponding to Eq. (5).

6.2 Linear and Almost Linear Systems
We now discuss the behavior of solutions of the autonomous system

dx

dt
D f .x; y/; dy

dt
D g.x; y/ (1)

near an isolated critical point .x0; y0/ where f .x0; y0/ D g.x0; y0/ D 0. A critical
point is called isolated if some neighborhood of it contains no other critical point.
We assume throughout that the functions f and g are continuously differentiable in
a neighborhood of .x0; y0/.

We can assume without loss of generality that x0 D y0 D 0. Otherwise, we
make the substitutions u D x � x0, v D y � y0. Then dx=dt D du=dt and dy=dt D
dv=dt , so (1) is equivalent to the system

du

dt
D f .uC x0; v C y0/ D f1.u; v/;

dv

dt
D g.uC x0; v C y0/ D g1.u; v/

(2)

that has .0; 0/ as an isolated critical point.

Example 1 The system

dx

dt
D 3x � x2 � xy D x.3 � x � y/;

dy

dt
D y C y2 � 3xy D y.1 � 3x C y/

(3)
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has .1; 2/ as one of its critical points. We substitute u D x � 1, v D y � 2; that is, x D uC 1,
y D v C 2. Then

3 � x � y D 3 � .uC 1/ � .v C 2/ D �u � v
and

1 � 3x C y D 1 � 3.uC 1/C .v C 2/ D �3uC v;
so the system in (3) takes the form

du

dt
D .uC 1/.�u � v/ D �u � v � u2 � uv;

dv

dt
D .v C 2/.�3uC v/ D �6uC 2v C v2 � 3uv

(4)

and has .0; 0/ as a critical point. If we can determine the trajectories of the system in (4)
near .0; 0/, then their translations under the rigid motion that carries .0; 0/ to .1; 2/ will be
the trajectories near .1; 2/ of the original system in (3). This equivalence is illustrated by
Fig. 6.2.1 (which shows computer-plotted trajectories of the system in (3) near the critical
point .1; 2/ in the xy-plane) and Fig. 6.2.2 (which shows computer-plotted trajectories of the
system in (4) near the critical point .0; 0/ in the uv-plane).

0 21
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y

3

2

(1, 2)

1

FIGURE 6.2.1. The saddle point
.1; 2/ for the system
x0 D 3x � x2 � xy,
y0 D y C y2 � 3xy
of Example 1.

0 1
u

v
–1

–1

1

0

(0, 0)

FIGURE 6.2.2. The saddle point
.0; 0/ for the equivalent system
u0 D �u � v � u2 � uv,
v0 D �6u C 2v C v2 � 3uv.

Figures 6.2.1 and 6.2.2 illustrate the fact that the solution curves of the xy-
system in (1) are simply the images under the translation .u; v/! .uC x0; v C y0/

of the solution curves of the uv-system in (2). Near the two corresponding critical
points—.x0; y0/ in the xy-plane and .0; 0/ in the uv-plane—the two phase portraits
therefore look precisely the same.

Linearization Near a Critical Point
Taylor’s formula for functions of two variables implies that—if the function f .x; y/
is continuously differentiable near the fixed point .x0; y0/—then

f .x0 C u; y0 C v/ D f .x0; y0/C fx.x0; y0/uC fy.x0; y0/v C r.u; v/

where the “remainder term” r.u; v/ satisfies the condition

lim
.u;v/!.0;0/

r.u; v/p
u2 C v2

D 0:

(Note that this condition would not be satisfied if r.u; v/ were a sum containing
either constants or terms linear in u or v. In this sense, r.u; v/ consists of the
“nonlinear part” of the function f .x0 C u; y0 C v/ of u and v.)
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If we apply Taylor’s formula to both f and g in (2) and assume that .x0; y0/

is an isolated critical point so f .x0; y0/ D g.x0; y0/ D 0, the result is

du

dt
D fx.x0; y0/uC fy.x0; y0/v C r.u; v/;

dv

dt
D gx.x0; y0/uC gy.x0; y0/v C s.u; v/

(5)

where r.u; v/ and the analogous remainder term s.u; v/ for g satisfy the condition

lim
.u;v/!.0;0/

r.u; v/p
u2 C v2

D lim
.u;v/!.0;0/

s.u; v/p
u2 C v2

D 0: (6)

Then, when the values u and v are small, the remainder terms r.u; v/ and s.u; v/ are
very small (being small even in comparison with u and v).

If we drop the presumably small nonlinear terms r.u; v/ and s.u; v/ in (5), the
result is the linear system

du

dt
D fx.x0; y0/uC fy.x0; y0/v;

dv

dt
D gx.x0; y0/uC gy.x0; y0/v

(7)

whose constant coefficients (of the variables u and v) are the values fx.x0; y0/,
fy.x0; y0/ and gx.x0; y0/, gy.x0; y0/ of the functions f and g at the critical point
.x0; y0/. Because (5) is equivalent to the original (and generally) nonlinear system
u0 D f .x0 C u; y0 C v/, v0 D g.x0 C u; y0 C v/ in (2), the conditions in (6) suggest
that the linearized system in (7) closely approximates the given nonlinear system
when .u; v/ is close to .0; 0/.

Assuming that .0; 0/ is also an isolated critical point of the linear system,
and that the remainder terms in (5) satisfy the condition in (6), the original system
x0 D f .x; y/, y0 D g.x; y/ is said to be almost linear at the isolated critical point
.x0; y0/. In this case, its linearization at .x0; y0/ is the linear system in (7). In
short, this linearization is the linear system u0 D Ju (where u D 


u v
�T ) whose

coefficient matrix is the so-called Jacobian matrix

J.x0; y0/ D
�
fx.x0; y0/ fy.x0; y0/

gx.x0; y0/ gy.x0; y0/

�
(8)

of the functions f and g, evaluated at the point .x0; y0/.

Continued

Example 1 In (3) we have f .x; y/ D 3x � x2 � xy and g.x; y/ D y C y2 � 3xy. Then

J.x; y/ D
�
3 � 2x � y �x
�3y 1C 2y � 3x

�
; so J.1; 2/ D

� �1 �1
�6 2

�
:

Hence the linearization of the system x0 D 3x � x2 � xy, y0 D y C y2 � 3xy at its critical
point .1; 2/ is the linear system

u0 D �u � v;
v0 D �6uC 2v

that we get when we drop the nonlinear (quadratic) terms in (4).

It turns out that in most (though not all) cases, the phase portrait of an al-
most linear system near an isolated critical point .x0; y0/ strongly resembles—
qualitatively—the phase portrait of its linearization near the origin. Consequently,
the first step toward understanding general autonomous systems is to characterize
the isolated critical points of linear systems.
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Isolated Critical Points of Linear Systems
In Section 5.3 we used the eigenvalue-eigenvector method to study the 2 � 2 linear
system �

x0
y0

�
D
�
a b

c d

� �
x

y

�
(9)

with constant-coefficient matrix A. The origin .0; 0/ is a critical point of the system
regardless of the matrix A, but if we further require the origin to be an isolated
critical point, then (by a standard theorem of linear algebra) the determinant ad �bc
of A must be nonzero. From this we can conclude that the eigenvalues �1 and �2 of
A must be nonzero. Indeed, �1 and �2 are the solutions of the characteristic equation

det.A � �I/ D
ˇ̌̌̌
a � � b

c d � �
ˇ̌̌̌

D .a � �/.d � �/ � bc
D �2 � .aC d/�C .ad � bc/
D 0;

(10)

and the fact that ad � bc 6D 0 implies that � D 0 cannot satisfy Eq. (10); hence �1

and �2 are nonzero. The converse also holds: If the characteristic equation (10) has
no zero solution—that is, if all eigenvalues of the matrix A are nonzero—then the
determinant ad � bc is nonzero. Altogether, we conclude that the origin .0; 0/ is an
isolated critical point of the system in Eq. (9) if and only if the eigenvalues of A are
all nonzero. Our study of this critical point can be divided, therefore, into the five
cases listed in the table in Fig. 6.2.3. This table also gives the type of each critical
point as found in Section 5.3 and shown in our gallery Fig. 5.3.16 of typical phase
plane portraits:

Eigenvalues of A Type of Critical Point

Real, unequal, same sign

Real, unequal, opposite sign

Real and equal

Complex conjugate

Pure imaginary

Improper node

Saddle point

Proper or improper node

Spiral point

Center

FIGURE 6.2.3. Classification of the isolated critical point .0; 0/
of the two-dimensional system x0 D Ax.

Closer inspection of that gallery, however, reveals a striking connection be-
tween the stability properties of the critical point and the eigenvalues �1 and �2

of A. For example, if �1 and �2 are real, unequal, and negative, then the origin
represents an improper nodal sink; because all trajectories approach the origin as
t !C1, the critical point is asymptotically stable. Likewise, if �1 and �2 are real,
equal, and negative, then the origin is a proper nodal sink, and is again asymptot-
ically stable. Further, if �1 and �2 are complex conjugate with negative real part,
then the origin is a spiral sink, and is once more asymptotically stable. All three of
these cases can be captured as follows: If the real parts of �1 and �2 are negative,
then the origin is an asymptotically stable critical point. (Note that if �1 and �2 are
real, then they are themselves their real parts.)

Similar generalizations can be made for other combinations of signs of the real
parts of �1 and �2. Indeed, as the table in Fig. 6.2.4 shows, the stability properties
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of the isolated critical point .0; 0/ of the system in Eq. (9) are always determined
by the signs of the real parts of �1 and �2. (We invite you to use the gallery in
Fig. 5.3.16 to verify the conclusions in the table.)

Real Parts of �1 and �2 Type of Critical Point Stability

Both negative
� Proper or improper

nodal sink, or
� Spiral sink

Asymptotically
stable

Both zero (i.e., �1 and �2 are
given by ˙iq with q 6D 0) � Center

Stable but not
asymptotically
stable

At least one positive

� Proper or improper
nodal source, or

� Spiral source, or
� Saddle point

Unstable

FIGURE 6.2.4. Stability properties of the isolated critical point .0; 0/ of the system in Eq. (9) with
nonzero eigenvalues �1 and �2.

These findings are summarized in Theorem 1:

THEOREM 1 Stability of Linear Systems

Let �1 and �2 be the eigenvalues of the coefficient matrix A of the two-
dimensional linear system

dx

dt
D ax C by;

dy

dt
D cx C dy

(11)

with ad � bc 6D 0. Then the critical point .0; 0/ is

1. Asymptotically stable if the real parts of �1 and �2 are both negative;
2. Stable but not asymptotically stable if the real parts of �1 and �2 are both

zero (so that �1, �2 D ˙qi);
3. Unstable if either �1 or �2 has a positive real part.

It is worthwhile to consider the effect of small perturbations in the coefficients
a, b, c, and d of the linear system in (11), which result in small perturbations of the
eigenvalues �1 and �2. If these perturbations are sufficiently small, then positive
real parts (of �1 and �2) remain positive and negative real parts remain negative.
Hence an asymptotically stable critical point remains asymptotically stable and an
unstable critical point remains unstable. Part 2 of Theorem 1 is therefore the only
case in which arbitrarily small perturbations can affect the stability of the critical
point .0; 0/. In this case pure imaginary roots �1, �2 D ˙qi of the characteristic
equation can be changed to nearby complex roots 1, 2 D r ˙ si , with r either
positive or negative (see Fig. 6.2.5). Consequently, a small perturbation of the coef-
ficients of the linear system in (11) can change a stable center to a spiral point that
is either unstable or asymptotically stable.

λ1 = qiλ

μ1 = r + siμ

μ2 = r– si

λ2 = – qiλ

μ

FIGURE 6.2.5. The effects of
perturbation of pure imaginary roots.
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There is one other exceptional case in which the type, though not the stability,
of the critical point .0; 0/ can be altered by a small perturbation of its coefficients.
This is the case with �1 D �2, equal roots that (under a small perturbation of the
coefficients) can split into two roots 1 and 2, which are either complex conjugates
or unequal real roots (see Fig. 6.2.6). In either case, the sign of the real parts of the
roots is preserved, so the stability of the critical point is unaltered. Its nature may
change, however; the table in Fig. 6.2.3 shows that a node with �1 D �2 can either
remain a node (if 1 and 2 are real) or change to a spiral point (if 1 and 2 are
complex conjugates).

Suppose that the linear system in (11) is used to model a physical situation. It

x

y

λ1 = λ2μ1 μ2

Distinct
real roots

Complex
conjugate
roots

λ λ μ

μ2μ

μ

μ1μ

FIGURE 6.2.6. The effects of
perturbation of real equal roots.

is unlikely that the coefficients in (11) can be measured with total accuracy, so let
the unknown precise linear model be

dx

dt
D a?x C b?y;

dy

dt
D c?x C d?y:

(11?)

If the coefficients in (11) are sufficiently close to those in (11?), it then follows from
the discussion in the preceding paragraph that the origin .0; 0/ is an asymptotically
stable critical point for (11) if it is an asymptotically stable critical point for (11?),
and is an unstable critical point for (11) if it is an unstable critical point for (11?).
Thus in this case the approximate model in (11) and the precise model in (11?)
predict the same qualitative behavior (with respect to asymptotic stability versus
instability).

Almost Linear Systems
Recall that we first encountered an almost linear system at the beginning of this
section, when we used Taylor’s formula to write the nonlinear system (2) in the
almost linear form (5) which led to the linearization (7) of the original nonlinear
system. In case the nonlinear system x0 D f .x; y/, y0 D g.x; y/ has .0; 0/ as an
isolated critical point, the corresponding almost linear system is

dx

dt
D ax C by C r.x; y/;

dy

dt
D cx C dy C s.x; y/;

(12)

where a D fx.0; 0/, b D fy.0; 0/ and c D gx.0; 0/, d D gy.0; 0/; we assume also
that ad � bc 6D 0. Theorem 2, which we state without proof, essentially implies
that—with regard to the type and stability of the critical point .0; 0/—the effect of
the small nonlinear terms r.x; y/ and s.x; y/ is equivalent to the effect of a small
perturbation in the coefficients of the associated linear system in (11).

THEOREM 2 Stability of Almost Linear Systems

Let �1 and �2 be the eigenvalues of the coefficient matrix of the linear system in
(11) associated with the almost linear system in (12). Then

1. If �1 D �2 are equal real eigenvalues, then the critical point .0; 0/ of (12) is
either a node or a spiral point, and is asymptotically stable if �1 D �2 < 0,
unstable if �1 D �2 > 0.

2. If �1 and �2 are pure imaginary, then .0; 0/ is either a center or a spiral
point, and may be either asymptotically stable, stable, or unstable.
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3. Otherwise—that is, unless �1 and �2 are either real equal or pure
imaginary—the critical point .0; 0/ of the almost linear system in (12) is
of the same type and stability as the critical point .0; 0/ of the associated
linear system in (11).

Thus, if �1 6D �2 and Re.�1/ 6D 0, then the type and stability of the critical point
of the almost linear system in (12) can be determined by analysis of its associated
linear system in (11), and only in the case of pure imaginary eigenvalues is the
stability of .0; 0/ not determined by the linear system. Except in the sensitive cases
�1 D �2 and Re.�i / D 0, the trajectories near .0; 0/ will resemble qualitatively
those of the associated linear system—they enter or leave the critical point in the
same way, but may be “deformed” in a nonlinear manner. The table in Fig. 6.2.7
summarizes the situation.

Eigenvalues �1, �2 Type of Critical Point of
for the Linearized System the Almost Linear System

�1 < �2 < 0

�1 D �2 < 0

�1 < 0 < �2

�1 D �2 > 0

�1 > �2 > 0

�1, �2 D a˙ bi (a < 0)

�1, �2 D a˙ bi (a > 0)

�1, �2 D ˙bi

Stable improper node

Stable node or spiral point

Unstable saddle point

Unstable node or spiral point

Unstable improper node

Stable spiral point

Unstable spiral point

Stable or unstable, center or spiral point

FIGURE 6.2.7. Classification of critical points of an almost linear system.

An important consequence of the classification of cases in Theorem 2 is that
a critical point of an almost linear system is asymptotically stable if it is an asymp-
totically stable critical point of the linearization of the system. Moreover, a critical
point of the almost linear system is unstable if it is an unstable critical point of the
linearized system. If an almost linear system is used to model a physical situation,
then—apart from the sensitive cases mentioned earlier—it follows that the qualita-
tive behavior of the system near a critical point can be determined by examining its
linearization.

Example 2 Determine the type and stability of the critical point .0; 0/ of the almost linear system

dx

dt
D 4x C 2y C 2x2 � 3y2;

dy

dt
D 4x � 3y C 7xy:

(13)

Solution The characteristic equation for the associated linear system (obtained simply by deleting the
quadratic terms in (13)) is

.4 � �/.�3 � �/ � 8 D .� � 5/.�C 4/ D 0;
so the eigenvalues �1 D 5 and �2 D �4 are real, unequal, and have opposite signs. By our
discussion of this case we know that .0; 0/ is an unstable saddle point of the linear system,
and hence by Part 3 of Theorem 2, it is also an unstable saddle point of the almost linear
system in (13). The trajectories of the linear system near .0; 0/ are shown in Fig. 6.2.8, and
those of the nonlinear system in (13) are shown in Fig. 6.2.9. Figure 6.2.10 shows a phase
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FIGURE 6.2.8. Trajectories of the
linearized system of Example 2.
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FIGURE 6.2.9. Trajectories of the
original almost linear system of
Example 2.
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FIGURE 6.2.10. Phase portrait for
the almost linear system in Eq. (13).

portrait of the nonlinear system in (13) from a “wider view.” In addition to the saddle point
at .0; 0/, there are spiral points near the points .0:279; 1:065/ and .0:933;�1:057/, and a node
near .�2:354;�0:483/.

We have seen that the system x0 D f .x; y/, y0 D g.x; y/ with isolated critical
point .x0; y0/ transforms via the substitution x D uC x0, y D v C y0 to an equiv-
alent uv-system with corresponding critical point .0; 0/ and linearization u0 D Ju,
whose coefficient matrix J is the Jacobian matrix in (8) of the functions f and g at
.x0; y0/. Consequently we need not carry out the substitution explicitly; instead, we
can proceed directly to calculate the eigenvalues of J preparatory to application of
Theorem 2.

Example 3 Determine the type and stability of the critical point .4; 3/ of the almost linear
system

dx

dt
D 33 � 10x � 3y C x2;

dy

dt
D �18C 6x C 2y � xy:

(14)

Solution With f .x; y/ D 33� 10x � 3y C x2, g.x; y/ D �18C 6x C 2y � xy and x0 D 4, y0 D 3 we
have

J.x; y/ D
� �10C 2x �3

6 � y 2 � x
�
; so J.4; 3/ D

� �2 �3
3 �2

�
:

The associated linear system

du

dt
D �2u � 3v;

dv

dt
D 3u � 2v

(15)

has characteristic equation .� C 2/2 C 9 D 0, with complex conjugate roots � D �2 ˙ 3i .
Hence .0; 0/ is an asymptotically stable spiral point of the linear system in (15), so Theo-
rem 2 implies that .4; 3/ is an asymptotically stable spiral point of the original almost linear
system in (14). Figure 6.2.11 shows some typical trajectories of the linear system in (15),
and Fig. 6.2.12 shows how this spiral point fits into the phase portrait for the original almost
linear system in (14).
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FIGURE 6.2.11. Spiral trajectories of the
linear system in Eq. (15).
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FIGURE 6.2.12. Phase portrait for the
almost linear system in Eq. (14).

6.2 Problems
In Problems 1 through 10, apply Theorem 1 to determine the
type of the critical point .0; 0/ and whether it is asymptotically
stable, stable, or unstable. Verify your conclusion by using a
computer system or graphing calculator to construct a phase
portrait for the given linear system.

1.
dx

dt
D �2x C y,

dy

dt
D x � 2y

2.
dx

dt
D 4x � y,

dy

dt
D 2x C y

3.
dx

dt
D x C 2y,

dy

dt
D 2x C y

4.
dx

dt
D 3x C y,

dy

dt
D 5x � y

5.
dx

dt
D x � 2y,

dy

dt
D 2x � 3y

6.
dx

dt
D 5x � 3y,

dy

dt
D 3x � y

7.
dx

dt
D 3x � 2y,

dy

dt
D 4x � y

8.
dx

dt
D x � 3y,

dy

dt
D 6x � 5y

9.
dx

dt
D 2x � 2y,

dy

dt
D 4x � 2y

10.
dx

dt
D x � 2y,

dy

dt
D 5x � y

Each of the systems in Problems 11 through 18 has a single
critical point .x0; y0/. Apply Theorem 2 to classify this crit-
ical point as to type and stability. Verify your conclusion by
using a computer system or graphing calculator to construct a
phase portrait for the given system.

11.
dx

dt
D x � 2y,

dy

dt
D 3x � 4y � 2

12.
dx

dt
D x � 2y � 8, dy

dt
D x C 4y C 10

13.
dx

dt
D 2x � y � 2, dy

dt
D 3x � 2y � 2

14.
dx

dt
D x C y � 7, dy

dt
D 3x � y � 5

15.
dx

dt
D x � y,

dy

dt
D 5x � 3y � 2

16.
dx

dt
D x � 2y C 1, dy

dt
D x C 3y � 9

17.
dx

dt
D x � 5y � 5, dy

dt
D x � y � 3

18.
dx

dt
D 4x � 5y C 3, dy

dt
D 5x � 4y C 6

In Problems 19 through 28, investigate the type of the criti-
cal point .0; 0/ of the given almost linear system. Verify your
conclusion by using a computer system or graphing calculator
to construct a phase portrait. Also, describe the approximate
locations and apparent types of any other critical points that
are visible in your figure. Feel free to investigate these addi-
tional critical points; you can use the computational methods
discussed in the application material for this section.

19.
dx

dt
D x � 3y C 2xy,

dy

dt
D 4x � 6y � xy

20.
dx

dt
D 6x � 5y C x2,

dy

dt
D 2x � y C y2

21.
dx

dt
D x C 2y C x2 C y2,

dy

dt
D 2x � 2y � 3xy

22.
dx

dt
D x C 4y � xy2,

dy

dt
D 2x � y C x2y

23.
dx

dt
D 2x � 5y C x3,

dy

dt
D 4x � 6y C y4

24.
dx

dt
D 5x � 3y C y.x2 C y2/,

dy

dt
D 5x C y.x2 C y2/

25.
dx

dt
D x � 2y C 3xy,

dy

dt
D 2x � 3y � x2 � y2

26.
dx

dt
D 3x � 2y � x2 � y2,

dy

dt
D 2x � y � 3xy

27.
dx

dt
D x � y C x4 � y2,

dy

dt
D 2x � y C y4 � x2

28.
dx

dt
D 3x � y C x3 C y3,

dy

dt
D 13x � 3y C 3xy
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In Problems 29 through 32, find all critical points of the given
system, and investigate the type and stability of each. Verify
your conclusions by means of a phase portrait constructed us-
ing a computer system or graphing calculator.

29.
dx

dt
D x � y,

dy

dt
D x2 � y

30.
dx

dt
D y � 1, dy

dt
D x2 � y

31.
dx

dt
D y2 � 1, dy

dt
D x3 � y

32.
dx

dt
D xy � 2, dy

dt
D x � 2y

Bifurcations

The term bifurcation generally refers to something “splitting
apart.” With regard to differential equations or systems involv-
ing a parameter, it refers to abrupt changes in the character of
the solutions as the parameter is changed continuously. Prob-
lems 33 through 36 illustrate sensitive cases in which small
perturbations in the coefficients of a linear or almost linear
system can change the type or stability (or both) of a critical
point.

33. Consider the linear system

dx

dt
D 
x � y; dy

dt
D x C 
y:

Show that the critical point .0; 0/ is (a) a stable spiral
point if 
 < 0; (b) a center if 
 D 0; (c) an unstable spi-
ral point if 
 > 0. Thus small perturbations of the system
x0 D �y, y0 D x can change both the type and stability of
the critical point. Figures 6.2.13(a)–(e) illustrate the loss
of stability that occurs at 
 D 0 as the parameter increases
from 
 < 0 to 
 > 0.

34. Consider the linear system

dx

dt
D �x C 
y; dy

dt
D x � y:

Show that the critical point .0; 0/ is (a) a stable spiral
point if 
 < 0; (b) a stable node if 0 5 
 < 1. Thus
small perturbations of the system x0 D�x, y0 D x � y can
change the type of the critical point .0; 0/ without chang-
ing its stability.

35. This problem deals with the almost linear system

dx

dt
D y C hx.x2 C y2/;

dy

dt
D �x C hy.x2 C y2/;
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FIGURE 6.2.13(a). Stable spiral with
	 D �0:2.
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FIGURE 6.2.13(b). Stable spiral with
	 D �0:05.
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FIGURE 6.2.13(c). Stable center
with 	 D 0.
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with 	 D 0:2.
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in illustration of the sensitive case of Theorem 2, in which
the theorem provides no information about the stability of
the critical point .0; 0/. (a) Show that .0; 0/ is a center of
the linear system obtained by setting h D 0. (b) Suppose
that h 6D 0. Let r2 D x2 C y2, then apply the fact that

x
dx

dt
C y dy

dt
D r dr

dt

to show that dr=dt D hr3. (c) Suppose that h D �1.
Integrate the differential equation in (b); then show that
r ! 0 as t !C1. Thus .0; 0/ is an asymptotically stable
critical point of the almost linear system in this case. (d)
Suppose that h D C1. Show that r ! C1 as t increases,
so .0; 0/ is an unstable critical point in this case.

36. This problem presents the famous Hopf bifurcation for the
almost linear system

dx

dt
D 
x C y � x.x2 C y2/;

dy

dt
D �x C 
y � y.x2 C y2/;

which has imaginary characteristic roots � D ˙i if 
 D 0.
(a) Change to polar coordinates as in Example 5 of Sec-
tion 6.1 to obtain the system r 0 D r.
 � r2/, � 0 D �1. (b)
Separate variables and integrate directly to show that if

 5 0, then r.t/! 0 as t !C1, so in this case the origin
is a stable spiral point. (c) Show similarly that if 
 > 0,
then r.t/ ! p
 as t ! C1, so in this case the origin is
an unstable spiral point. The circle r.t/ � p
 itself is a
closed periodic solution or limit cycle. Thus a limit cycle
of increasing size is spawned as the parameter 
 increases
through the critical value 0.

37. In the case of a two-dimensional system that is not almost
linear, the trajectories near an isolated critical point can
exhibit a considerably more complicated structure than
those near the nodes, centers, saddle points, and spiral
points discussed in this section. For example, consider
the system

dx

dt
D x.x3 � 2y3/;

dy

dt
D y.2x3 � y3/

(16)

having .0; 0/ as an isolated critical point. This system is
not almost linear because .0; 0/ is not an isolated critical
point of the trivial associated linear system x0 D 0, y0 D 0.
Solve the homogeneous first-order equation

dy

dx
D y.2x3 � y3/

x.x3 � 2y3/

to show that the trajectories of the system in (16) are folia
of Descartes of the form

x3 C y3 D 3cxy;

where c is an arbitrary constant (Fig. 6.2.14).

x

y

FIGURE 6.2.14. Trajectories of the
system in Eq. (16).

38. First note that the characteristic equation of the 2 � 2 ma-
trix A can be written in the form �2 � T �CD D 0, where
D is the determinant of A and the trace T of the ma-
trix A is the sum of its two diagonal elements. Then ap-
ply Theorem 1 to show that the type of the critical point
.0; 0/ of the system x0 D Ax is determined—as indicated
in Fig. 6.2.15—by the location of the point .T;D/ in the
trace-determinant plane with horizontal T -axis and verti-
cal D-axis.

T

D

Center

Spiral
sink

Spiral
source

Nodal
sink

Nodal
source

Saddle point

T 2 = 4D

FIGURE 6.2.15. The critical point .0; 0/ of the system
x0 D Ax is a

� spiral sink or source if the point .T; D/ lies above
the parabola T 2 D 4D but off the D-axis;

� stable center if .T; D/ lies on the positive D-axis;
� nodal sink or source if .T; D/ lies between the

parabola and the T -axis;
� saddle point if .T; D/ lies beneath the T -axis.
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6.2 Application Phase Plane Portraits of Almost Linear Systems
Interesting and complicated phase portraits often result from simple nonlinear per-
turbations of linear systems. For instance, Fig. 6.2.16 shows a phase portrait for the
almost linear system

dx

dt
D �y cos.x C y � 1/;

dy

dt
D x cos.x � y C 1/:

(1)

Among the seven critical points marked with dots, we see

� Apparent spiral points in the first and third quadrants of the xy-plane;

0 21
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1

FIGURE 6.2.16. Phase plane portrait
for the system in Eq. (1).

� Apparent saddle points in the second and fourth quadrants, plus another one
on the positive x-axis;

� A critical point of undetermined character on the negative y-axis; and
� An apparently “very weak” spiral point at the origin—meaning one that is

approached very slowly as t increases or decreases (according as it is a sink
or a source).

Some ODE software systems can automatically locate and classify critical
points. For instance, Fig. 6.2.17 shows a screen produced by John Polking’s MAT-
LAB pplane program (cited in the Section 6.1 application). It shows that the
fourth-quadrant critical point in Fig. 6.2.16 has approximate coordinates .1:5708;
�2:1416/, and that the coefficient matrix of the associated linear system has the
positive eigenvalue �1 � 2:8949 and the negative eigenvalue �2 � �2:3241. It
therefore follows from Theorem 2 that this critical point is, indeed, a saddle point
of the almost linear system in (1).

FIGURE 6.2.17. The fourth-quadrant saddle point revealed.

With a general computer algebra system such as Maple or Mathematica, you
may have to do a bit of work yourself—or tell the computer precisely what to do—to
find and classify a critical point. For instance, the Maple command

fsolve({--y*cos(x+y--1)=0,x*cos(x--y+1)=0},
{x,y},{x=1..2,y=--3..--2});

or the Mathematica command
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FindRoot[{--y*Cos[x+y--1] == 0, x*Cos[x--y+1] == 0},
{x,1,2}, {y,--3,--2}]

will find the critical-point coordinates a D 1:5708, b D �2:1416 indicated earlier.
Similarly, Fig. 6.2.18 shows a TI handheld calculation of this critical point. Then
the substitution x D uC a, y D v C b yields the translated system

FIGURE 6.2.18. TI-NspireTM CX
CAS calculation of the fourth-quadrant
critical point of the almost linear
system (1).

du

dt
D .2:1416 � v/ cos.1:5708 � u � v/ D f .u; v/;

dv

dt
D .1:5708C u/ cos.4:7124C u � v/ D g.u; v/:

(2)

If we substitute u D v D 0 in the Jacobian matrix @.f; g/=@.u; v/, we get the coeffi-
cient matrix

A D
�
2:1416 2:1416

1:5708 �1:5708
�

of the linear system corresponding to (2). Then the Maple command

evalf(Eigenvals(A))

or the Mathematica command

Eigenvalues[A]

or the WolframjAlpha query

((2.1416, 2.1416), (1.5708, --1.5708))

yields the eigenvalues �1 � 2:8949 and �2 � �2:3241, thereby verifying that the
critical point .1:5708;�2:1416/ of (1) is, indeed, a saddle point.

Use a computer algebra system to find and classify the other critical points of
(1) indicated in Fig. 6.2.16. Then investigate similarly an almost linear system of
your own construction. One convenient way to construct such a system is to begin
with a linear system and insert sine or cosine factors resembling the ones in (1).

6.3 Ecological Models: Predators and Competitors
Some of the most interesting and important applications of stability theory involve
the interactions between two or more biological populations occupying the same
environment. We consider first a predator–prey situation involving two species.
One species—the predators—feeds on the other species—the prey—which in turn
feeds on some third food item readily available in the environment. A standard
example is a population of foxes and rabbits in a woodland; the foxes (predators)
eat rabbits (the prey), while the rabbits eat certain vegetation in the woodland. Other
examples are sharks (predators) and food fish (prey), bass (predators) and sunfish
(prey), ladybugs (predators) and aphids (prey), and beetles (predators) and scale
insects (prey).

The classical mathematical model of a predator–prey situation was developed
in the 1920s by the Italian mathematician Vito Volterra (1860–1940) in order to
analyze the cyclic variations observed in the shark and food-fish populations in the
Adriatic Sea. To construct such a model, we denote the number of prey at time
t by x.t/, the number of predators by y.t/, and make the following simplifying
assumptions.

1. In the absence of predators, the prey population would grow at a natural rate,
with dx=dt D ax, a > 0.
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2. In the absence of prey, the predator population would decline at a natural rate,
with dy=dt D �by, b > 0.

3. When both predators and prey are present, there occurs, in combination with
these natural rates of growth and decline, a decline in the prey population and a
growth in the predator population, each at a rate proportional to the frequency
of encounters between individuals of the two species. We assume further that
the frequency of such encounters is proportional to the product xy, reasoning
that doubling either population alone should double the frequency of encoun-
ters, while doubling both populations ought to quadruple the frequency of
encounters. Consequently, the consumption of prey by predators results in

� an interaction rate of decline �pxy in the prey population x, and
� an interaction rate of growth qxy in the predator population y.

When we combine the natural and interaction rates ax and �pxy for the prey
population x, as well as the natural and interaction rates �by and qxy for the preda-
tor population y, we get the predator–prey system

dx

dt
D ax � pxy D x.a � py/;

dy

dt
D �by C qxy D y.�b C qx/;

(1)

with the constants a, b, p, and q all positive. [Note: You may see the predator and
prey equations written in either order in (1). It is important to recognize that the
predator equation has negative linear term and positive interaction term, whereas
the prey equation has positive linear term and negative interaction term.]

Example 1 The Critical Points A critical point of the general predator–prey system in (1) is a solution
.x; y/ of the equations

x.a � py/ D 0; y.�b C qx/ D 0: (2)

The first of these two equations implies that either x D 0 or y D a=p 6D 0, and the second
implies that either y D 0 or x D b=q 6D 0. It follows readily that this predator–prey system
has the two (isolated) critical points .0; 0/ and .b=q; a=p/.

THE CRITICAL POINT .0; 0/: The Jacobian matrix of the system in (1) is

J.x; y/ D
�
a � py �px
qy �b C qx

�
; so J.0; 0/ D

�
a 0

0 �b
�
: (3)

The matrix J.0; 0/ has characteristic equation .a � �/.�b � �/ D 0 and the eigenvalues �1 D
a > 0, �2 D �b < 0 with different signs. Hence it follows from Theorems 1 and 2 in Section
6.2 that the critical point .0; 0/ is an unstable saddle point, both of the predator–prey system
and of its linearization at .0; 0/. The corresponding equilibrium solution x.t/ � 0, y.t/ � 0

merely describes simultaneous extinction of the prey (x) and predator (y) populations.

THE CRITICAL POINT .b=q; a=p/: The Jacobian matrix

J.b=q; a=p/ D

2664 0 �pb
q

aq

p
0

3775 (4)

has characteristic equation �2CabD 0 and the pure imaginary eigenvalues �1, �2D˙i
p
ab.

It follows from Theorem 1 in Section 6.2 that the linearization of the predator–prey system at
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.b=q; a=p/ has a stable center at the origin. Thus we have the indeterminate case of Theorem
2 in Section 6.2, in which case the critical point can (aside from a stable center) also be
either a stable spiral sink or an unstable spiral source of the predator–prey system itself.
Hence further investigation is required to determine the actual character of the critical point
.b=q; a=p/. The corresponding equilibrium solution x.t/� b=q, y.t/� a=p describes the only
nonzero constant prey (x) and predator (y) populations that coexist permanently.

THE PHASE PLANE PORTRAIT: In Problem 1 we ask you to analyze numerically a
typical predator–prey system and verify that the linearizations at its two critical points agree
qualitatively with the phase plane portrait shown in Fig. 6.3.1—where the nontrivial critical
point appears visually to be a stable center. Of course, only the first quadrant of this portrait
corresponds to physically meaningful solutions describing nonnegative populations of prey
and predators.

In Problem 2 we ask you to derive an exact implicit solution of the predator–prey
system of Fig. 6.3.1—a solution that can be used to show that its phase plane trajectories
in the first quadrant are, indeed, simple closed curves that encircle the critical point .75; 50/
as indicated in the figure. It then follows from Problem 30 in Section 6.1 that the explicit
solution functions x.t/ and y.t/ are both periodic functions of t—thus explaining the periodic
fluctuations that are observed empirically in predator–prey populations.
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FIGURE 6.3.1. Phase plane portrait for the predator–prey system x0 D 200x � 4xy,
y0 D �150y C 2xy with critical points .0; 0/ and .75; 50/.
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FIGURE 6.3.2. The predator–prey phase
portrait of Example 2.

Example 2 Oscillating Populations Figure 6.3.2 shows a computer-generated direction field and phase
portrait for the predator–prey system

dx

dt
D .0:2/x � .0:005/xy D .0:005/x.40 � y/;

dy

dt
D �.0:5/y C .0:01/xy D .0:01/y.�50C x/;

(5)

where x.t/ denotes the number of rabbits and y.t/ the number of foxes after t months. Evi-
dently the critical point .50; 40/ is a stable center representing equilibrium populations of 50
rabbits and 40 foxes. Any other initial point lies on a closed trajectory enclosing this equi-
librium point. The direction field indicates that the point .x.t/; y.t// traverses its trajectory
in a counterclockwise direction, with the rabbit and fox populations oscillating periodically
between their separate maximum and minimum values. A drawback is that the phase plane
plot provides no indication as to the speed with which each trajectory is traversed.
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This lost “sense of time” is recaptured by graphing the two individual population func-
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FIGURE 6.3.3. Periodic oscillations
of the predator and prey populations in
Example 2.

tions as functions of time t . In Fig. 6.3.3 we have graphed approximate solution functions
x.t/ and y.t/ calculated using the Runge–Kutta method of Section 4.3 with initial values
x.0/ D 70 and y.0/ D 40. We see that the rabbit population oscillates between the extreme
values xmax � 72 and xmin � 33, while the fox population oscillates (out of phase) between
the extreme values ymax � 70 and ymin � 20. A careful measurement indicates that the period
P of oscillation of each population is slightly over 20 months. One could “zoom in” on the
maximum/minimum points on each graph in order to refine these estimates of the period and
the maximum and minimum rabbit and fox populations.

Any positive initial conditions x0 D x.0/ and y0 D y.0/ yield a similar picture, with
the rabbit and fox populations both surviving in coexistence with each other.

Competing Species
Now we consider two species (of animals, plants, or bacteria, for instance) with
populations x.t/ and y.t/ at time t that compete with each other for the food avail-
able in their common environment. This is in marked contrast to the case in which
one species preys on the other. To construct a mathematical model that is as realistic
as possible, let us assume that in the absence of either species, the other would have
a bounded (logistic) population like those considered in Section 2.1. In the absence
of any interaction or competition between the two species, their populations x.t/
and y.t/ would then satisfy the differential equations

dx

dt
D a1x � b1x

2;

dy

dt
D a2y � b2y

2;

(6)

each of the form of Eq. (2) of Section 2.1. But in addition, we assume that competi-
tion has the effect of a rate of decline in each population that is proportional to their
product xy. We insert such terms with negative proportionality constants �c1 and
�c2 in the equations in (6) to obtain the competition system

dx

dt
D a1x � b1x

2 � c1xy D x.a1 � b1x � c1y/;

dy

dt
D a2y � b2y

2 � c2xy D y.a2 � b2y � c2x/;

(7)

where the coefficients a1, a2, b1, b2, c1, and c2 are all positive.
The almost linear system in (7) has four critical points. Upon setting the right-

hand sides of the two equations equal to zero, we see that if x D 0, then either y D 0
or y D a2=b2, whereas if y D 0, then either x D 0 or x D a1=b1. This gives the three
critical points .0; 0/, .0; a2=b2/, and .a1=b1; 0/. The fourth critical point is obtained
from the simultaneous solution of the equations

b1x C c1y D a1; c2x C b2y D a2: (8)

We assume that, as in most interesting applications, these equations have a single
solution and that the corresponding critical point lies in the first quadrant of the xy-
plane. This point .x

E
; y

E
/ is then the fourth critical point of the system in (7), and

it represents the possibility of coexistence of the two species, with constant nonzero
equilibrium populations x.t/ � x

E
and y.t/ � y

E
.
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We are interested in the stability of the critical point .x
E
; y

E
/. This turns out

to depend on whether

c1c2 < b1b2 or c1c2 > b1b2: (9)

Each inequality in (9) has a natural interpretation. Examining the equations in (6),
we see that the coefficients b1 and b2 represent the inhibiting effect of each popula-
tion on its own growth (possibly due to limitations of food or space). On the other
hand, c1 and c2 represent the effect of competition between the two populations.
Thus b1b2 is a measure of inhibition, while c1c2 is a measure of competition. A
general analysis of the system in (7) shows the following:

1. If c1c2 < b1b2, so that competition is small in comparison with inhibition, then
.x

E
; y

E
/ is an asymptotically stable critical point that is approached by each

solution as t !C1. Thus the two species can and do coexist in this case.
2. If c1c2 > b1b2, so that competition is large in comparison with inhibition, then
.x

E
; y

E
/ is an unstable critical point, and either x.t/ or y.t/ approaches zero

as t ! C1. Thus the two species cannot coexist in this case; one survives
and the other becomes extinct.

Rather than carrying out this general analysis, we present two examples that
illustrate these two possibilities.

Example 3 Survival of a Single Species Suppose that the populations x.t/ and y.t/ satisfy the equa-
tions

dx

dt
D 14x � 1

2x
2 � xy;

dy

dt
D 16y � 1

2y
2 � xy;

(10)

in which a1 D 14, a2 D 16, b1 D b2 D 1
2 , and c1 D c2 D 1. Then c1c2 D 1 > 1

4 D b1b2,
so we should expect survival of a single species as predicted in Case 2 previously. We find
readily that the four critical points are .0; 0/, .0; 32/, .28; 0/, and .12; 8/. We shall investigate
them individually.

THE CRITICAL POINT (0, 0): The Jacobian matrix of the system in (10) is

J.x; y/ D
�
14 � x � y �x
�y 16 � y � x

�
; so J.0; 0/ D

�
14 0

0 16

�
: (11)

The matrix J.0; 0/ has characteristic equation .14 � �/.16 � �/ D 0 and has the eigenvalues

�1 D 14 with eigenvector v1 D


1 0

�T
and

�2 D 16 with eigenvector v2 D


0 1

�T
:

Both eigenvalues are positive, so it follows that .0; 0/ is a nodal source for the system’s
linearization x0 D 14x, y0 D 16y at .0; 0/, and hence—by Theorem 2 in Section 6.2—is also
an unstable nodal source for the original system in (10). Figure 6.3.4 shows a phase portrait
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FIGURE 6.3.4. Phase plane portrait
for the linear system x0 D 14x,
y0 D 16y corresponding to the critical
point .0; 0/.

for the linearized system near .0; 0/.
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THE CRITICAL POINT (0, 32): Substitution of x D 0, y D 32 in the Jacobian matrix
J.x; y/ shown in (11) yields the Jacobian matrix

J.0; 32/ D
� �18 0

�32 �16
�

(12)

of the nonlinear system (10) at the point .0; 32/. Comparing Eqs. (7) and (8) in Section 6.2,
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FIGURE 6.3.5. Phase plane portrait
for the linear system in Eq. (13)
corresponding to the critical point
.0; 32/.

we see that this Jacobian matrix corresponds to the linearization

du

dt
D �18u;

dv

dt
D �32u � 16v

(13)

of (10) at .0; 32/ . The matrix J.0; 32/ has characteristic equation .�18 � �/.�16 � �/ D 0

and has the eigenvalues �1 D �18 with eigenvector v1 D


1 16

�T and �2 D �16 with

eigenvector v2 D


0 1

�T . Because both eigenvalues are negative, it follows that .0; 0/ is a
nodal sink for the linearized system, and hence—by Theorem 2 in Section 6.2—that .0; 32/
is also a stable nodal sink for the original system in (10). Figure 6.3.5 shows a phase portrait
for the linearized system near .0; 0/.

THE CRITICAL POINT (28, 0): The Jacobian matrix

J.28; 0/ D
� �14 �28

0 �12
�

(14)

corresponds to the linearization
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FIGURE 6.3.6. Phase plane portrait
for the linear system in Eq. (15)
corresponding to the critical point
.28; 0/.

du

dt
D �14u � 28v;

dv

dt
D �12v

(15)

of (10) at .28; 0/ . The matrix J.28; 0/ has characteristic equation .�14 � �/.�12 � �/ D 0

and has the eigenvalues �1 D �14 with eigenvector v1 D


1 0

�T and �2 D �12 with

eigenvector v2 D

 �14 1

�T . Because both eigenvalues are negative, it follows that .0; 0/
is a nodal sink for the linearized system, and hence—by Theorem 2 in Section 6.2—that
.28; 0/ is also a stable nodal sink for the original nonlinear system in (10). Figure 6.3.6 shows
a phase portrait for the linearized system near .0; 0/.

THE CRITICAL POINT (12, 8): The Jacobian matrix

J.12; 8/ D
� �6 �12
�8 �4

�
(16)

corresponds to the linearization

du

dt
D �6u � 12v;

dv

dt
D �8u � 4v

(17)

of (10) at .12; 8/. The matrix J.12; 8/ has characteristic equation

.�6 � �/.�4 � �/ � .�8/.�12/ D �2 C 10� � 72 D 0

and has the eigenvalues

�1 D �5 �
p
97 < 0 with eigenvector v1 D



1
8

�
1C
p
97
	

1
�T
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and

�2 D �5C
p
97 > 0 with eigenvector v2 D



1
8

�
1 �
p
97
	

1
�T
:

Because the two eigenvalues have opposite signs, it follows that .0; 0/ is a saddle point for the
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FIGURE 6.3.7. Phase plane portrait
for the linear system in Eq. (17)
corresponding to the critical point
.12; 8/.

linearized system and hence—by Theorem 2 in Section 6.2—that .12; 8/ is also an unstable
saddle point for the original system in (10). Figure 6.3.7 shows a phase portrait for the
linearized system near .0; 0/.

Now that our local analysis of each of the four critical points is complete, it remains to
assemble the information found into a coherent global picture. If we accept the facts that

� Near each critical point, the trajectories for the original system in (10) resemble quali-
tatively the linearized trajectories shown in Figs. 6.3.4–6.3.7, and

� As t !C1 each trajectory either approaches a critical point or diverges toward infin-
ity,

then it would appear that the phase plane portrait for the original system must resemble the
rough sketch shown in Fig. 6.3.8. This sketch shows a few typical freehand trajectories
connecting a nodal source at .0; 0/, nodal sinks at .0; 32/ and .28; 0/, and a saddle point at
.12; 8/, with indicated directions of flow along these trajectories consistent with the known
character of these critical points. Figure 6.3.9 shows a more precise computer-generated
phase portrait and direction field for the nonlinear system in (10).
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FIGURE 6.3.8. Rough sketch consistent with
the analysis in Example 3.

0 105 2015 3025 35
x

y
0

(0, 0)

(0, 32)

(28, 0)

(12, 8)

5

10

15

20

25

30

35

FIGURE 6.3.9. Phase plane portrait for
the system in Example 3.

The two trajectories that approach the saddle point .12; 8/, together with that saddle
point, form a separatrix that separates Regions I and II in Figure 6.3.8. It plays a crucial role
in determining the long-term behavior of the two populations. If the initial point .x0; y0/ lies
precisely on the separatrix, then .x.t/; y.t// approaches .12; 8/ as t ! C1. Of course, ran-
dom events make it extremely unlikely that .x.t/; y.t// will remain on the separatrix. If not,
peaceful coexistence of the two species is impossible. If .x0; y0/ lies in Region I above the
separatrix, then .x.t/; y.t// approaches .0; 32/ as t ! C1, so the population x.t/ decreases
to zero. Alternatively, if .x0; y0/ lies in Region II below the separatrix, then .x.t/; y.t// ap-
proaches .28; 0/ as t ! C1, so the population y.t/ dies out. In short, whichever population
has the initial competitive advantage survives, while the other faces extinction.

Example 4 Peaceful Coexistence of Two Species Suppose that the populations x.t/ and y.t/ satisfy
the competition system

dx

dt
D 14x � 2x2 � xy;

dy

dt
D 16y � 2y2 � xy;

(18)

for which a1 D 14, a2 D 16, b1 D b2 D 2, and c1 D c2 D 1. Then c1c2 D 1 < 4 D b1b2, so
now the effect of inhibition is greater than that of competition. We find readily that the four
critical points are .0; 0/, .0; 8/, .7; 0/, and .4; 6/. We proceed as in Example 3.
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THE CRITICAL POINT (0, 0): When we drop the quadratic terms in (18), we get the
same linearization x0 D 14x, y0 D 16y at .0; 0/ as in Example 3. Thus its coefficient matrix
has the two positive eigenvalues �1 D 14 and �2 D 16, and its phase portrait is the same as
that shown in Fig. 6.3.4. Therefore, .0; 0/ is an unstable nodal source for the original system
in (18).

THE CRITICAL POINT (0, 8): The Jacobian matrix of the system in (18) is

J.x; y/ D
�
14 � 4x � y �x
�y 16 � 4y � x

�
; so J.0; 8/ D

�
6 0

�8 �16
�
: (19)

The matrix J.0; 8/ corresponds to the linearization

du

dt
D 6u;

dv

dt
D �8u � 16v

(20)

of (18) at .0; 8/. It has characteristic equation .6 � �/.�16 � �/ D 0 and has the positive
eigenvalue �1 D 6 with eigenvector v1 D



11 �4 �T and the negative eigenvalue �2 D�16

with eigenvector v2 D


0 1

�T . It follows that .0; 0/ is a saddle point for the linearized
system, and hence that .0; 8/ is an unstable saddle point for the original system in (18). Figure
6.3.10 shows a phase portrait for the linearized system near .0; 0/.
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FIGURE 6.3.10. Phase plane portrait
for the linear system in Eq. (20)
corresponding to the critical point
.0; 8/.

THE CRITICAL POINT (7, 0): The Jacobian matrix

J.7; 0/ D
� �14 �7

0 9

�
(21)

corresponds to the linearization
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FIGURE 6.3.11. Phase plane portrait
for the linear system in Eq. (22)
corresponding to the critical point
.7; 0/.

du

dt
D �14u � 7v;

dv

dt
D 9v

(22)

of (18) at .7; 0/. The matrix J.7; 0/ has characteristic equation .�14 � �/.9 � �/ D 0 and
has the negative eigenvalue �1 D �14 with eigenvector v1 D



1 0

�T and the positive

eigenvalue �2 D 9 with eigenvector v2 D

 �7 23

�T . It follows that .0; 0/ is a saddle point
for the linearized system, and hence that .7; 0/ is an unstable saddle point for the original
system in (18). Figure 6.3.11 shows a phase portrait for the linearized system near .0; 0/.

THE CRITICAL POINT (4, 6): The Jacobian matrix

J.4; 6/ D
� �8 �4
�6 �12

�
(23)

corresponds to the linearization

du

dt
D �8u � 4v;

dv

dt
D �6u � 12v

(24)

of (18) at .4; 6/. The matrix J.4; 6/ has characteristic equation

.�8 � �/.�12 � �/ � .�6/.�4/ D �2 C 20�C 72 D 0
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and has the two negative eigenvalues

�1 D 2
��5 �p7 	 with eigenvector v1 D



1
3

��1Cp7 	 1
�T

and

�2 D 2
��5Cp7 	 with eigenvector v2 D



1
3

��1 �p7 	 1
�T
:

It follows that .0; 0/ is a nodal sink for the linearized system, and hence that .4; 6/ is a sta-
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FIGURE 6.3.12. Phase plane portrait
for the linear system in Eq. (24)
corresponding to the critical point
.4; 6/.

ble nodal sink for the original system in (18). Figure 6.3.12 shows a phase portrait for the
linearized system near .0; 0/.

Figure 6.3.13 assembles all this local information into a global phase plane portrait for
the original system in (18). The notable feature of this system is that—for any positive initial
population values x0 and y0—the point .x.t/; y.t// approaches the single critical point .4; 6/
as t !C1. It follows that the two species both survive in stable (peaceful) existence.

Interactions of Logistic Populations
If the coefficients a1, a2, b1, b2 are positive but c1 D c2 D 0, then the equations

dx

dt
D a1x � b1x

2 � c1xy;

dy

dt
D a2y � b2y

2 � c2xy

(25)

describe two separate logistic populations x.t/ and y.t/ that have no effect on each
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FIGURE 6.3.13. Direction field and
phase portrait for the competition
system x0 D 14x � 2x2 � xy,
y0 D 16y � 2y2 � xy of Example 4.

other. Examples 3 and 4 illustrate cases in which the xy-coefficients c1 and c2

are both positive. The interaction between the two populations is then described
as competition, because the effect of the xy-terms in (25) is to decrease the rates
of growth of both populations—that is, each population is “hurt” by their mutual
interaction.

Suppose, however, that the interaction coefficients c1 and c2 in (25) are both
negative. Then the effect of the xy-terms is to increase the rates of growth of both
populations—that is, each population is “helped” by their mutual interaction. This
type of interaction is aptly described as cooperation between the two logistic pop-
ulations.

Finally, the interaction between the two populations is one of predation if the
interaction coefficients have different signs. For instance, if c1 > 0 but c2 < 0, then
the x-population is hurt but the y-population is helped by their interaction. We may
therefore describe x.t/ as a prey population and y.t/ as a predator population.

If either b1 or b2 is zero in (25), then the corresponding population would (in
the absence of the other) exhibit exponential growth rather than logistic growth. For
instance, suppose that a1 > 0, a2 < 0, b1 D b2 D 0, and c1 > 0, c2 < 0. Then x.t/
is a naturally growing prey population while y.t/ is a naturally declining predator
population. This is the original predator–prey model with which we began this
section.

Problems 26 through 34 illustrate a variety of the possibilities indicated here.
The problems and examples in this section illustrate the power of elementary
critical-point analysis. But remember that ecological systems in nature are seldom
so simple as in these examples. Frequently they involve more than two species,
and the growth rates of these populations and the interactions among them often are
more complicated than those discussed in this section. Consequently, the mathe-
matical modeling of ecological systems remains an active area of current research.
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6.3 Problems
Problems 1 and 2 deal with the predator–prey system

dx

dt
D 200x � 4xy;

dy

dt
D �150y C 2xy

(1)

that corresponds to Fig. 6.3.1.

1. Starting with the Jacobian matrix of the system in (1), de-
rive its linearizations at the two critical points .0; 0/ and
.75; 50/. Use a graphing calculator or computer system
to construct phase plane portraits for these two lineariza-
tions that are consistent with the “big picture” shown in
Fig. 6.3.1.

2. Separate the variables in the quotient

dy

dx
D �150y C 2xy

200x � 4xy
of the two equations in (1), and thereby derive the exact
implicit solution

200 ln y C 150 ln x � 2x � 4y D C
of the system. Use the contour plot facility of a graphing
calculator or computer system to plot the contour curves
of this equation through the points .75; 100/, .75; 150/,
.75; 200/, .75; 250/, and .75; 300/ in the xy-plane. Are
your results consistent with Fig. 6.3.1?

3. Let x.t/ be a harmful insect population (aphids?) that un-
der natural conditions is held somewhat in check by a be-
nign predator insect population y.t/ (ladybugs?). Assume
that x.t/ and y.t/ satisfy the predator–prey equations in
(1), so that the stable equilibrium populations are x

E
D b=q

and y
E
D a=p. Now suppose that an insecticide is em-

ployed that kills (per unit time) the same fraction f < a

of each species of insect. Show that the harmful popula-
tion x

E
is increased, while the benign population y

E
is de-

creased, so the use of the insecticide is counterproductive.
This is an instance in which mathematical analysis reveals
undesirable consequences of a well-intentioned interfer-
ence with nature.

Problems 4 through 7 deal with the competition system

dx

dt
D 60x � 4x2 � 3xy;

dy

dt
D 42y � 2y2 � 3xy;

(2)

in which c1c2 D 9 > 8 D b1b2, so the effect of competition
should exceed that of inhibition. Problems 4 through 7 imply
that the four critical points .0; 0/, .0; 21/, .15; 0/, and .6; 12/
of the system in (2) resemble those shown in Fig. 6.3.9—a
nodal source at the origin, a nodal sink on each coordinate
axis, and a saddle point interior to the first quadrant. In each
of these problems use a graphing calculator or computer sys-
tem to construct a phase plane portrait for the linearization at

the indicated critical point. Finally, construct a first-quadrant
phase plane portrait for the nonlinear system in (2). Do your
local and global portraits look consistent?

4. Show that the coefficient matrix of the linearization x0 D
60x, y0 D 42y of (2) at .0; 0/ has positive eigenvalues
�1 D 60 and �2 D 42. Hence .0; 0/ is a nodal source for
(2).

5. Show that the linearization of (2) at .0; 21/ is u0 D �3u,
v0 D�63u� 42v. Then show that the coefficient matrix of
this linear system has negative eigenvalues �1 D �3 and
�2 D �42. Hence .0; 21/ is a nodal sink for the system in
(2).

6. Show that the linearization of (2) at .15; 0/ is u0 D�60u�
45v, v0 D �3v. Then show that the coefficient matrix of
this linear system has negative eigenvalues �1 D �60 and
�2 D �3. Hence .15; 0/ is a nodal sink for the system in
(2).

7. Show that the linearization of (2) at .6; 12/ is u0 D�24u�
18v, v0 D �36u � 24v. Then show that the coefficient
matrix of this linear system has eigenvalues �1 D �24 �
18
p
2 < 0 and �2 D �24C 18

p
2 > 0. Hence .6; 12/ is a

saddle point for the system in (2).

Problems 8 through 10 deal with the competition system

dx

dt
D 60x � 3x2 � 4xy;

dy

dt
D 42y � 3y2 � 2xy;

(3)

in which c1c2 D 8 < 9D b1b2, so the effect of inhibition should
exceed that of competition. The linearization of the system
in (3) at .0; 0/ is the same as that of (2). This observation
and Problems 8 through 10 imply that the four critical points
.0; 0/, .0; 14/, .20; 0/, and .12; 6/ of (3) resemble those shown
in Fig. 6.3.13—a nodal source at the origin, a saddle point
on each coordinate axis, and a nodal sink interior to the first
quadrant. In each of these problems use a graphing calculator
or computer system to construct a phase plane portrait for the
linearization at the indicated critical point. Finally, construct
a first-quadrant phase plane portrait for the nonlinear system
in (3). Do your local and global portraits look consistent?

8. Show that the linearization of (3) at .0; 14/ is u0 D 4u,
v0 D �28u � 42v. Then show that the coefficient matrix
of this linear system has the positive eigenvalue �1 D 4

and the negative eigenvalue �2 D �42. Hence .0; 14/ is a
saddle point for the system in (3).

9. Show that the linearization of (3) at .20; 0/ is u0 D�60u�
80v, v0 D 2v. Then show that the coefficient matrix of this
linear system has the negative eigenvalue �1 D �60 and
the positive eigenvalue �2 D 2. Hence .20; 0/ is a saddle
point for the system in (3).

10. Show that the linearization of (3) at .12; 6/ is u0 D�36u�
48v, v0 D �12u � 18v. Then show that the coefficient
matrix of this linear system has eigenvalues �1 D �27C
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3
p
73 and �2 D �27 � 3

p
73, both of which are negative.

Hence .12; 6/ is a nodal sink for the system in (3).

Problems 11 through 13 deal with the predator–prey system

dx

dt
D 5x � x2 � xy;

dy

dt
D �2y C xy;

(4)

in which the prey population x.t/ is logistic but the predator
population y.t/ would (in the absence of any prey) decline
naturally. Problems 11 through 13 imply that the three crit-
ical points .0; 0/, .5; 0/, and .2; 3/ of the system in (4) are as
shown in Fig. 6.3.14—with saddle points at the origin and on
the positive x-axis, and with a spiral sink interior to the first
quadrant. In each of these problems use a graphing calcula-
tor or computer system to construct a phase plane portrait for
the linearization at the indicated critical point. Do your local
portraits look consistent with Fig. 6.3.14?
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FIGURE 6.3.14. Direction field and phase
portrait for the predator–prey system of Problems
11 through 13.

11. Show that the coefficient matrix of the linearization x0 D
5x, y0 D �2y of (4) at .0; 0/ has the positive eigenvalue
�1 D 5 and the negative eigenvalue �2 D �2. Hence .0; 0/
is a saddle point of the system in (4).

12. Show that the linearization of (4) at .5; 0/ is u0D�5u�5v,
v0 D 3v. Then show that the coefficient matrix of this lin-
ear system has the negative eigenvalue �1 D �5 and the
positive eigenvalue �2 D 3. Hence .5; 0/ is a saddle point
for the system in (4).

13. Show that the linearization of (4) at .2; 3/ is u0D�2u�2v,
v0 D 3u. Then show that the coefficient matrix of this
linear system has the complex conjugate eigenvalues �1,
�2 D �1˙ i

p
5 with negative real part. Hence .2; 3/ is a

spiral sink for the system in (4).

Problems 14 through 17 deal with the predator–prey system

dx

dt
D x2 � 2x � xy;

dy

dt
D y2 � 4y C xy:

(5)

Here each population—the prey population x.t/ and the
predator population y.t/—is an unsophisticated population

(like the alligators of Section 2.1) for which the only alter-
natives (in the absence of the other population) are doomsday
and extinction. Problems 14 through 17 imply that the four
critical points .0; 0/, .0; 4/, .2; 0/, and .3; 1/ of the system in
(5) are as shown in Fig. 6.3.15—a nodal sink at the origin, a
saddle point on each coordinate axis, and a spiral source in-
terior to the first quadrant. This is a two-dimensional version
of “doomsday versus extinction.” If the initial point .x0; y0/

lies in Region I, then both populations increase without bound
(until doomsday), whereas if it lies in Region II, then both pop-
ulations decrease to zero (and thus both become extinct). In
each of these problems use a graphing calculator or computer
system to construct a phase plane portrait for the linearization
at the indicated critical point. Do your local portraits look
consistent with Fig. 6.3.15?

y
0
(0, 0)

(0, 4)

(2, 0)

Region I

Region
II

(3, 1)
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FIGURE 6.3.15. Direction field and phase
portrait for the predator–prey system of Problems
14 through 17.

14. Show that the coefficient matrix of the linearization x0 D
�2x, y0 D �4y of the system in (5) at .0; 0/ has the nega-
tive eigenvalues �1 D �2 and �2 D �4. Hence .0; 0/ is a
nodal sink for (5).

15. Show that the linearization of (5) at .0; 4/ is u0 D �6u,
v0 D 4uC4v. Then show that the coefficient matrix of this
linear system has the negative eigenvalue �1 D�6 and the
positive eigenvalue �2 D 4. Hence .0; 4/ is a saddle point
for the system in (5).

16. Show that the linearization of (5) at .2; 0/ is u0 D 2u� 2v,
v0 D �2v. Then show that the coefficient matrix of this
linear system has the positive eigenvalue �1 D 2 and the
negative eigenvalue �2 D �2. Hence .2; 0/ is a saddle
point for the system in (5).

17. Show that the linearization of (5) at .3; 1/ is u0 D 3u� 3v,
v0 D u C v. Then show that the coefficient matrix of
this linear system has complex conjugate eigenvalues �1,
�2 D 2 ˙ i

p
2 with positive real part. Hence .3; 1/ is a

spiral source for (5).

Problems 18 through 25 deal with the predator–prey system

dx

dt
D 2x � xy C 
x.5 � x/;

dy

dt
D �5y C xy;

(6)
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for which a bifurcation occurs at the value 
 D 0 of the param-
eter 
. Problems 18 and 19 deal with the case 
 D 0, in which
case the system in (6) takes the form

dx

dt
D 2x � xy; dy

dt
D �5x C xy; (7)

and these problems suggest that the two critical points .0; 0/
and .5; 2/ of the system in (7) are as shown in Fig. 6.3.16—a
saddle point at the origin and a center at .5; 2/. In each prob-
lem use a graphing calculator or computer system to construct
a phase plane portrait for the linearization at the indicated
critical point. Do your local portraits look consistent with Fig.
6.3.16?

x
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(0, 0)

FIGURE 6.3.16. The case 	 D 0
(Problems 18 and 19).

18. Show that the coefficient matrix of the linearization x0 D
2x, y0 D �5y of (7) at .0; 0/ has the positive eigenvalue
�1 D 2 and the negative eigenvalue �2 D �5. Hence .0; 0/
is a saddle point for the system in (7).

19. Show that the linearization of the system in (7) at .5; 2/ is
u0 D �5v, v0 D 2u. Then show that the coefficient matrix
of this linear system has conjugate imaginary eigenvalues
�1, �2 D ˙i

p
10. Hence .0; 0/ is a stable center for the

linear system. Although this is the indeterminate case of
Theorem 2 in Section 6.2, Fig. 6.3.16 suggests that .5; 2/
also is a stable center for (7).

Problems 20 through 22 deal with the case 
 D �1, for which
the system in (6) becomes

dx

dt
D �3x C x2 � xy; dy

dt
D �5y C xy; (8)

and imply that the three critical points .0; 0/, .3; 0/, and .5; 2/
of (8) are as shown in Fig. 6.3.17—with a nodal sink at the ori-
gin, a saddle point on the positive x-axis, and a spiral source at
.5; 2/. In each problem use a graphing calculator or computer
system to construct a phase plane portrait for the linearization
at the indicated critical point. Do your local portraits look
consistent with Fig. 6.3.17?
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FIGURE 6.3.17. The case 	 D �1
(Problems 20 through 22).

20. Show that the coefficient matrix of the linearization x0 D
�3x, y0 D �5y of the system in (8) at .0; 0/ has the nega-
tive eigenvalues �1 D �3 and �2 D �5. Hence .0; 0/ is a
nodal sink for (8).

21. Show that the linearization of the system in (8) at .3; 0/ is
u0 D 3u � 3v, v0 D �2v. Then show that the coefficient
matrix of this linear system has the positive eigenvalue
�1 D 3 and the negative eigenvalue �2 D �2. Hence .3; 0/
is a saddle point for (8).

22. Show that the linearization of (8) at .5; 2/ is u0 D 5u� 5v,
v0 D 2u. Then show that the coefficient matrix of this lin-
ear system has complex conjugate eigenvalues �1, �2 D
1
2

�
5˙ i

p
15
	

with positive real part. Hence .5; 2/ is a spi-
ral source for the system in (8).

Problems 23 through 25 deal with the case 
 D 1, so that the
system in (6) takes the form

dx

dt
D 7x � x2 � xy; dy

dt
D �5y C xy; (9)

and these problems imply that the three critical points .0; 0/,
.7; 0/, and .5; 2/ of the system in (9) are as shown in
Fig. 6.3.18—with saddle points at the origin and on the pos-
itive x-axis and with a spiral sink at .5; 2/. In each problem
use a graphing calculator or computer system to construct a
phase plane portrait for the linearization at the indicated crit-
ical point. Do your local portraits look consistent with Fig.
6.3.18?
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FIGURE 6.3.18. The case 	 D C1
(Problems 23 through 25).

23. Show that the coefficient matrix of the linearization x0 D
7x, y0 D �5y of (9) at .0; 0/ has the positive eigenvalue
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�1 D 7 and the negative eigenvalue �2 D �5. Hence .0; 0/
is a saddle point for the system in (9).

24. Show that the linearization of (9) at .7; 0/ is u0D�7u�7v,
v0 D 2v. Then show that the coefficient matrix of this lin-
ear system has the negative eigenvalue �1 D �7 and the
positive eigenvalue �2 D 2. Hence .7; 0/ is a saddle point
for the system in (9).

25. Show that the linearization of (9) at .5; 2/ is u0D�5u�5v,
v0 D 2u. Then show that the coefficient matrix of this
linear system has the complex conjugate eigenvalues �1,
�2 D 1

2

��5˙ ip15 	 with negative real part. Hence .5; 2/
is a spiral sink for the system in (9).

For each two-population system in Problems 26 through 34,
first describe the type of x- and y-populations involved (ex-
ponential or logistic) and the nature of their interaction—
competition, cooperation, or predation. Then find and char-
acterize the system’s critical points (as to type and stability).
Determine what nonzero x- and y-populations can coexist.
Finally, construct a phase plane portrait that enables you to
describe the long-term behavior of the two populations in

terms of their initial populations x.0/ and y.0/.

26.
dx

dt
D 2x � xy,

dy

dt
D 3y � xy

27.
dx

dt
D 2xy � 4x,

dy

dt
D xy � 3y

28.
dx

dt
D 2xy � 16x,

dy

dt
D 4y � xy

29.
dx

dt
D 3x � x2 � 1

2
xy,

dy

dt
D 4y � 2xy

30.
dx

dt
D 3x � x2 C 1

2
xy,

dy

dt
D 1

5
xy � y

31.
dx

dt
D 3x � x2 � 1

4
xy,

dy

dt
D xy � 2y

32.
dx

dt
D 30x � 3x2 C xy,

dy

dt
D 60y � 3y2 C 4xy

33.
dx

dt
D 30x � 2x2 � xy,

dy

dt
D 80y � 4y2 C 2xy

34.
dx

dt
D 30x � 2x2 � xy,

dy

dt
D 20y � 4y2 C 2xy

6.3 Application Your Own Wildlife Conservation Preserve
You own a large wildlife conservation preserve that you originally stocked with F0

foxes andR0 rabbits on January 1, 2007. The following differential equations model
the numbers R.t/ of rabbits and F.t/ foxes t months later:

dR

dt
D .0:01/pR � .0:0001/aRF;

dF

dt
D �.0:01/qF C .0:0001/bRF;

where p and q are the two largest digits (with p < q) and a and b are the two smallest
nonzero digits (with a < b) in your student ID number.

The numbers of foxes and rabbits will oscillate periodically, out of phase with
each other (like the functions x.t/ and y.t/ in Fig. 6.3.3). Choose your initial num-
bers F0 of foxes and R0 of rabbits—perhaps several hundred of each—so that the
resulting solution curve in the RF-plane is a fairly eccentric closed curve. (The
eccentricity may be increased if you begin with a relatively large number of rab-
bits and a small number of foxes, as any wildlife preserve owner would naturally
do—because foxes prey on rabbits.)

Your task is to determine

1. The period of oscillation of the rabbit and fox populations;
2. The maximum and minimum numbers of rabbits, and the calendar dates on

which they first occur;
3. The maximum and minimum numbers of foxes, and the calendar dates on

which they first occur.

With computer software that can plot both RF-trajectories and tR- and tF-solution
curves like those in Figs. 6.3.2 and 6.3.3, you can “zoom in” graphically on the
points whose coordinates provide the requested information.
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6.4 Nonlinear Mechanical Systems
Now we apply the qualitative methods of Sections 6.1 and 6.2 to the analysis of
simple mechanical systems like the mass-on-a-spring system shown in Fig. 6.4.1.
Let m denote the mass in a suitable system of units and let x.t/ denote the dis-
placement of the mass at time t from its equilibrium position (in which the spring
is unstretched). Previously we have always assumed that the force F.x/ exerted by
the spring on the mass is a linear function of x: F.x/ D �kx (Hooke’s law). In
reality, however, every spring in nature actually is nonlinear (even if only slightly
so). Moreover, springs in some automobile suspension systems deliberately are de-

x (t)

Equilibrium
position

m

FIGURE 6.4.1. The mass on a
spring.

signed to be nonlinear. Here, then, we are interested specifically in the effects of
nonlinearity.

So now we allow the force function F.x/ to be nonlinear. Because F.0/D 0 at
the equilibrium position x D 0, we may assume that F has a power series expansion
of the form

F.x/ D �kx C ˛x2 C ˇx3 C � � � : (1)

We take k > 0 so that the reaction of the spring is directed opposite to the displace-
ment when x is sufficiently small. If we assume also that the reaction of the spring
is symmetric with respect to positive and negative displacements by the same dis-
tance, then F.�x/D �F.x/, so F is an odd function. In this case it follows that the
coefficient of xn in Eq. (1) is zero if n is even, so the first nonlinear term is the one
involving x3.

For a simple mathematical model of a nonlinear spring we therefore take

F.x/ D �kx C ˇx3; (2)

ignoring all terms in Eq. (1) of degree greater than 3. The equation of motion of the
mass m is then

mx00 D �kx C ˇx3: (3)

The Position–Velocity Phase Plane
If we introduce the velocity

y.t/ D x0.t/ (4)

of the mass with position x.t/, then we get from Eq. (3) the equivalent first-order
system

dx

dt
D y;

m
dy

dt
D �kx C ˇx3:

(5)

A phase plane trajectory of this system is a position-velocity plot that illustrates the
motion of the mass on the spring. We can solve explicitly for the trajectories of this
system by writing

dy

dx
D dy=dt

dx=dt
D �kx C ˇx

3

my
;
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whence
my dy C .kx � ˇx3/ dx D 0:

Integration then yields

1
2
my2 C 1

2
kx2 � 1

4
ˇx4 D E (6)

for the equation of a typical trajectory. We write E for the arbitrary constant of
integration because KE D 1

2
my2 is the kinetic energy of the mass with velocity y,

and it is natural to define

PE D 1
2
kx2 � 1

4
ˇx4 (7)

as the potential energy of the spring. Then Eq. (6) takes the form KE C PE D E,
so the constant E turns out to be the total energy of the mass-spring system. Eq. (6)
then expresses conservation of energy for the undamped motion of a mass on a
spring.

The behavior of the mass depends on the sign of the nonlinear term in Eq. (2).
The spring is called

� hard if ˇ < 0,
� soft if ˇ > 0.

We consider the two cases separately.

HARD SPRING OSCILLATIONS: If ˇ < 0, then the second equation in (5) takes
the form my0 D �x �jˇjx2 C k	, so it follows that the only critical point of the
system is the origin .0; 0/. Each trajectory

1
2
my2 C 1

2
kx2 C 1

4
jˇjx4 D E > 0 (8)

is an oval closed curve like those shown in Fig. 6.4.2, and thus .0; 0/ is a stable
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FIGURE 6.4.2. Position–velocity
phase plane portrait for the hard
mass-and-spring system with
m D k D 2 and ˇ D �4 < 0.

center. As the point .x.t/; y.t// traverses a trajectory in the clockwise direction,
the position x.t/ and velocity y.t/ of the mass oscillate alternately, as illustrated in
Fig. 6.4.3. The mass is moving to the right (with x increasing) when y > 0, to the
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FIGURE 6.4.3. Position and velocity
solution curves for the hard
mass-and-spring system with
m D k D 2 and ˇ D �4 < 0.

left when y < 0. Thus the behavior of a mass on a nonlinear hard spring resembles
qualitatively that of a mass on a linear spring with ˇ D 0 (as in Example 3 of Section
6.1). But one difference between the linear and nonlinear situations is that, whereas
the period T D 2�

p
m=k of oscillation of a mass on a linear spring is independent

of the initial conditions, the period of a mass on a nonlinear spring depends on its
initial position x.0/ and initial velocity y.0/ (Problems 21 through 26).
Remark The hard spring equation mx00 D �kx � jˇjx3 has equivalent first-order system

x0 D y; y0 D � k
m
x � jˇj

m
x3

with Jacobian matrix

J.x; y/ D

264 0 1

� k
m
� 3jˇj

m
x2 0

375 ; so J.0; 0/ D
�

0 1

�!2 0

�

(writing k=m D !2 as usual). The latter matrix has characteristic equation �2 C !2 D 0 and
pure imaginary eigenvalues �1, �2 D ˙!i . Thus the linearized system x0 D y, y0 D �!2x

has a stable center at the critical point .0; 0/—as we observed in Example 4 of Section 6.1.
However, the nonlinear cubic term in the differential equation has (in effect) replaced the
elliptical trajectories (as in Fig. 6.1.8) of the linear system with the “flatter” quartic ovals we
see in Fig. 6.4.2.
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SOFT SPRING OSCILLATIONS: If ˇ > 0, then the second equation in (5) takes
the form my0 D x �ˇx2 � k	, so it follows that the system has the two critical points�
˙
p
k=̌ ; 0

�
in addition to the critical point .0; 0/. These three critical points yield

the only solutions for which the mass can remain at rest. The following example
illustrates the greater range of possible behaviors of a mass on a soft spring.

Example 1 If m D 1, k D 4, and ˇ D 1, then the equation of motion of the mass is

d2x

dt2
C 4x � x3 D 0; (9)

and Eq. (6) gives the trajectories in the form
1
2y

2 C 2x2 � 1
4x

4 D E: (10)

After solving for

y D ˙
q
2E � 4x2 C 1

2x
2; (100)

we could select a fixed value of the constant energy E and plot manually a trajectory like one
of those shown in the computer-generated position–velocity phase plane portrait in Fig. 6.4.4.

The different types of phase plane trajectories correspond to different values of the
energy E. If we substitute x D ˙

p
k=̌ and y D 0 into (6), we get the energy value E D

k2=.4ˇ/ D 4 (because k D 4 and ˇ D 1) that corresponds to the trajectories that intersect the
x-axis at the nontrivial critical points .�2; 0/ and .2; 0/. These emphasized trajectories are
called separatrices because they separate phase plane regions of different behavior.

The nature of the motion of the mass is determined by which type of trajectory its initial
conditions determine. The simple closed trajectories encircling .0; 0/ in the region bounded
by the separatrices correspond to energies in the range 0 < E < 4. These closed trajectories
represent periodic oscillations of the mass back and forth around the equilibrium point x D 0.

The unbounded trajectories lying in the regions above and below the separatrices cor-
respond to values of E greater than 4. These represent motions in which the mass approaches
x D 0with sufficient energy that it continues on through the equilibrium point, never to return
again (as indicated in Fig. 6.4.5).
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FIGURE 6.4.4. Position–velocity phase plane portrait
for the soft mass-and-spring system with m D 1, k D 4,
and ˇ D 1 > 0. The separatrices are emphasized.
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FIGURE 6.4.5. Position and velocity solution curves for the soft
mass-and-spring system with m D 1, k D 4, ˇ D 1 > 0, and energy
E D 8—sufficiently great that the mass approaches the origin from the
left and continues on indefinitely to the right.

The unbounded trajectories opening to the right and left correspond to negative values
of E. These represent motions in which the mass initially is headed toward the equilibrium
point x D 0, but with insufficient energy to reach it. At some point the mass reverses direction
and heads back whence it came.

In Fig. 6.4.4 it appears that the critical point .0; 0/ is a stable center, whereas the critical
points .˙2; 0/ look like saddle points of the equivalent first-order system

x0 D y; y0 D �4x C x3 (11)
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with Jacobian matrix

J.x; y/ D
�

0 1

�4C 3x2 0

�
:

To check these observations against the usual critical-point analysis, we note first that the
Jacobian matrix

J.0; 0/ D
�

0 1

�4 0

�
at the critical point .0; 0/ has characteristic equation �2 C 4 D 0 and pure imaginary eigen-
values �1, �2 D ˙2i consistent with a stable center. Moreover, the Jacobian matrix

J.˙2; 0/ D
�
0 1

8 0

�
corresponding to the other two critical points has characteristic equation �2 � 8 D 0 and real
eigenvalues �1, �2 D ˙

p
8 of opposite sign, consistent with the saddle-point behavior that

we observe near .�2; 0/ and .C2; 0/.
Remark Figures 6.4.2 and 6.4.4 illustrate a significant qualitative difference between hard
springs with ˇ < 0 and soft springs with ˇ > 0 in the nonlinear equation mx00 D kx C ˇx3.
Whereas the phase plane trajectories for a hard spring are all bounded, a soft spring has
unbounded phase plane trajectories (as well as bounded ones). However, we should realize
that the unbounded soft-spring trajectories cease to represent physically realistic motions
faithfully when they exceed the spring’s capability of expansion without breaking.

Damped Nonlinear Vibrations
Suppose now that the mass on a spring is connected also to a dashpot that provides a
force of resistance proportional to the velocity y D dx=dt of the mass. If the spring
is still assumed nonlinear as in Eq. (2), then the equation of motion of the mass is

mx00 D �cx0 � kx C ˇx3; (12)

where c > 0 is the resistance constant. If ˇ > 0, then the equivalent first-order
system

dx

dt
D y; dy

dt
D �kx � cy C ˇx

3

m
D � c

m
y � k

m
x

�
1 � ˇ

k
x2

�
(13)

has critical points .0; 0/ and
�
˙
p
k=̌ ; 0

�
and Jacobian matrix

J.x; y/ D

264 0 1

� k
m
C 3ˇ

m
x2 � c

m

375 :
Now the critical point at the origin is the most interesting one. The Jacobian matrix

J.0; 0/ D

264 0 1

� k
m
� c
m

375
has characteristic equation

.��/
�
� c
m
� �

�
C k

m
D 1

m
.m�2 C c�C k/ D 0
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and eigenvalues

�1; �2 D
�c ˙

p
c2 � 4km
2m

:

It follows from Theorem 2 in Section 6.2 in that the critical point .0; 0/ of the system
in (13) is

� a nodal sink if the resistance is so great that c2 > 4km (in which case the
eigenvalues are negative and unequal), but is

� a spiral sink if c2 < 4km (in which case the eigenvalues are complex conju-
gates with negative real part).

The following example illustrates the latter case. (In the borderline case with equal
negative eigenvalues, the origin may be either a nodal or a spiral sink.)

Example 2 Suppose that m D 1, c D 2, k D 5, and ˇ D 5
4 . Then the nonlinear system in (13) is

dx

dt
D y; dy

dt
D �5x � 2y C 5

4x
3 D �2y � 5x.1 � 1

4x
2/: (14)

It has critical points .0; 0/, .˙2; 0/ and Jacobian matrix

J.x; y/ D
�

0 1

�5C 15
4 x

2 �2
�
:

At .0; 0/: The Jacobian matrix

J.0; 0/ D
�

0 1

�5 �2
�

has characteristic equation �2 C 2� C 5 D 0 and has complex conjugate eigenvalues �1,
�2 D �1˙ 2i with negative real part. Hence .0; 0/ is a spiral sink of the nonlinear system in
(14), and the linearized position function of the mass is of the form

x.t/ D e�t .A cos 2t C B sin 2t/

that corresponds to an exponentially damped oscillation about the equilibrium position x D 0.
At .˙2; 0/: The Jacobian matrix

J.˙2; 0/ D
�
0 1

10 �2
�

has characteristic equation �2 C 2� � 10 D 0 and real eigenvalues �1 D �1 �
p
11 < 0 and

�2 D �1C
p
11 > 0 with different signs. It follows that .�2; 0/ and .C2; 0/ are both saddle

points of the system in (14).
The position–velocity phase plane portrait in Fig. 6.4.6 shows trajectories of (14) and

the spiral sink at .0; 0/, as well as the unstable saddle points at .�2; 0/ and .2; 0/. The em-
phasized separatrices divide the phase plane into regions of different behavior. The behavior
of the mass depends on the region in which its initial point .x0; y0/ is located. If this initial
point lies in

� Region I between the separatrices, then the trajectory spirals into the origin as t!C1,
and hence the periodic oscillations of the undamped case (Fig. 6.4.4) are now replaced
with damped oscillations around the stable equilibrium position x D 0;

� Region II, then the mass passes through x D 0moving from left to right (x increasing);
� Region III, then the mass passes through xD 0moving from right to left (x decreasing);
� Region IV, then the mass approaches (but does not reach) the unstable equilibrium

position x D �2 from the left, but stops and then returns to the left;
� Region V, then the mass approaches (but does not reach) the unstable equilibrium po-

sition x D 2 from the right, but stops and then returns to the right.

If the initial point .x0; y0/ lies precisely on one of the separatrices, then the corresponding
trajectory either approaches the stable spiral point or recedes to infinity from a saddle point
as t !C1.
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FIGURE 6.4.6. Position–velocity phase plane portrait for the soft mass-and-spring system with
m D 1, k D 5, ˇ D 5

4
, and resistance constant c D 2. The (black) separatrices are emphasized.

The Nonlinear Pendulum
In Section 3.4 we derived the equation

d2�

dt2
C g

L
sin � D 0 (15)

for the undamped oscillations of the simple pendulum shown in Fig. 6.4.7. There

θ

m

L

FIGURE 6.4.7. The simple
pendulum.

we used the approximation sin � � � for � near zero to replace Eq. (15) with the
linear model

d2�

dt2
C !2� D 0; (16)

where !2 D g=L. The general solution

�.t/ D A cos!t C B sin!t (17)

of Eq. (16) describes oscillations around the equilibrium position � D 0with circular
frequency ! and amplitude C D .A2 C B2/1=2.

The linear model does not adequately describe the possible motions of the
pendulum for large values of � . For instance, the equilibrium solution �.t/ � � of
Eq. (15), with the pendulum standing straight up, does not satisfy the linear equation
in (16). Nor does Eq. (17) include the situation in which the pendulum “goes over
the top” repeatedly, so that �.t/ is a steadily increasing rather than an oscillatory
function of t . To investigate these phenomena we must analyze the nonlinear equa-
tion � 00 C !2 sin � D 0 rather than merely its linearization � 00 C !2� D 0. We also
want to include the possibility of resistance proportional to velocity, so we consider
the general nonlinear pendulum equation

d2�

dt2
C c d�

dt
C !2 sin � D 0: (18)
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The case c > 0 corresponds to damped motion in which there actually is resis-
tance proportional to (angular) velocity. But we examine first the undamped case in
which c D 0. With x.t/ D �.t/ and y.t/ D � 0.t/ the equivalent first-order system is

dx

dt
D y; dy

dt
D �!2 sin x: (19)

We see that this system is almost linear by writing it in the form

dx

dt
D y;

dy

dt
D �!2x C g.x/;

(20)

where

g.x/ D �!2.sin x � x/ D !2

�
x3

3Š
� x

5

5Š
C � � �

�
has only higher-degree terms.

The critical points of the system in (19) are the points .n�; 0/with n an integer,
and its Jacobian matrix is given by

J.x; y/ D
�

0 1

�!2 cos x 0

�
: (21)

The nature of the critical point .n�; 0/ depends on whether n is even or odd.

EVEN CASE: If n D 2m is an even integer, then cosn� D C1, so (21) yields the
matrix

J.2m�; 0/ D
�

0 1

�!2 0

�
with characteristic equation �2 C !2 D 0 and pure imaginary eigenvalues �1, �2 D
˙!i . The linearization of (19) at .n�; 0/ is therefore the system

du

dt
D v; dv

dt
D �!2u (22)

for which .0; 0/ is the familiar stable center enclosed by elliptical trajectories (as in
Example 3 of Section 6.1). Although this is the delicate case for which Theorem 2
of Section 6.2 does not settle the matter, we will see presently that .2m�; 0/ is also
a stable center for the original nonlinear pendulum system in (19).

ODD CASE: If nD 2mC 1 is an odd integer, then cosn� D �1, so (21) yields the
matrix

J..2mC 1/�; 0/ D
�
0 1

!2 0

�
with characteristic equation �2 � !2 D 0 and real eigenvalues �1, �2 D ˙! with
different signs. The linearization of (19) at ..2mC 1/�; 0/ is therefore the system

du

dt
D v; dv

dt
D !2u (23)

for which .0; 0/ is a saddle point. It follows from Theorem 2 of Section 6.2 that
the critical point ..2mC 1/�; 0/ is a similar saddle point for the original nonlinear
pendulum system in (19).
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THE TRAJECTORIES: We can see how these “even centers” and “odd saddle
points” fit together by solving the system in (19) explicitly for the phase plane tra-
jectories. If we write

dy

dx
D dy=dt

dx=dt
D �!

2 sin x
y

and separate the variables,

y dy C !2 sin x dx D 0;

then integration from x D 0 to x D x yields

1
2
y2 C !2.1 � cos x/ D E: (24)

We write E for the arbitrary constant of integration because, if physical units are so
chosen that m D L D 1, then the first term on the left is the kinetic energy and the
second term the potential energy of the mass on the end of the pendulum. Then E
is the total mechanical energy; Eq. (24) thus expresses conservation of mechanical
energy for the undamped pendulum.

If we solve Eq. (24) for y and use a half-angle identity, we get the equation

y D ˙
q
2E � 4!2 sin2 1

2
x (25)

that defines the phase plane trajectories. Note that the radicand in (25) remains
positive if E > 2!2. Figure 6.4.8 shows (along with a direction field) the results of
plotting these trajectories for various values of the energy E.

y 0

–4

2

4

–2

x
–2π 2π 3π 4π 5π–π π0

E > 2ω2

E > 2ω2

E < 2ω2

FIGURE 6.4.8. Position–velocity phase plane portrait for the undamped pendulum system
x0 D y, y0 D � sin x. The (black) separatrices are emphasized.

The emphasized separatrices in Fig. 6.4.8 correspond to the critical value E D
2!2 of the energy; they enter and leave the unstable critical points .n�; 0/ with n
an odd integer. Following the arrows along a separatrix, the pendulum theoretically
approaches a balanced vertical position � D x D .2mC 1/� with just enough energy
to reach it but not enough to “go over the top.” The instability of this equilibrium
position indicates that this behavior may never be observed in practice!
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The simple closed trajectories encircling the stable critical points—all of
which correspond to the downward position � D 2m� of the pendulum—represent
periodic oscillations of the pendulum back and forth around the stable equilibrium
position � D 0. These correspond to energies E < 2!2 that are insufficient for the
pendulum to ascend to the vertical upward position—so its back-and-forth motion
is that which we normally associate with a “swinging pendulum.”

The unbounded trajectories with E > 2!2 represent whirling motions of the
pendulum in which it goes over the top repeatedly—in a clockwise direction if y.t/
remains positive, in a counterclockwise direction if y.t/ is negative.

Period of Undamped Oscillation
If the pendulum is released from rest with initial conditions

x.0/ D �.0/ D ˛; y.0/ D � 0.0/ D 0; (26)

then Eq. (24) with t D 0 reduces to

!2.1 � cos˛/ D E: (27)

Hence E < 2!2 if 0 < ˛ < � , so a periodic oscillation of the pendulum ensues.
To determine the period of this oscillation, we subtract Eq. (27) from Eq. (24) and
write the result (with x D � and y D d�=dt) in the form

1
2

�
d�

dt

�2

D !2.cos � � cos˛/: (28)

The period T of time required for one complete oscillation is four times the
amount of time required for � to decrease from � D ˛ to � D 0, one-fourth of an
oscillation. Hence we solve Eq. (28) for dt=d� and integrate to get

T D 4

!
p
2

Z ˛

0

d�p
cos � � cos˛

: (29)

To attempt to evaluate this integral we first use the identity cos � D 1 � 2 sin2.�=2/

and get

T D 2

!

Z ˛

0

d�q
k2 � sin2.�=2/

;

where
k D sin

˛

2
:

Next, the substitution u D .1=k/ sin.�=2/ yields

T D 4

!

Z 1

0

dup
.1 � u2/.1 � k2u2/

:

Finally, the substitution u D sin� gives

T D 4

!

Z �=2

0

d�q
1 � k2 sin2 �

: (30)
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The integral in (30) is the elliptic integral of the first kind that is often denoted
by F.k; �=2/. Whereas elliptic integrals normally cannot be evaluated in closed
form, this integral can be approximated numerically as follows. First we use the
binomial series

1p
1 � x

D 1C
1X

nD1

1 � 3 � � � .2n � 1/
2 � 4 � � � .2n/ xn (31)

with x D k2 sin2 � < 1 to expand the integrand in (30). Then we integrate termwise
using the tabulated integral formulaZ �=2

0

sin2n � d� D �

2
� 1 � 3 � � � .2n � 1/

2 � 4 � � � .2n/ : (32)

The final result is the formula

T D 2�

!

"
1C

1X
nD1

�
1 � 3 � � � .2n � 1/
2 � 4 � � � .2n/

�2

k2n

#

D T0

"
1C

�
1

2

�2

k2 C
�
1 � 3
2 � 4

�2

k4 C
�
1 � 3 � 5
2 � 4 � 6

�2

k6 C � � �
#

(33)

for the period T of the nonlinear pendulum released from rest with initial angle
�.0/ D ˛, in terms of the linearized period T0 D 2�=! and k D sin.˛=2/.

The infinite series within the second pair of brackets in Eq. (33) gives the
factor T=T0 by which the nonlinear period T is longer than the linearized period.
The table in Fig. 6.4.9, obtained by summing this series numerically, shows how
T=T0 increases as ˛ is increased. Thus T is 0:19% greater than T0 if ˛ D 10ı,
whereas T is 18:03% greater than T0 if ˛ D 90ı. But even a 0:19% discrepancy is
significant—the calculation

.0:0019/ � 3600seconds
hour

� 24hours
day

� 7 days
week

� 1149 (seconds=week)

shows that the linearized model is quite inadequate for a pendulum clock; a discrep-
ancy of 19 min 9 s after only one week is unacceptable.

˛ T=T0

10ı

20ı

30ı

40ı

50ı

60ı

70ı

80ı

90ı

1.0019

1.0077

1.0174

1.0313

1.0498

1.0732

1.1021

1.1375

1.1803

FIGURE 6.4.9. Dependence of the
period T of a nonlinear pendulum on
its initial angle ˛.

Damped Pendulum Oscillations
Finally, we discuss briefly the damped nonlinear pendulum. The almost linear first-
order system equivalent to Eq. (19) is

dx

dt
D y;

dy

dt
D �!2 sin x � cy;

(34)

and again the critical points are of the form .n�; 0/ where n is an integer. In Prob-
lems 9 through 11 we ask you to verify that

� If n is odd, then .n�; 0/ is an unstable saddle point of (34), just as in the
undamped case; but

� If n is even and c2 > 4!2, then .n�; 0/ is a nodal sink; whereas
� If n is even and c2 < 4!2, then .n�; 0/ is a spiral sink.
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Figure 6.4.10 illustrates the phase plane trajectories for the more interesting
underdamped case, c2 < 4!2. Other than the physically unattainable separatrix
trajectories that enter unstable saddle points, every trajectory eventually is “trapped”
by one of the stable spiral points .n�; 0/ with n an even integer. What this means is
that even if the pendulum starts with enough energy to go over the top, after a certain
(finite) number of revolutions it has lost enough energy that thereafter it undergoes
damped oscillations around its stable (lower) equilibrium position.

x

y

0 2π 3π–2π–3π π–π

0

–4

2

4

–2

FIGURE 6.4.10. Position–velocity phase plane portrait for the damped pendulum system x0 D y,
y0 D � sin x � 1

4
y. The (black) separatrices are emphasized.

6.4 Problems
In Problems 1 through 4, show that the given system is al-
most linear with .0; 0/ as a critical point, and classify this crit-
ical point as to type and stability. Use a computer system or
graphing calculator to construct a phase plane portrait that
illustrates your conclusion.

1.
dx

dt
D 1 � ex C 2y,

dy

dt
D �x � 4 sin y

2.
dx

dt
D 2 sin x C sin y,

dy

dt
D sin x C 2 sin y (Fig. 6.4.11)

0

0

x

y

2π

π

–2π

–π

–2π –π π 2π

FIGURE 156pt Trajectories of the system in
Problem 2.

3.
dx

dt
D ex C 2y � 1, dy

dt
D 8x C ey � 1

4.
dx

dt
D sin x cosy � 2y,

dy

dt
D 4x � 3 cos x sin y

Find and classify each of the critical points of the almost lin-
ear systems in Problems 5 through 8. Use a computer system
or graphing calculator to construct a phase plane portrait that
illustrates your findings.

5.
dx

dt
D �x C sin y,

dy

dt
D 2x

6.
dx

dt
D y,

dy

dt
D sin�x � y

7.
dx

dt
D 1 � ex�y ,

dy

dt
D 2 sin x

8.
dx

dt
D 3 sin x C y,

dy

dt
D sin x C 2y

Problems 9 through 11 deal with the damped pendulum system
x0 D y, y0 D �!2 sin x � cy.

9. Show that if n is an odd integer, then the critical point
.n�; 0/ is a saddle point for the damped pendulum system.
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10. Show that if n is an even integer and c2 > 4!2, then the
critical point .n�; 0/ is a nodal sink for the damped pen-
dulum system.

11. Show that if n is an even integer and c2 < 4!2, then the
critical point .n�; 0/ is a spiral sink for the damped pen-
dulum system.

In each of Problems 12 through 16, a second-order equation
of the form x00 C f .x; x0/ D 0, corresponding to a certain
mass-and-spring system, is given. Find and classify the crit-
ical points of the equivalent first-order system.

12. x00 C 20x � 5x3 D 0: Verify that the critical points resem-
ble those shown in Fig. 6.4.4.

13. x00 C 2x0 C 20x � 5x3 D 0: Verify that the critical points
resemble those shown in Fig. 6.4.6.

14. x00 � 8x C 2x3 D 0: Here the linear part of the force is re-
pulsive rather than attractive (as for an ordinary spring).
Verify that the critical points resemble those shown in
Fig. 6.4.12. Thus there are two stable equilibrium points
and three types of periodic oscillations.

15. x00C 4x � x2 D 0: Here the force function is nonsymmet-
ric. Verify that the critical points resemble those shown in
Fig. 6.4.13.

16. x00 C 4x � 5x3 C x5 D 0: The idea here is that terms
through the fifth degree in an odd force function have been
retained. Verify that the critical points resemble those
shown in Fig. 6.4.14.

In Problems 17 through 20, analyze the critical points of the
indicated system, use a computer system to construct an illus-
trative position–velocity phase plane portrait, and describe the

oscillations that occur.

17. Example 2 in this section illustrates the case of damped
vibrations of a soft mass–spring system. Investigate an
example of damped vibrations of a hard mass–spring sys-
tem by using the same parameters as in Example 2, except
now with ˇ D �5

4 < 0.
18. Example 2 illustrates the case of damped vibrations of a

soft mass–spring system with the resistance proportional
to the velocity. Investigate an example of resistance pro-
portional to the square of the velocity by using the same
parameters as in Example 2, but with resistance term
�cx0jx0j instead of �cx0 in Eq. (12).

19. Now repeat Example 2 with both the alterations corre-
sponding to Problems 17 and 18. That is, take ˇD�5

4 < 0

and replace the resistance term in Eq. (12) with �cx0jx0j.
20. The equations x0 D y, y0 D � sin x � 1

4yjyj model a
damped pendulum system as in Eqs. (34) and Fig. 6.4.10.
But now the resistance is proportional to the square of the
angular velocity of the pendulum. Compare the oscilla-
tions that occur with those that occur when the resistance
is proportional to the angular velocity itself.

Problems 21 through 26 outline an investigation of the period
T of oscillation of a mass on a nonlinear spring with equation
of motion

d2x

dt2
C �.x/ D 0: (35)

If �.x/D kx with k > 0, then the spring actually is linear with
period T0 D 2�=

p
k.
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–2 2

FIGURE 6.4.12. The phase portrait
for Problem 14.
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FIGURE 6.4.13. The phase portrait
for Problem 15.
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FIGURE 6.4.14. The phase portrait
for Problem 16.
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21. Integrate once (as in Eq. (6)) to derive the energy equation

1
2y

2 C V.x/ D E; (36)

where y D dx=dt and

V.x/ D
Z x

0
�.u/ du: (37)

22. If the mass is released from rest with initial conditions
x.0/ D x0, y.0/ D 0 and periodic oscillations ensue, con-
clude from Eq. (36) that E D V.x0/ and that the time T
required for one complete oscillation is

T D 4p
2

Z x0

0

dup
V.x0/ � V.u/

: (38)

23. If �.x/ D kx � ˇx3 as in the text, deduce from Eqs. (37)
and (38) that

T D 4
p
2

Z x0

0

dxp
.x2

0 � u2/.2k � ˇx2
0 � ˇu2/

: (39)

24. Substitute u D x0 cos� in (39) to show that

T D 2T0

�
p
1 � 


Z �=2

0

d�q
1 �  sin2 �

; (40)

where T0 D 2�=
p
k is the linear period,


 D ˇ

k
x2

0 ; and  D �1
2
� 


1 � 
 : (41)

25. Finally, use the binomial series in (31) and the integral
formula in (32) to evaluate the elliptic integral in (40) and
thereby show that the period T of oscillation is given by

T D T0p
1 � 


�
1C 1

4
C 9

64
2 C 25

256
3 C � � �

�
: (42)

26. If 
 D ˇx2
0=k is sufficiently small that 
2 is negligible, de-

duce from Eqs. (41) and (42) that

T � T0

�
1C 3

8



�
D T0

�
1C 3ˇ

8k
x2

0

�
: (43)

It follows that

� If ˇ > 0, so the spring is soft, then T > T0, and
increasing x0 increases T , so the larger ovals in
Fig. 6.4.4 correspond to smaller frequencies.

� If ˇ < 0, so the spring is hard, then T < T0, and
increasing x0 decreases T , so the larger ovals in
Fig. 6.4.2 correspond to larger frequencies.

6.4 Application The Rayleigh, van der Pol, and FitzHugh-Nagumo
Equations

Here we present a trio of nonlinear differential equations or systems of equations,
drawn from the areas of acoustics, electrical engineering, and neuroscience. Each
of these models has been fundamental within its field; taken together, they give
some indication of the importance of nonlinear equations across a wide variety of
applications.

Rayleigh’s Equation
The British mathematical physicist Lord Rayleigh (John William Strutt, 1842–1919)
introduced an equation of the form

mx00 C kx D ax0 � b.x0/3 (1)

to model the oscillations of a clarinet reed. With y D x0 we get the autonomous
system

x0 D y;

y0 D �kx C ay � by
3

m
;

(2)

whose phase plane portrait is shown in Fig. 6.4.15 (for the case m D k D a D b D
1). The outward and inward spiral trajectories converge to a “limit cycle” solution
that corresponds to periodic oscillations of the reed. The period T (and hence the
frequency) of these oscillations can be measured on a tx-solution curve plotted as
in Fig. 6.4.16. This period of oscillation depends only on the parameters m, k, a,
and b in Eq. (1) and is independent of the initial conditions (why?).
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FIGURE 6.4.15. Phase plane portrait
for the Rayleigh system in (2) with
m D k D a D b D 1.
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FIGURE 6.4.16. The tx-solution curve
with initial conditions x.0/ D 0:01,
x0.0/ D 0.

Choose your own parameters m, k, a, and b (perhaps the least four nonzero
digits in your student ID number), and use an available ODE plotting utility to
plot trajectories and solution curves as in Figs. 6.4.15 and 6.4.16. Change one of
your parameters to see how the amplitude and frequency of the resulting periodic
oscillations are altered.

Van der Pol’s Equation
Figure 6.4.17 shows a simple RLC circuit in which the usual (passive) resistance R
has been replaced with an active element (such as a vacuum tube or semiconductor)
across which the voltage drop V is given by a known function f .I / of the current I .
Of course, V D f .I / D IR for a resistor. If we substitute f .I / for IR in the familiar
RLC-circuit equationLI 0CRI CQ=C D 0 of Section 3.7, then differentiation gives

LC

FIGURE 6.4.17. A simple circuit
with an active element.

the second-order equation

LI 00 C f 0.I /I 0 C I

C
D 0: (3)

In a 1924 study of oscillator circuits in early commercial radios, Balthasar van der
Pol (1889–1959) assumed the voltage drop to be given by a nonlinear function of
the form f .I / D bI 3 � aI , which with Eq. (3) becomes

LI 00 C .3bI 2 � a/I 0 C I

C
D 0: (4)

This equation is closely related to Rayleigh’s equation and has phase portraits re-
sembling Fig. 6.4.15. Indeed, differentiation of the second equation in (2) and the
resubstitution x0 D y yield the equation

my00 C .3by2 � a/y0 C ky D 0; (5)

which has the same form as Eq. (4).
If we denote by � the time variable in Eq. (4) and make the substitutions

I D px, t D �=
p
LC , the result is

d2x

dt2
C �3bp2x2 � a	rC

L

dx

dt
C x D 0:
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With p D
p
a=.3b/ and  D a

p
C=L, this gives the standard form

x00 C .x2 � 1/x0 C x D 0 (6)

of van der Pol’s equation.
For every nonnegative value of the parameter , the solution of van der Pol’s

equation with x.0/D 2, x0.0/D 0 is periodic, and the corresponding phase plane tra-
jectory is a limit cycle to which the other trajectories converge (as in Fig. 6.4.15). It
will be instructive for you to solve van der Pol’s equation numerically and to plot this
periodic trajectory for a selection of values from  D 0 to  D 1000 or more. With
 D 0 it is a circle of radius 2 (why?). Figure 6.4.18 shows the periodic trajectory
with  D 1, and Fig. 6.4.19 shows the corresponding x.t/ and y.t/ solution curves.
When  is large, van der Pol’s equation is quite “stiff” and the periodic trajectory
is more eccentric as in Fig. 6.4.20, which was plotted using MATLAB’s stiff ODE
solver ode15s. The corresponding x.t/ and y.t/ solution curves in Figs. 6.4.21
and 6.4.22 reveal surprising behavior of these component functions. Each alternates
long intervals of very slow change with periods of abrupt change during very short
time intervals that correspond to the “quasi-discontinuities” that are visible in Figs.
6.4.21 and 6.4.22. For instance, Fig. 6.4.23 shows that, between t D 1614:28 and
t D 1614:29, the value of y.t/ zooms from near zero to over 1300 and back again.
Perhaps you can measure the distance between x- or y-intercepts to show that the
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FIGURE 6.4.18. The phase plane
trajectory of a periodic solution of van der
Pol’s equation with 
 D 1, as well as
some trajectories spiraling in and out.
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solution curves defining the periodic
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FIGURE 6.4.20. The phase plane
trajectory of the periodic solution of van
der Pol’s equation with 
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period of circuit around the cycle in Fig. 6.4.20 is approximately T D 1614. Indeed,
this calculation and the construction of figures like those shown here may serve as
a good test of the robustness of your computer system’s ODE solver.

You might also plot other trajectories for  D 10, 100 or 1000 that (like the
trajectories in Fig. 6.4.18) are “attracted” from within and without by the limit cycle.
The origin looks like a spiral point in Fig 6.4.18. Indeed, show that .0; 0/ is a spiral
source for van der Pol’s equation if 0 <  < 2 but is a nodal source if  	 2.

The FitzHugh-Nagumo Equations

Since the early experiments of Luigi Galvani (1737–1798) in which electrical stim-
ulus caused the leg muscles of dead frogs to twitch, the electrical properties of
neurons, the cells that form the building blocks of the nervous system, have been
intensively studied. One of the most important of those properties is the action po-
tential, an electrical signal that travels from the body of a neuron down along its
axon (Fig. 6.4.24). Action potentials are the units of information of the nervous
system; when an action potential reaches the end of the axon, chemicals known
as neurotransmitters are released from the axon terminals. These neurotransmitters
then find receptors in the dendrites of other nerve cells, causing action potentials in
those “target” neurons, and thus propagating the “message.” Because of the great
speed with which action potentials traverse the neuron, they provide a mechanism
by which signals can be rapidly transmitted through the nervous system.

Action potentials are particularly known for their all-or-none character. If the
stimulus received by a target neuron is below a certain threshold, then no action
potential is generated. If this threshold is exceeded, however, then the neuron will
“fire” an action potential, or perhaps (if the stimulus is sufficiently strong) several
action potentials in succession. In this way, the nervous system’s method of electri-
cal signaling resembles the binary code used by computers.

Dendrite
Cell body

Nucleus

Axon terminal

Axon

FIGURE 6.4.24. The structure of a typical neuron.

In the early 1950’s A. F. Huxley (1917–2012) and A. L. Hodgkin (1914–1988)
published a landmark series of papers in which they modeled the action potential
in the giant axon of the squid as an electrical circuit. The focus of this model was
the neuron’s membrane potential, that is, the voltage difference between the inside
and outside of the nerve cell. In its resting state, a typical neuron has a negative
membrane potential, that is, the inside of the cell is at a lower voltage than the sur-
rounding medium. (We now know that this voltage difference is largely due to “ion
pumps” in the cell membrane, which maintain a lower concentration of positively
charged sodium ions inside the cell than in the surrounding medium. These pumps
require energy, and indeed a significant portion of the body’s metabolic energy is
devoted to this task.) Potassium ions also play an important role in neuron electrical
activity.
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During an action potential, the membrane potential exhibits a characteristic
pattern of sudden and rapid changes through positive and negative values as the
electrical signal traverses the neuron. A central goal of Hodgkin and Huxley’s work
was to explain these changes in terms of the sodium and potassium conductances
of the neuron membrane. Conductance—the reciprocal of resistance—is a measure
of the permeability of the membrane to charged ions. An increase in the sodium
conductance, for example, allows sodium ions to flow more freely across the mem-
brane, from areas of high concentration to low. Hodgkin and Huxley proposed
that during an action potential, an electrical stimulus (arising from another neuron
“upstream,” for example) causes changes in the neuron membrane’s sodium and
potassium conductances. This results in a series of flows of charged ions, and thus
electrical currents, across the cell membrane.

The researchers applied circuit theory, including some of the basic principles
discussed in Section 3.7, to model these currents. The result was a system of four
nonlinear differential equations, whose variables are the neuron membrane potential
together with three other quantities related to the membrane’s sodium and potassium
conductances. Not only did the predictions of this model show remarkable accord
with experimental results, they also helped point the way to subsequent discoveries
in neurophysiology. The Hodgkin-Huxley model was a triumph both of experi-
mental technique and theoretical analysis, and remains today the starting point for
mathematical modeling of action potentials. Together with John Eccles, Hodgkin
and Huxley were awarded the 1963 Nobel Prize in Physiology or Medicine for their
work.

Analysis of the Hodgkin-Huxley model can be challenging, however, because
its phase space is four-dimensional, making features such as solution curves diffi-
cult to visualize. For this reason, in 1961 Richard FitzHugh (1922–2007) proposed
a two-dimensional simplification of the Hodgkin-Huxley model, which was sub-
sequently analyzed in electrical circuit terms by J. Nagumo and others. Whereas
the FitzHugh-Nagumo equations are not intended to capture the physiological prop-
erties of the neuron as directly as the original Hodgkin-Huxley equations do, this
simplified model is important because it displays much of the qualitative behavior
characteristic of neuron electrical activity, while offering the advantage of being
considerably easier to study.

FitzHugh’s model actually is a generalization of van der Pol’s equation (6).

You can show that introduction of the variable y D 1


x0 C 1

3
x3 � x in van der

Pol’s equation (which results in better phase plane analysis than does simply taking
y D x0) leads to the system

x0 D 
�
y C x � 1

3
x3

�
;

y0 D � 1

x;

which FitzHugh generalized by adding terms:

x0 D 
�
y C x � 1

3
x3 C I

�
;

y0 D � 1

.x � aC by/:

(7)

Here a and b are constants and I is a function of the time t . Loosely speaking, x.t/
behaves in a manner similar to the neuron membrane potential, I.t/ is the electrical
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stimulus applied to the neuron, and y.t/ is a composite of the other three variables
in the Hodgkin-Huxley model. To simulate neuron electrical activity, we will use
FitzHugh’s values a D 0:7 , b D 0:8, and  D 3, while assigning various constant
values to the stimulus I.t/.

First, with I.t/ � 0 (corresponding to the resting state of the neuron), you can
verify that the system (7) has exactly one equilibrium point at roughly x D 1:1994

and y D �0:6243. What is striking is the way in which the system responds as
I becomes nonzero (corresponding to electrical stimulation of the neuron). Fig-
ure 6.4.25 shows the solution curves of the system corresponding to the three con-
stant values I.t/ � �0:15, I.t/ � �0:17, and I.t/ � �0:5. The graph on the left
gives the phase plane for x and y, whereas the graph on the right shows x.t/ as
a function of t . All curves begin at time t D 0 at the original equilibrium point
.1:1994;�0:6243/ indicated in the graph on the left.

–2 –1 0 1 2

– 0.5
–2

–1

1

2

0.0

0.5

1.0

1.5

x

y 5 10 15 20
t

x

I(t)   –0.15        –0.5       –0.17

FIGURE 6.4.25. Solutions of the FitzHugh-Nagumo equations (7) with three constant values of the
electrical stimulus I.t/, using a D 0:7, b D 0:8, and 
 D 3.

When the stimulus I.t/ is held at the constant value �0:15, x (which is analo-
gous to the neuron membrane potential) varies slightly from its rest value, but soon
finds a new “perturbed” equilibrium at which it then remains (blue curves); this
mirrors the behavior of the membrane potential when the neuron receives a stimu-
lus insufficiently small to generate an action potential. The response of the system
differs dramatically, however, when the constant stimulus is decreased slightly to
�0:17; once again x finds a new equilibrium, but only after exhibiting wide swings
downward and back upward (dashed curves); this is suggestive of the firing of a
single action potential. Finally, when I.t/� �0:5, x oscillates repeatedly, in a man-
ner reminiscent of both the Rayleigh and van der Pol systems (black curves); this
corresponds to repetitive firing of the neuron.

After using your own computer system’s ODE solver to verify these behav-
iors, you can investigate what happens with other constant nonzero values of the
stimulus I.t/. Do all such values lead either to oscillatory phase plane solutions
or to ones that converge to the same perturbed equilibrium point? Or do certain
different values lead to different perturbed equilibrium points? Do all oscillatory
solutions correspond to phase plane curves that appear to converge to a single limit
cycle?

The FitzHugh-Nagumo system has proven to be a very useful simplification of
the Hodgkin-Huxley system, exhibiting a number of characteristics of neuron elec-
trical activity. For a more detailed discussion see the classic work of L. Edelstein-
Keshet, Mathematical Models in Biology (Society for Industrial and Applied Math-
ematics, 2005).
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6.5 Chaos in Dynamical Systems
In preceding sections we have looked at population growth and mechanical systems
from a deterministic point of view—with the expectation that the initial state of a
physical system fully determines its future evolution. But many common systems
exhibit behavior that sometimes appears chaotic, in the sense that future states may
not seem reliably predictable from a knowledge of initial conditions. This section
includes project material illustrating the phenomenon of chaos, which is a topic of
much current interest in science and engineering.

Population Growth and Period Doubling
In Section 2.1 we introduced the logistic differential equation

dP

dt
D aP � bP 2 (a, b > 0) (1)

that models a bounded (rather than exponentially growing) population. Indeed, if
the population P.t/ satisfies Eq. (1), then as t ! C1, P.t/ approaches the (finite)
limiting population M D a=b. We discuss here a “discrete” version of the logistic
equation in the form of a type of “difference equation” that has been studied exten-
sively in the past, but only recently has been discovered to predict quite exotic and
unexpected patterns of behavior for certain populations.

In order to solve Eq. (1) numerically as in Section 2.4, we first choose a fixed
step size h > 0 and consider the sequence of discrete times

t0; t1; t2; : : : ; tn; tnC1; : : : ; (2)

where tnC1 D tn C h for each n. Beginning with the initial value P0 D P.t0/, we
then calculate approximations

P1; P2; : : : ; Pn; PnC1; : : : (3)

to the true values P.t1/; P.t2/; P.t3/; : : : of the actual population P.t/. For instance,
Euler’s method for the logistic equation in (1) consists of calculating the approxi-
mations in (3) iteratively by means of the formula

PnC1 D Pn C .aPn � bP 2
n / � h: (4)

Now suppose that the population is one for which the step size h can be cho-
sen so that the approximations calculated using Eq. (4) agree to acceptable accuracy
with the actual population values. This might be the case, for instance, for an ani-
mal or insect population in which all reproduction takes place within short-duration
breeding seasons that recur at regular intervals. If h is the interval between suc-
cessive breeding seasons, then the population Pn during one breeding season may
depend only on the population Pn�1 during the previous season, and Pn may com-
pletely determine the population PnC1 during the next breeding season.

So let us assume for the sake of discussion that the successive values Pn D
P.tn/ of the population are given by the equation

PnC1 D Pn C .aPn � bP 2
n / � h: (4)

Thus we replace the original differential equation in (1) with a “discrete” difference
equation

�Pn D .aPn � bP 2
n /�t (5)
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that gives the population difference�PnDPnC1�Pn in terms of the time difference
h D �t and the preceding population Pn.

Equation (4) can be rewritten as the logistic difference equation

PnC1 D rPn � sP 2
n ; (6)

where

r D 1C ah and s D bh: (7)

The substitution

Pn D
r

s
xn (8)

in Eq. (6) simplifies it still further to

xnC1 D rxn.1 � xn/: (9)

At this point we focus our attention on the final iterative formula in Eq. (9).
Beginning with given values of x0 and r , this formula generates a sequence
x1; x2; x3; : : : of values corresponding to the successive times t1; t2; t3; : : : : We may
think of xn, the value at time tn, as the fraction of the maximum population that the
environment can support. Assuming that the limiting fractional population

x1 D lim
n!1 xn (10)

exists, we want to investigate the way in which x1 depends on the growth parameter
r in Eq. (9). That is, if we regard r as the input to the process and x1 as the output,
we ask how the output depends on the input.

The iteration in Eq. (9) is readily implemented in any available calculator
or computer language. Figure 6.5.1 shows illustrative Maple, Mathematica, and
MATLAB code for a simple program that begins with x1 D 0:5 and calculates and
assembles a list of the first couple of hundred (k D 200) iterates with r D 1:5.

Because r D 1 C ah in (7), only values of r greater than 1 are pertinent to
our idealized model of discrete population growth. It turns out that, for a typical
such value of the growth parameter r entered at the first line, the results do not
depend materially on the initial value x1. After a reasonable number of iterations—
the number required depends on the value of r—the value of xn generally appears
to “stabilize” on a limiting value x1 as in Eq. (10). For example, Fig. 6.5.2 shows

Maple Mathematica MATLAB

r := 1.5:

x = array(1..200):

x[1] := 0.5:

for n from 2 to 200 do

z := x[n--1]:

x[n] := r*z*(1--z):

od:

r = 1.5;

x = Table[n,{n,1,200}];

x[[1]] = 0.5;

For[n=2, n<=200,

n=n+1,

z = x[[n--1]];

x[[n]] = r*z*(1--z)];

r = 1.5;

x = 1:200;

x(1) = 0.5;

for n = 2:200

z = x(n--1);

x(n) = r*z*(1--z);

end

FIGURE 6.5.1. Maple, Mathematica, and MATLAB versions of a simple iteration program.
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With r D 1:5 r D 2:0 r D 2:5

x1
x2
x3
:::

x197
x198
x199
x200

0.5

0.3750

0.3516
:::

0.3333

0.3333

0.3333

0.3333

0.5

0.5000

0.5000
:::

0.5000

0.5000

0.5000

0.5000

0.5

0.6250

0.5859
:::

0.6000

0.6000

0.6000

0.6000

FIGURE 6.5.2. Iterates with growth parameters r D 1.5, 2.0, and 2.5.

results of runs of our simple iteration program with the values r D 1:5, 2:0, and 2:5
of the growth rate parameter, yielding limiting (fractional) populations

x1 D 0:333333; 0:500000; and 0:6000000;

respectively. Thus it appears (so far) that x1 exists and that its value grows moder-
ately as r increases.

EXERCISE 1: Try several other values of the growth rate parameter in the range
1 < r < 3. Do your results support the conjecture that the limiting population always
exists and is an increasing function of r?

The results in Fig. 6.5.3 show that the conjecture stated in Exercise 1 is false!
With growth rate parameters r D 3:1 and r D 3:25, the (fractional) population fails
to stabilize on a single limiting population. (We calculated over a thousand iterates
to make sure.) Instead, it oscillates between two different populations in alternate

With r D 3:1 r D 3:25 r D 3:5

x1
x2
x3
x4
:::

x1001
x1002
x1003
x1004
x1005
x1006
x1007
x1008

0.5000

0.7750

0.5406

0.7699
:::

0.5580

0.7646

0.5580

0.7646

0.5580

0.7646

0.5580

0.7646

0.5000

0.8125

0.4951

0.8124
:::

0.4953

0.8124

0.4953

0.8124

0.4953

0.8124

0.4953

0.8124

0.5000

0.8750

0.3828

0.8269
:::

0.5009

0.8750

0.3828

0.8269

0.5009

0.8750

0.3828

0.8269

FIGURE 6.5.3. Cycles with period 2 with r D 3:1 and r D 3:25; a cycle
with period 4 with r D 3:5.
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months (thinking of a month as our unit of time). For instance, with r D 3:25 we
see that

x1001 D x1003 D x1005 D � � � � 0:4953;
whereas

x1002 D x1004 D x1006 D � � � � 0:8124:
Thus we have not a single limiting population, but rather a “limiting cycle” consist-
ing of two distinct populations (as illustrated graphically in Fig. 6.5.4). Furthermore,
when the growth rate is increased to r D 3:5, the period of the cycle doubles, and
now we have a limiting cycle with a period of 4—the population cycles repeatedly
through the four distinct values 0:5009, 0:8750, 0:3828, and 0:8269 (Fig. 6.5.5).

1000988 990 992 994 998996
n

x(
n)

0.0

0.2

0.4

1.0

0.6

0.8
x = 0.8124

x = 0.4953

FIGURE 6.5.4. The graph of
x.n/ D xn, showing the period 2 cycle
of iterates obtained with r D 3:25.
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x(
n)

 

0.0
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0.4 

1.0 
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0.8 

x = 0.8750 x =  0.8269

x  =  0.5009

x = 0.3828

FIGURE 6.5.5. The graph of
x.n/ D xn, showing the period 4 cycle
of iterates obtained with r D 3:5.

EXERCISE 2: Try values of the growth rate parameter in the range 2:9 < r < 3:1
to determine as closely as possible just where the single limiting population splits
(as r increases) into a cycle of period 2. Does this appear to happen just as r
exceeds 3?

The results shown in Fig. 6.5.6 indicate that a cycle with period 8 is obtained
with the growth rate parameter value r D 3:55. Events are now changing quite
rapidly.

EXERCISE 3: Verify that a cycle with period 16 is obtained with the growth rate
parameter value r D 3:565.
EXERCISE 4: See if you can find a cycle of period 32 somewhere between r D
3:565 and r D 3:570.

This is the phenomenon of period doubling for which the innocuous-looking
iteration xnC1 D rxn.1 � xn/ has become famous in recent years. As the growth
rate parameter is increased beyond r D 3:56, period doubling occurs so rapidly
that utter chaos appears to break out somewhere near r D 3:57. Thus the graph

n xn

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

0.5060

0.8874

0.3548

0.8127

0.5405

0.8817

0.3703

0.8278

0.5060

0.8874

0.3548

0.8127

0.5405

0.8817

0.3703

0.8278

FIGURE 6.5.6. The period 8 cycle
obtained with r D 3:55.

shown in Fig. 6.5.7 indicates that, with r D 3:57, the earlier periodicity seems to
have disappeared. No periodic cycle is evident, and the population appears to be
changing (from one month to the next) in some essentially random fashion. Indeed,
the deterministic population growth that is observed with smaller parameter values
seems now to have degenerated into a nondeterministic process of apparently ran-
dom change. That is, although the entire sequence of population values is certainly
determined by the values x1 D 0:5 and r D 3:57, successive population values for n
large do not now appear to be “predicted” or determined in any systematic fashion
by the immediately preceding values.
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FIGURE 6.5.7. With r D 3:57: Chaos!

The solutions and applications manuals accompanying this text include MAT-
LAB, Mathematica, and other versions of a program called PICHFORK. This pro-
gram produces a visual presentation of the way in which the behavior of our iteration
depends on the value of the growth parameter r . For each value of r in the input
interval a 5 r 5 b (the horizontal axis in the resulting diagram), 1000 iterations
are first carried out to achieve “stability.” Then the next 250 values of x generated
by the iteration are plotted on the vertical axis—that is, the screen pixel at .r; x/ is
“turned on.” The descriptively named “pitchfork diagram” that results then shows
at a glance whether a given value of r corresponds to a cycle (with finite period) or
to chaos. If the resolution in the picture suffices to make it clear that only finitely
many values of x are placed above a given value of r , then we see that the iteration
is “eventually periodic” for that specific value of the growth rate parameter.

Figure 6.5.8 shows the pitchfork diagram for the range 2:85 r 5 4:0. Scanning
from left to right, we see a single limiting population until r � 3, then a cycle with
period 2 until r � 3:45, then a cycle of period 4, then one of period 8, and so forth,

4.02.8 3.0 3.2 3.4 3.83.6
r

x

0.2

0.0

0.4

1.0

0.6

0.8

FIGURE 6.5.8. The pitchfork
diagram with 2:8 5 r 5 4:0,
0 5 x 5 1.

rapidly approaching the darkness of chaos. But note the vertical bands of “white
space” that appear in the diagram between r D 3:6 and r D 3:7, between r D 3:7

and r D 3:8, and again between r D 3:8 and r D 3:9. These represent regions where
[periodic] order returns from the preceding chaos.

For instance, Fig. 6.5.9 shows the interval 3:8 5 r 5 3:9, where we observe

0.0
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0.4

0.6

0.8

1.0

3.8 3.82 3.84 3.86 3.88 3.9

x

r

FIGURE 6.5.9. The pitchfork
diagram with 3:8 5 r 5 3:9,
0 5 x 5 1.

a cycle of period 3 that emerges suddenly from the chaos near r D 3:83, and then
splits successively into cycles of periods 6, 12, 24, : : : (Figs. 6.5.10 and 6.5.11). This
period doubling beginning with a cycle of period 3 is especially significant—a fun-
damental article by James Yorke and T.-Y. Li in the 1975 American Mathematical
Monthly was entitled “Period Three Implies Chaos.” According to this article, the
existence of a cycle of period 3 (for an appropriate iteration) implies the existence
of cycles of every other (finite) period, as well as chaotic “cycles” with no period at
all.

PROJECT 1: Use Program PICHFORK to search for other interesting cycles, and
verify their apparent periods by appropriate iterative computations. For instance,
you should find a cycle with period 10 between r D 3:60 and r D 3:61, and one with
period 14 between r D 3:59 and r D 3:60. Can you find cycles with period 5 and 7?
If so, look for subsequent period doubling. A run of PICHFORK requires several
hundred thousand iterations, so it will help if you have a fast computer (or one you
can leave running overnight).

As we scan the pitchfork diagram (Fig. 6.5.8) from left to right, we spot the
successive values r1; r2; r3; : : : of the growth rate parameter at which a bifurcation
or qualitative change in the iteration xnC1 D rxn.1 � xn/ occurs as the value of r is



6.5 Chaos in Dynamical Systems 431

1002 1006 10121004 1008 1010
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x = 0.1494
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FIGURE 6.5.10. The graph of x.n/ D xn, showing
the period 3 cycle of iterates obtained with r D 3:84.
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FIGURE 6.5.11. The graph of x.n/ D xn, showing
the period 6 cycle of iterates obtained with
r D 3:845.

increased further. These are the discrete values of r at which any sufficiently small
increase in the growth parameter doubles the period of the iteration. In the 1970s the
Los Alamos physicist Mitchell Feigenbaum discovered that a certain order underlies
this period doubling toward chaos:

lim
k!1

rk � rk�1

rkC1 � rk
D 4:66920160981 : : : (11)

The fraction on the left in Eq. (11) is the ratio of the lengths of successive constant-
period “windows” in the pitchfork diagram. It is the fact that this ratio approaches
a limit as k ! C1, rather than the specific value of this limit, that demonstrates a
sort of order underlying the period doubling observed with the particular iteration
xnC1 D rxn.1 � xn/. On the other hand, it is now known that precisely the same
Feigenbaum constant 4:66920160981 : : : plays exactly the same role for a wide va-
riety of period-doubling phenomena arising in many different areas of science.

PROJECT 2: Feigenbaum used a (now long obsolete) HP-65 pocket calculator
(rather than a powerful computer) to carry out the computations leading to the dis-
covery of his famous constant. Perhaps you would like to use iterative computations
and=or PICHFORK to isolate the first few bifurcation values r1; r2; r3; : : :with suffi-
cient accuracy to verify that the limit in (11) is approximately 4:67. You can consult
pages 124–126 of T. Gray and J. Glynn, Exploring Mathematics with Mathematica
(New York: Addison-Wesley, 1991) for a fancier approach.

Period Doubling in Mechanical Systems
In Section 6.4 we introduced the second-order differential equation

mx00 C cx0 C kx C ˇx3 D 0 (12)

to model the free velocity-damped vibrations of a mass on a nonlinear spring. Recall
that the term kx in Eq. (12) represents the force exerted on the mass by a linear
spring, whereas the term ˇx3 represents the nonlinearity of an actual spring.

We now want to discuss the forced vibrations that result when an external
force F.t/ D F0 cos!t acts on the mass. With such a force adjoined to the system
in Eq. (12), we obtain the forced Duffing equation

mx00 C cx0 C kx C ˇx3 D F0 cos!t (13)
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for the displacement x.t/ of the mass from its equilibrium position. For most values
of the parameters it is impossible to solve Eq. (13) explicitly for x.t/. Nevertheless,
its solutions can be portrayed qualitatively by means of [numerically approximated]
phase plane trajectories like those we used in Section 6.4 to describe free vibrations
of nonlinear mechanical systems.

The Hooke’s constant k is positive for a typical spring that resists displacement

(a)

x

(b)

x

(c)

x

m mf (t)m

FIGURE 6.5.12. Equilibrium
positions of a mass on a filament:
(a) stable equilibrium with x < 0;
(b) unstable equilibrium at x D 0;
(c) stable equilibrium with x > 0.

from equilibrium. But there do exist simple mechanical systems that emulate a
spring having a negative Hooke’s constant. For example, Fig. 6.5.12 shows a mass
m atop a vertical metal filament. We assume that the thin metal filament can oscillate
only in a vertical plane, and behaves like a flexible column that “buckles” or bends
when the mass is displaced to either side of the vertical position. Then there is one
stable equilibrium point to the left (x < 0) and another to the right .x > 0/, but
the vertical equilibrium position (x D 0) is unstable. When the mass is displaced
slightly from this unstable equilibrium position, the internal force exerted on it is
repulsive rather than attractive; this corresponds to a negative value of k in Eq. (13).
If a periodic force is exerted on the mass by (say) an oscillating electromagnetic
field, and air resistance damps its oscillations, then Eq. (13) with k < 0 but with
c > 0 and ˇ > 0 is a reasonable mathematical model for its horizontal displacement
function x.t/.

In the absence of both damping and the external force, the phase plane trajec-
tories of the free oscillations of the mass would resemble those shown in Fig. 6.4.12
(with Problem 14 in Section 6.4). The mass behaves as though it is repelled by the
unstable critical point at x D 0 but is attracted by each of the two stable critical
points symmetrically located on either side of the origin.

We saw in Section 3.6 that in the linear case a periodic external force F.t/ D
F0 cos!t causes a steady periodic response x.t/ D C cos.!t � ˛/ with the same
frequency !. The amplitude C of the steady periodic response is proportional to
the amplitude F0 of the external force. For instance, if the periodic external force is
doubled in amplitude, then the only change in the response is that its amplitude is
doubled as well.

To illustrate the quite different behavior of a nonlinear system, we take k D�1
and m D c D ˇ D ! D 1 in Eq. (13), so the differential equation is

x00 C x0 � x C x3 D F0 cos t: (14)

As an exercise you may verify that the two stable critical points are .�1; 0/ and
.1; 0/. We want to examine the dependence of the (presumably steady peri-
odic) response x.t/ on the amplitude F0 of the periodic external force of period
2�=! D 2� .

Figures 6.5.13 through 6.5.16 show the solutions of Eq. (14) obtained with the
successive values F0 D 0:60, 0:70, 0:75, and 0:80 of the amplitude of the external
force. In each case the system was solved numerically with initial conditions x.0/D
1, x0.0/ D 0 and the resulting solution plotted for the range 100 5 t 5 200 (to show
the steady periodic response remaining after the initial transient response has died
out). Part (a) of each figure shows the phase plane trajectory xD x.t/, yD x0.t/, and
part (b) shows the actual solution curve x D x.t/ in the tx-plane. Part (a) exhibits
the qualitative character of the solution more vividly, but part (b) is required to
determine the period and frequency of the solution.

Figure 6.5.13 shows a simple oscillation of period 2� of the mass around
the right-hand critical point. In the ensuing sequence of figures we see successive
period doubling and finally chaos as the amplitude of the external force is increased
in the range from F0 D 0:6 to F0 D 0:8. This period doubling toward chaos is
a common characteristic of the behavior of a nonlinear mechanical system as an
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FIGURE 6.5.13(a). Period 2� response with
F0 D 0:60: phase plane trajectory.
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FIGURE 6.5.13(b). Period 2� response with
F0 D 0:60: solution x.t/.
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FIGURE 6.5.14(a). Period 4� response with
F0 D 0:70: phase plane trajectory.
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FIGURE 6.5.14(b). Period 4� response with
F0 D 0:70: solution x.t/.

appropriate physical parameter (such asm, c, k, ˇ, F0, or ! in Eq. (13)) is increased
or decreased. No such phenomenon occurs in linear systems.

PROJECT 3: Use an ODE plotting utility to see whether you can reproduce
Figs. 6.5.13–6.5.16. Then investigate the parameter range 1:00 5 F0 5 1:10 for
the force constant in Eq. (14). With F0 D 1:00 you should see a period 6� phase
plane trajectory that encircles both stable critical points (as well as the unstable
one). The period doubles around F0 D 1:07 and chaos sets in around F0 D 1:10. See
whether you can spot a second period doubling somewhere between F0 D 1:07 and
F0 D 1:10. Produce both phase plane trajectories and tx-solution curves on which
you can measure the periods.

Warning You should not expect your own hardware and ODE software to replicate the ex-
act detail of the “chaotic tangle” shown in Fig. 6.5.16. To explain why, let’s regard the forced
Duffing equation (in (14)) with F0 D 0:80 as an input–output system having the initial point
.x.0/; x0.0// as input and the corresponding solution x.t/ as output. This input–output system
is chaotic in the sense that very small changes in the input may cause very large changes in
the output. For instance, the data shown in the table in Fig. 6.5.17 were generated using MAT-
LAB’s sophisticated numerical solver ode45 with two nearby initial points and two different
error tolerance settings. Solving the same numerical initial value problem repeatedly with dif-
ferent error tolerances can provide some indication of the reliability of the results; significant
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FIGURE 6.5.15(a). Period 8� response with
F0 D 0:75: phase plane trajectory.
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FIGURE 6.5.15(b). Period 8� response with
F0 D 0:75: solution x.t/.
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FIGURE 6.5.16(a). Chaotic response with
F0 D 0:80: phase plane trajectory.
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FIGURE 6.5.16(b). Chaotic response with
F0 D 0:80: solution x.t/.

discrepancies certainly suggest little reliability. With initial conditions x.0/ D 1, x0.0/ D 0 it
looks plausible (though hardly certain) that x.100/ � �1:1 and x.200/ � �0:6, but the value
of x.300/ remains quite uncertain. By contrast, with initial conditions x.0/ D 1:000001,
x0.0/ D 0 it appears that perhaps x.200/ � �0:3 instead. If so, then a visually significant
change in the solution results from a change of initial conditions no larger than might be ex-
pected from accumulated roundoff error in the course of a numerical approximation process
that relies on machine arithmetic. In this event, any numerically computed solution is likely
to diverge appreciably from the true solution over a long time interval. Hence we cannot be
confident of the fine structure in a numerically generated trajectory such as that shown in
Fig. 6.5.16. Investigations like this suggest only that the actual long-interval solution with
initial conditions x.0/ D 1, x0.0/ D 0 is not periodic, but instead “wanders” back and forth in
a seemingly unpredictable or chaotic fashion. Thus the qualitative character of the solution
indicated in Fig. 6.5.16 may approximate reality without necessarily presenting an accurate
picture of the precise detail of the trajectory. This behavior of solutions of the forced Duffing
equation is not yet fully understood and remains a subject of current research. An interesting
exposition with further references can be found in Chapter 15 of Dan Schwalbe and Stan
Wagon, VisualDSolve (New York: Springer-Verlag, 1997).

The Lorenz Strange Attractor
The substitution of x1 D x, x2 D x0 in the forced Duffing equation in (13) yields a
two-dimensional nonlinear system of first-order differential equations, and period-
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x.t/ with x.t/ with x.t/ with x.t/ with
t ErrTol D 10�8 ErrTol D 10�12 ErrTol D 10�8 ErrTol D 10�12

0

100
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FIGURE 6.5.17. MATLAB attempts to approximate the solution of the forced Duffing equation
x00 C x0 � x C x3 D .0:80/ cos t on 0 5 t 5 300 with x0.0/ D 0 and two different values of x.0/
and two different error tolerances (ErrTol denoting the value used for both the absolute and the relative
error tolerance in ode45).

doubling phenomena are characteristic of such systems. But in higher dimensions
even more exotic phenomena occur and are currently the subject of much active
investigation. All this work stems ultimately from the original investigation of an
extraordinary three-dimensional nonlinear system by the mathematical meteorolo-
gist E. N. Lorenz, who later described its discovery as follows.

By the middle 1950s “numerical weather prediction,” i.e., forecasting by
numerically integrating such approximations to the atmospheric equa-
tions as could feasibly be handled, was very much in vogue, despite the
rather mediocre results which it was then yielding. A smaller but de-
termined group favored statistical prediction. : : : I was skeptical, and
decided to test the idea by applying the statistical method to a set of
artificial data, generated by solving a system of equations numerically.
: : : The first task was to find a suitable system of equations to solve. : : :
The system would have to be simple enough : : : and the general solution
would have to be aperiodic, since the statistical prediction of a periodic
series would be a trivial matter, once the periodicity had been detected
: : : [In the course of talks with Dr. Barry Saltzman] he showed me some
work on thermal convections, in which he used a system of seven ordi-
nary differential equations. Most of his solutions soon acquired periodic
behavior, but one solution refused to settle down. Moreover, in this so-
lution four of the variables appeared to approach zero. Presumably the
equations governing the remaining three variables, with the terms con-
taining the four variables eliminated, would also possess aperiodic so-
lutions. Upon my return I put the three equations on our computer, and
confirmed the aperiodicity which Saltzman had noted. We were finally
in business. [Quoted in E. Hairer, S. P. Norsett, and G. Wanner, Solving
Ordinary Differential Equations I (New York: Springer-Verlag, 1987).]

The famous Lorenz system of differential equations is given by

dx

dt
D ��x C �y;

dy

dt
D �x � y � x´;

d´

dt
D �ˇ´C xy:

(15)

Figure 6.5.18 shows a plot in space of a trajectory obtained by numerical inte-
gration of the Lorenz system with parameter values ˇ D 8

3
, � D 10, and � D 28. As
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this trajectory is traced in “real time,” the moving solution point P.x.t/; y.t/; ´.t//
appears to undergo a random number of oscillations on the right followed by a ran-
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–15

15

FIGURE 6.5.18. The Lorenz
trajectory in space with initial values
x.0/ D �8, y.0/ D 8, ´.0/ D 27,
and 0 5 t 5 40.

dom number of oscillations on the left, then a random number on the right followed
by a random number on the left, and so on. Given the meteorological origin of the
Lorenz system, one naturally thinks of a random number of clear days followed by
a random number of rainy days, then a random number of clear days followed by a
random number of rainy days, and so on.

Further investigation of this Lorenz trajectory shows that it is not simply os-
cillating back and forth around a pair of critical points (as Fig. 6.5.18 may initially
suggest). Instead, as t ! C1, the solution point P.t/ on the trajectory wanders
back and forth in space approaching closer and closer to a certain complicated set
of points whose detailed structure is not yet fully understood. This elusive set that
appears somehow to “attract” the solution point is the famous Lorenz strange at-
tractor.

PROJECT 4: Sometimes the behavior of a trajectory is clarified by examining its
projections into one or more coordinate planes. First use an ODE plotting utility to
produce the x´-projection of the Lorenz trajectory shown in Fig. 6.5.19, using the

–10 100

40
(–8, 27)

30

20

10

x

z

FIGURE 6.5.19. The x´-projection
of the Lorenz trajectory with initial
point .�8; 8; 27/ and 0 5 t 5 60.

same parameter values as listed following (15). Plot also the xy- and y´-projections
of this same solution. Next, experiment with different parameter values and initial
conditions. For instance, see if you can find a periodic solution with � D 70 (and
ˇ D 8

3
, � D 10 as before) and initial values x0 D�4 and ´0 D 64. To get a trajectory

that almost repeats itself, you will need to try different values of y0 in the range
0 5 y0 5 10 and look at x´-projections as in Fig. 6.5.19.

PROJECT 5: Another much-studied nonlinear three-dimensional system is the
Rössler system

dx

dt
D �y � ´;

dy

dt
D x C ˛y;

d´

dt
D ˇ � �´C x´:

(16)

Figure 6.5.20 shows a plot in space of a trajectory by numerical integration of the
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FIGURE 6.5.20. The Rössler band
illustrated with a trajectory plotted
with x.0/ D 2, y.0/ D 0, ´.0/ D 3,
and 0 5 t 5 400.

Rössler system with parameter values ˛ D 0:398, ˇ D 2, and � D 4. This trajectory
spirals around and around as it approaches some sort of “chaotic attractor”—the
so-called Rössler band that looks twisted, somewhat like a Möbius strip in space.
Investigate the period doubling toward chaos that occurs with the Rössler system as
the parameter ˛ is increased, beginning with ˛ D 0:3, ˛ D 0:35, and ˛ D 0:375 (take
ˇ D 2 and � D 4 in all cases).

In this section we have given just a taste of the ideas that are the focus of
contemporary applications of nonlinear systems. To see how these ideas come full
circle, consult the discussion of the Lorenz system on pages 117–123 of the book by
Hairer et al. referenced previously. There you will see a certain aspect of the Lorenz
trajectory described visually by means of a picture that looks very much like the
pitchfork diagram shown in Fig. 6.5.8, together with the very same Feigenbaum
constant 4:6692 : : :!

For an engaging account of the historical background to this final section of
Chapter 6, see James Gleick, Chaos: Making a New Science (New York: Viking
Press, 1987). For more detailed discussions of the forced Duffing, Lorenz, and
Rössler equations, see J. M. T. Thompson and H. B. Stewart, Nonlinear Dynamics
and Chaos (New York: John Wiley, 1986).
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7.1 Laplace Transforms and Inverse Transforms

In Chapter 3 we saw that linear differential equations with constant coefficients
have numerous applications and can be solved systematically. There are common

situations, however, in which the alternative methods of this chapter are preferable.
For example, recall the differential equations

mx00 C cx0 C kx D F.t/ and LI 00 CRI 0 C 1

C
I D E 0.t/

corresponding to a mass–spring–dashpot system and a series RLC circuit, respec-
tively. It often happens in practice that the forcing term, F.t/ or E 0.t/, has
discontinuities—for example, when the voltage supplied to an electrical circuit is
turned off and on periodically. In this case the methods of Chapter 3 can be quite
awkward, and the Laplace transform method is more convenient.

The differentiation operatorD can be viewed as a transformation which, when
applied to the function f .t/, yields the new function Dff .t/g D f 0.t/. The Laplace
transformation ˇ involves the operation of integration and yields the new function
ˇff .t/g D F.s/ of a new independent variable s. The situation is diagrammed in
Fig. 7.1.1. After learning in this section how to compute the Laplace transform F.s/

of a function f .t/, we will see in Section 7.2 that the Laplace transform converts
a differential equation in the unknown function f .t/ into an algebraic equation in
F.s/. Because algebraic equations are generally easier to solve than differential
equations, this is one method that simplifies the problem of finding the solution
f .t/.

D{ f (t)}  = f ' (t)

{ f (t)}  = F (s)

f (t)

D

f (t)

FIGURE 7.1.1. Transformation of a
function: ˇ in analogy with D.

437
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DEFINITION The Laplace Transform

Given a function f .t/ defined for all t = 0, the Laplace transform of f is the
function F defined as follows:

F.s/ D ˇff .t/g D
Z 1

0

e�stf .t/ dt (1)

for all values of s for which the improper integral converges.

Recall that an improper integral over an infinite interval is defined as a limit
of integrals over bounded intervals; that is,Z 1

a

g.t/ dt D lim
b!1

Z b

a

g.t/ dt: (2)

If the limit in (2) exists, then we say that the improper integral converges; otherwise,
it diverges or fails to exist. Note that the integrand of the improper integral in (1)
contains the parameter s in addition to the variable of integration t . Therefore, when
the integral in (1) converges, it converges not merely to a number, but to a function
F of s. As in the following examples, it is typical for the improper integral in the
definition of ˇff .t/g to converge for some values of s and diverge for others.

Example 1 With f .t/ � 1 for t = 0, the definition of the Laplace transform in (1) gives

ˇf1g D
Z 1

0
e�st dt D

�
�1
s
e�st

�1

0

D lim
b!1

�
�1
s
e�bs C 1

s

�
;

and therefore

ˇf1g D 1

s
for s > 0: (3)

As in (3), it’s good practice to specify the domain of the Laplace transform—in problems as
well as in examples. Also, in this computation we have used the common abbreviationh

g.t/
i1

a
D lim

b!1

h
g.t/

ib

a
: (4)

Remark The limit we computed in Example 1 would not exist if s < 0, for then .1=s/e�bs

would become unbounded as b!C1. Hence ˇf1g is defined only for s > 0. This is typical
of Laplace transforms; the domain of a transform is normally of the form s > a for some
number a.

Example 2 With f .t/ D eat for t = 0, we obtain

ˇfeat g D
Z 1

0
e�steat dt D

Z 1

0
e�.s�a/t dt D

"
�e

�.s�a/t

s � a

#1

tD0

:

If s � a > 0, then e�.s�a/t ! 0 as t !C1, so it follows that

ˇfeat g D 1

s � a for s > a: (5)

Note here that the improper integral giving ˇfeat g diverges if s 5 a. It is worth noting also
that the formula in (5) holds if a is a complex number. For then, with a D ˛ C iˇ,

e�.s�a/t D eiˇ te�.s�˛/t ! 0

as t !C1, provided that s > ˛ D ReŒa�; recall that eiˇ t D cosˇt C i sinˇt .
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The Laplace transform ˇftag of a power function is most conveniently ex-
pressed in terms of the gamma function �.x/, which is defined for x > 0 by the
formula

�.x/ D
Z 1

0

e�t tx�1 dt: (6)

For an elementary discussion of �.x/, see the subsection on the gamma function in
Section 8.5, where it is shown that

�.1/ D 1 (7)

and that

�.x C 1/ D x�.x/ (8)

for x > 0. It then follows that if n is a positive integer, then

�.nC 1/ D n�.n/
D n � .n � 1/�.n � 1/
D n � .n � 1/ � .n � 2/�.n � 2/
:::

D n.n � 1/.n � 2/ � � � 2 � �.2/
D n.n � 1/.n � 2/ � � � 2 � 1 � �.1/I

thus

�.nC 1/ D nŠ (9)

if n is a positive integer. Therefore, the function �.x C 1/, which is defined and
continuous for all x > �1, agrees with the factorial function for x D n, a positive
integer.

Example 3 Suppose that f .t/ D ta where a is real and a > �1. Then

ˇftag D
Z 1

0
e�st ta dt:

If we substitute u D st , t D u=s, and dt D du=s in this integral, we get

ˇftag D 1

saC1

Z 1

0
e�uua du D �.aC 1/

saC1
(10)

for all s > 0 (so that u D st > 0). Because �.nC 1/ D nŠ if n is a nonnegative integer, we see
that

ˇftng D nŠ

snC1
for s > 0: (11)

For instance,

ˇftg D 1

s2
; ˇft2g D 2

s3
; and ˇft3g D 6

s4
:

As in Problems 1 and 2, these formulas can be derived immediately from the definition,
without the use of the gamma function.

Linearity of Transforms
It is not necessary for us to proceed much further in the computation of Laplace
transforms directly from the definition. Once we know the Laplace transforms of
several functions, we can combine them to obtain transforms of other functions. The
reason is that the Laplace transformation is a linear operation.



440 Chapter 7 Laplace Transform Methods

THEOREM 1 Linearity of the Laplace Transform

If a and b are constants, then

ˇfaf .t/C bg.t/g D aˇff .t/g C bˇfg.t/g (12)

for all s such that the Laplace transforms of the functions f and g both exist.

The proof of Theorem 1 follows immediately from the linearity of the opera-
tions of taking limits and of integration:

ˇfaf .t/C bg.t/g D
Z 1

0

e�st Œaf .t/C bg.t/� dt

D lim
c!1

Z c

0

e�st Œaf .t/C bg.t/� dt

D a
�

lim
c!1

Z c

0

e�stf .t/ dt

�
C b

�
lim

c!1

Z c

0

e�stg.t/ dt

�
D aˇff .t/g C bˇfg.t/g:

Example 4 The computation of ˇftn=2g is based on the known special value

�

�
1

2

�
D p� (13)

of the gamma function. For instance, it follows that

�

�
5

2

�
D 3

2
�

�
3

2

�
D 3

2
� 1
2
�

�
1

2

�
D 3

4

p
�;

using the formula �.x C 1/ D x�.x/ in (9), first with x D 3
2 and then with x D 1

2 . Now the
formulas in (10) through (12) yield

ˇf3t2 C 4t3=2g D 3 � 2Š
s3
C
4�
�

5
2

�
s5=2

D 6

s3
C 3

r
�

s5
:

Example 5 Recall that cosh kt D .ekt C e�kt /=2. If k > 0, then Theorem 1 and Example 2 together give

ˇfcosh ktg D 1

2
ˇfekt g C 1

2
ˇfe�kt g D 1

2

�
1

s � k C
1

s C k

�
I

that is,

ˇfcosh ktg D s

s2 � k2
for s > k > 0: (14)

Similarly,

ˇfsinh ktg D k

s2 � k2
for s > k > 0: (15)

Because cos kt D .eikt C e�ikt /=2, the formula in (5) (with a D ik) yields

ˇfcos ktg D 1

2

�
1

s � ik C
1

s C ik

�
D 1

2
� 2s

s2 � .ik/2 ;
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and thus

ˇfcos ktg D s

s2 C k2
for s > 0: (16)

(The domain follows from s > ReŒik� D 0.) Similarly,

ˇfsin ktg D k

s2 C k2
for s > 0: (17)

Example 6 Applying linearity, the formula in (16), and a familiar trigonometric identity, we get

ˇf3e2t C 2 sin2 3tg D ˇf3e2t C 1 � cos 6tg

D 3

s � 2 C
1

s
� s

s2 C 36

D 3s3 C 144s � 72
s.s � 2/.s2 C 36/ for s > 0:

Inverse Transforms
According to Theorem 3 of this section, no two different functions that are both
continuous for all t = 0 can have the same Laplace transform. Thus if F.s/ is the
transform of some continuous function f .t/, then f .t/ is uniquely determined. This
observation allows us to make the following definition: If F.s/ D ˇff .t/g, then we
call f .t/ the inverse Laplace transform of F.s/ and write

f .t/ D ˇ
�1fF.s/g: (18)

Example 7 Using the Laplace transforms derived in Examples 2, 3, and 5 we see that

ˇ
�1

�
1

s3


D 1

2
t2; ˇ

�1

�
1

s C 2


D e�2t ; ˇ

�1

�
2

s2 C 9


D 2

3
sin 3t

and so on.

NOTATION: FUNCTIONS AND THEIR TRANSFORMS. Throughout this chapter
we denote functions of t by lowercase letters. The transform of a function will al-
ways be denoted by that same letter capitalized. Thus F.s/ is the Laplace transform
of f .t/ and x.t/ is the inverse Laplace transform of X.s/.

A table of Laplace transforms serves a purpose similar to that of a table of
integrals. The table in Fig. 7.1.2 lists the transforms derived in this section; many
additional transforms can be derived from these few, using various general proper-
ties of the Laplace transformation (which we will discuss in subsequent sections).

Piecewise Continuous Functions
As we remarked at the beginning of this section, we need to be able to handle certain
types of discontinuous functions. The function f .t/ is said to be piecewise contin-
uous on the bounded interval a 5 t 5 b provided that Œa; b� can be subdivided into
finitely many abutting subintervals in such a way that

1. f is continuous in the interior of each of these subintervals; and
2. f .t/ has a finite limit as t approaches each endpoint of each subinterval from

its interior.
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We say that f is piecewise continuous for t = 0 if it is piecewise continuous on
f .t/ F.s/

1

t

tn .n = 0/

ta .a > �1/

eat

cos kt

sin kt

cosh kt

sinh kt

u.t � a/

1

s

1

s2

nŠ

snC1

�.aC 1/
saC1

1

s � a
s

s2 C k2

k

s2 C k2

s

s2 � k2

k

s2 � k2

e�as

s

.s > 0/

.s > 0/

.s > 0/

.s > 0/

.s > a/

.s > 0/

.s > 0/

.s > jkj/

.s > jkj/

.s > 0/

FIGURE 7.1.2. A short table of
Laplace transforms.

every bounded subinterval of Œ0;C1/. Thus a piecewise continuous function has
only simple discontinuities (if any) and only at isolated points. At such points the
value of the function experiences a finite jump, as indicated in Fig. 7.1.3. The jump
in f .t/ at the point c is defined to be f .cC/ � f .c�/, where

f .cC/ D lim
	!0C

f .c C 
/ and f .c�/ D lim
	!0C

f .c � 
/:

Perhaps the simplest piecewise continuous (but discontinuous) function is the
unit step function, whose graph appears in Fig. 7.1.4. It is defined as follows:

u.t/ D
(
0 for t < 0,
1 for t = 0.

(19)

Because u.t/ D 1 for t = 0 and because the Laplace transform involves only the
values of a function for t = 0, we see immediately that

ˇfu.t/g D 1

s
.s > 0/: (20)

The graph of the unit step function ua.t/ D u.t � a/ appears in Fig. 7.1.5. Its jump
occurs at t D a rather than at t D 0; equivalently,

ua.t/ D u.t � a/ D
(
0 for t < a,
1 for t = a.

(21)

Example 8 Find ˇfua.t/g if a > 0.

Solution We begin with the definition of the Laplace transform. We obtain

ˇfua.t/g D
Z 1

0
e�stua.t/ dt D

Z 1

a
e�st dt D lim

b!1

�
�e

�st

s

�b

tDa

I

consequently,

ˇfua.t/g D
e�as

s
.s > 0, a > 0/. (22)

x

y

a b

FIGURE 7.1.3. The graph of a
piecewise continuous function; the
solid dots indicate values of the
function at discontinuities.

u (t)

t

(0, 1)

FIGURE 7.1.4. The graph of the unit
step function.

ua(t) = u (t – a)

t = a t

(a , 1)

FIGURE 7.1.5. The unit step
function ua.t/ has a jump at t D a.
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General Properties of Transforms
It is a familiar fact from calculus that the integralZ b

a

g.t/ dt

exists if g is piecewise continuous on the bounded interval Œa; b�. Hence if f is
piecewise continuous for t = 0, it follows that the integralZ b

0

e�stf .t/ dt

exists for all b < C1. But in order for F.s/—the limit of this last integral as
b ! C1—to exist, we need some condition to limit the rate of growth of f .t/ as
t ! C1. The function f is said to be of exponential order as t ! C1 if there
exist nonnegative constants M , c, and T such that

jf .t/j 5 Mect for t = T: (23)

Thus a function is of exponential order provided that it grows no more rapidly (as
t !C1) than a constant multiple of some exponential function with a linear expo-
nent. The particular values of M , c, and T are not so important. What is important
is that some such values exist so that the condition in (23) is satisfied.

The condition in (23) merely says that f .t/=ect lies between �M and M and
is therefore bounded in value for t sufficiently large. In particular, this is true (with
c D 0) if f .t/ itself is bounded. Thus every bounded function—such as cos kt or
sin kt—is of exponential order.

If p.t/ is a polynomial, then the familiar fact that p.t/e�t ! 0 as t ! C1
implies that (23) holds (for T sufficiently large) with M D c D 1. Thus every
polynomial function is of exponential order.

For an example of an elementary function that is continuous and therefore
bounded on every (finite) interval, but nevertheless is not of exponential order, con-
sider the function f .t/ D et2 D exp.t2/. Whatever the value of c, we see that

lim
t!1

f .t/

ect
D lim

t!1
et2

ect
D lim

t!1 et2�ct D C1

because t2� ct!C1 as t!C1. Hence the condition in (23) cannot hold for any
(finite) value M , so we conclude that the function f .t/ D et2

is not of exponential
order.

Similarly, because e�stet2 !C1 as t !C1, we see that the improper inte-
gral

R1
0
e�stet2

dt that would define ˇfet2g does not exist (for any s), and therefore
that the function et2

does not have a Laplace transform. The following theorem
guarantees that piecewise functions of exponential order do have Laplace trans-
forms.

THEOREM 2 Existence of Laplace Transforms

If the function f is piecewise continuous for t = 0 and is of exponential order as
t ! C1, then its Laplace transform F.s/ D ˇff .t/g exists. More precisely, if
f is piecewise continuous and satisfies the condition in (23), then F.s/ exists for
all s > c.
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Proof: First we note that we can take T D 0 in (23). For by piecewise
continuity, jf .t/j is bounded on Œ0; T �. Increasing M in (23) if necessary, we can
therefore assume that jf .t/j 5 M if 0 5 t 5 T . Because ect = 1 for t = 0, it then
follows that jf .t/j 5 Mect for all t = 0.

By a standard theorem on convergence of improper integrals—the fact that ab-
solute convergence implies convergence—it suffices for us to prove that the integralZ 1

0

je�stf .t/j dt

exists for s > c. To do this, it suffices in turn to show that the value of the integralZ b

0

je�stf .t/j dt

remains bounded as b ! C1. But the fact that jf .t/j 5 Mect for all t = 0 implies
that Z b

0

je�stf .t/j dt 5

Z b

0

je�stMect j dt DM
Z b

0

e�.s�c/t dt

5 M

Z 1

0

e�.s�c/t dt D M

s � c

if s > c. This proves Theorem 2.
We have shown, moreover, that

jF.s/j 5
Z 1

0

je�stf .t/j dt 5
M

s � c (24)

if s > c. When we take limits as s !C1, we get the following result.

COROLLARY F(s) for s Large

If f .t/ satisfies the hypotheses of Theorem 2, then

lim
s!1F.s/ D 0: (25)

The condition in (25) severely limits the functions that can be Laplace trans-
forms. For instance, the function G.s/ D s=.s C 1/ cannot be the Laplace transform
of any “reasonable” function because its limit as s ! C1 is 1, not 0. More gen-
erally, a rational function—a quotient of two polynomials—can be (and is, as we
shall see) a Laplace transform only if the degree of its numerator is less than that of
its denominator.

On the other hand, the hypotheses of Theorem 2 are sufficient, but not nec-
essary, conditions for existence of the Laplace transform of f .t/. For example, the
function f .t/ D 1=

p
t fails to be piecewise continuous (at t D 0), but nevertheless

(Example 3 with a D �1
2
> �1) its Laplace transform

ˇft�1=2g D �
�

1
2

	
s1=2

D
r
�

s

both exists and violates the condition in (24), which would imply that sF.s/ remains
bounded as s !C1.
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The remainder of this chapter is devoted largely to techniques for solving a
differential equation by first finding the Laplace transform of its solution. It is then
vital for us to know that this uniquely determines the solution of the differential
equation; that is, that the function of s we have found has only one inverse Laplace
transform that could be the desired solution. The following theorem is proved in
Chapter 6 of Churchill’s Operational Mathematics, 3rd ed. (New York: McGraw-
Hill, 1972).

THEOREM 3 Uniqueness of Inverse Laplace Transforms

Suppose that the functions f .t/ and g.t/ satisfy the hypotheses of Theorem 2,
so that their Laplace transforms F.s/ and G.s/ both exist. If F.s/ D G.s/ for
all s > c (for some c), then f .t/ D g.t/ wherever on Œ0;C1/ both f and g are
continuous.

Thus two piecewise continuous functions of exponential order with the same
Laplace transform can differ only at their isolated points of discontinuity. This is
of no importance in most practical applications, so we may regard inverse Laplace
transforms as being essentially unique. In particular, two solutions of a differential
equation must both be continuous, and hence must be the same solution if they have
the same Laplace transform.
Historical Remark Laplace transforms have an interesting history. The integral in the
definition of the Laplace transform probably appeared first in the work of Euler. It is custom-
ary in mathematics to name a technique or theorem for the next person after Euler to discover
it (else there would be several hundred different examples of “Euler’s theorem”). In this case,
the next person was the French mathematician Pierre Simon de Laplace (1749–1827), who
employed such integrals in his work on probability theory. The so-called operational methods
for solving differential equations, which are based on Laplace transforms, were not exploited
by Laplace. Indeed, they were discovered and popularized by practicing engineers—notably
the English electrical engineer Oliver Heaviside (1850–1925). These techniques were suc-
cessfully and widely applied before they had been rigorously justified, and around the begin-
ning of the twentieth century their validity was the subject of considerable controversy. One
reason is that Heaviside blithely assumed the existence of functions whose Laplace trans-
forms contradict the condition that F.s/ ! 0 as s ! 0, thereby raising questions as to the
meaning and nature of functions in mathematics. (This is reminiscent of the way Leibniz two
centuries earlier had obtained correct results in calculus using “infinitely small” real numbers,
thereby raising questions as to the nature and role of numbers in mathematics.)

7.1 Problems
Apply the definition in (1) to find directly the Laplace trans-
forms of the functions described (by formula or graph) in Prob-
lems 1 through 10.

1. f .t/ D t 2. f .t/ D t2
3. f .t/ D e3tC1 4. f .t/ D cos t

5. f .t/ D sinh t 6. f .t/ D sin2 t

7.

t

(1, 1)

FIGURE 7.1.6.

8.

t

(2, 1)(1, 1)

FIGURE 7.1.7.

9.

t

(1, 1)

FIGURE 7.1.8.



446 Chapter 7 Laplace Transform Methods

10.

t

(0, 1)

(1, 0)

FIGURE 7.1.9.

Use the transforms in Fig. 7.1.2 to find the Laplace transforms
of the functions in Problems 11 through 22. A preliminary in-
tegration by parts may be necessary.

11. f .t/ D pt C 3t 12. f .t/ D 3t5=2 � 4t3
13. f .t/ D t � 2e3t 14. f .t/ D t3=2 � e�10t

15. f .t/ D 1C cosh 5t 16. f .t/ D sin 2t C cos 2t

17. f .t/ D cos2 2t 18. f .t/ D sin 3t cos 3t

19. f .t/ D .1C t /3 20. f .t/ D tet

21. f .t/ D t cos 2t 22. f .t/ D sinh2 3t

Use the transforms in Fig. 7.1.2 to find the inverse Laplace
transforms of the functions in Problems 23 through 32.

23. F.s/ D 3

s4
24. F.s/ D s�3=2

25. F.s/ D 1

s
� 2

s5=2
26. F.s/ D 1

s C 5

27. F.s/ D 3

s � 4 28. F.s/ D 3s C 1
s2 C 4

29. F.s/ D 5 � 3s
s2 C 9 30. F.s/ D 9C s

4 � s2

31. F.s/ D 10s � 3
25 � s2

32. F.s/ D 2s�1e�3s

33. Derive the transform of f .t/ D sin kt by the method used
in the text to derive the formula in (16).

34. Derive the transform of f .t/D sinh kt by the method used
in the text to derive the formula in (14).

35. Use the tabulated integralZ
eax cos bx dx D eax

a2 C b2
.a cos bx C b sin bx/C C

to obtain ˇfcos ktg directly from the definition of the
Laplace transform.

36. Show that the function f .t/ D sin.et2
/ is of exponential

order as t !C1 but that its derivative is not.

37. Given a > 0, let f .t/ D 1 if 0 5 t < a, f .t/ D 0 if t = a.
First, sketch the graph of the function f , making clear its
value at t D a. Then express f in terms of unit step func-
tions to show that ˇff .t/g D s�1.1 � e�as/.

38. Given that 0 < a < b, let f .t/ D 1 if a 5 t < b, f .t/ D 0
if either t < a or t = b. First, sketch the graph of the
function f , making clear its values at t D a and t D b.
Then express f in terms of unit step functions to show
that ˇff .t/g D s�1.e�as � e�bs/.

39. The unit staircase function is defined as follows:

f .t/ D n if n � 1 5 t < n; n D 1; 2; 3; : : :
(a) Sketch the graph of f to see why its name is appropri-
ate. (b) Show that

f .t/ D
1X

nD0

u.t � n/

for all t = 0. (c) Assume that the Laplace transform of the
infinite series in part (b) can be taken termwise (it can).
Apply the geometric series to obtain the result

ˇff .t/g D 1

s.1 � e�s/
:

40. (a) The graph of the function f is shown in Fig. 7.1.10.
Show that f can be written in the form

f .t/ D
1X

nD0

.�1/nu.t � n/:

(b) Use the method of Problem 39 to show that

ˇff .t/g D 1

s.1C e�s/
:

t654321

1

f

…

FIGURE 7.1.10. The graph of the function of
Problem 40.

41. The graph of the square-wave function g.t/ is shown in
Fig. 7.1.11. Express g in terms of the function f of Prob-
lem 40 and hence deduce that

ˇfg.t/g D 1 � e�s

s.1C e�s/
D 1

s
tanh

s

2
:

t

g

654321

1

–1

…

FIGURE 7.1.11. The graph of the function of
Problem 41.

42. Given constants a and b, define h.t/ for t = 0 by

h.t/ D
(
a if n � 1 5 t < n and n is odd;

b if n � 1 5 t < n and n is even.

Sketch the graph of h and apply one of the preceding prob-
lems to show that

ˇfh.t/g D aC be�s

s.1C e�s/
:
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7.1 Application Computer Algebra Transforms and Inverse Transforms
If f .t/ D t cos 3t , then the definition of the Laplace transform gives the improper
integral

F.s/ D ˇff .t/g D
Z 1

0

te�st cos 3t dt;

whose evaluation would appear to require a tedious integration by parts. Conse-
quently a computer algebra Laplace transforms package is useful for the quick cal-
culation of transforms. Maple contains the integral transforms package inttrans,
and the commands

with(inttrans):
f := t�cos(3�t):
F := laplace(f, t, s);

yield immediately the Laplace transform F.s/D .s2 � 9/=.s2C 9/2, as do the Math-
ematica commands

f = t�Cos[3�t];
F = LaplaceTransform[f, t, s]

and the WolframjAlpha query

laplace transform t�cos(3t)
We can recover the original function f .t/ D t cos 3t with the Maple command

invlaplace(F, s, t);

or the Mathematica command

InverseLaplaceTransform[F, s, t]

or the WolframjAlpha query

inverse laplace transform (s^2 -- 9)/(s^2 + 9)^2

Remark Note carefully the order of s and t in the preceding Maple and Mathematica
commands—first t , then s when transforming; first s, then t when inverse transforming.

You can use these computer algebra commands to check the answers to Prob-
lems 11 through 32 in this section, as well as a few interesting problems of your
own selection.

7.2 Transformation of Initial Value Problems
We now discuss the application of Laplace transforms to solve a linear differential
equation with constant coefficients, such as

ax00.t/C bx0.t/C cx.t/ D f .t/; (1)

with given initial conditions x.0/ D x0 and x0.0/ D x0
0. By the linearity of the

Laplace transformation, we can transform Eq. (1) by separately taking the Laplace
transform of each term in the equation. The transformed equation is

aˇfx00.t/g C bˇfx0.t/g C cˇfx.t/g D ˇff .t/gI (2)

it involves the transforms of the derivatives x0 and x00 of the unknown function x.t/.
The key to the method is Theorem 1, which tells us how to express the transform of
the derivative of a function in terms of the transform of the function itself.
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THEOREM 1 Transforms of Derivatives

Suppose that the function f .t/ is continuous and piecewise smooth for t = 0 and
is of exponential order as t !C1, so that there exist nonnegative constants M ,
c, and T such that

jf .t/j 5 Mect for t = T: (3)

Then ˇff 0.t/g exists for s > c, and

ˇff 0.t/g D sˇff .t/g � f .0/ D sF.s/ � f .0/: (4)

The function f is called piecewise smooth on the bounded interval Œa; b� if it
is piecewise continuous on Œa; b� and differentiable except at finitely many points,
with f 0.t/ being piecewise continuous on Œa; b�. We may assign arbitrary values
to f .t/ at the isolated points at which f is not differentiable. We say that f is
piecewise smooth for t = 0 if it is piecewise smooth on every bounded subinterval
of Œ0;C1/. Figure 7.2.1 indicates how “corners” on the graph of f correspond to
discontinuities in its derivative f 0.

The main idea of the proof of Theorem 1 is exhibited best by the case in which
f 0.t/ is continuous (not merely piecewise continuous) for t = 0. Then, beginning

x

y

a b

x

y'

a b

Continuous function

Piecewise continuous derivative

FIGURE 7.2.1. The discontinuities
of f 0 correspond to “corners” on the
graph of f .

with the definition of ˇff 0.t/g and integrating by parts, we get

ˇff 0.t/g D
Z 1

0

e�stf 0.t/ dt D
h
e�stf .t/

i1

tD0
C s

Z 1

0

e�stf .t/ dt:

Because of (3), the integrated term e�stf .t/ approaches zero (when s > c) as t !
C1, and its value at the lower limit t D 0 contributes �f .0/ to the evaluation of
the preceding expression. The integral that remains is simply ˇff .t/g; by Theorem
2 of Section 7.1, the integral converges when s > c. Then ˇff 0.t/g exists when
s > c, and its value is that given in Eq. (4). We will defer the case in which f 0.t/
has isolated discontinuities to the end of this section.

Solution of Initial Value Problems
In order to transform Eq. (1), we need the transform of the second derivative as
well. If we assume that g.t/ D f 0.t/ satisfies the hypotheses of Theorem 1, then
that theorem implies that

ˇff 00.t/g D ˇfg0.t/g D sˇfg.t/g � g.0/
D sˇff 0.t/g � f 0.0/
D s Œsˇff .t/g � f .0/� � f 0.0/;

and thus

ˇff 00.t/g D s2F.s/ � sf .0/ � f 0.0/: (5)

A repetition of this calculation gives

ˇff 000.t/g D sˇff 00.t/g � f 00.0/ D s3F.s/ � s2f .0/ � sf 0.0/ � f 00.0/: (6)

After finitely many such steps we obtain the following extension of Theorem 1.
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COROLLARY Transforms of Higher Derivatives

Suppose that the functions f; f 0; f 00; : : : ; f .n�1/ are continuous and piecewise
smooth for t = 0, and that each of these functions satisfies the conditions in (3)
with the same values of M and c. Then ˇff .n/.t/g exists when s > c, and

ˇff .n/.t/g D sn
ˇff .t/g � sn�1f .0/ � sn�2f 0.0/ � � � � � f .n�1/.0/

D snF.s/ � sn�1f .0/ � � � � � sf .n�2/.0/ � f .n�1/.0/: (7)

Example 1 Solve the initial value problem

x00 � x0 � 6x D 0I x.0/ D 2; x0.0/ D �1:

Solution With the given initial values, Eqs. (4) and (5) yield

ˇfx0.t/g D sˇfx.t/g � x.0/ D sX.s/ � 2

and
ˇfx00.t/g D s2

ˇfx.t/g � sx.0/ � x0.0/ D s2X.s/ � 2s C 1;
where (according to our convention about notation) X.s/ denotes the Laplace transform of
the (unknown) function x.t/. Hence the transformed equation ish

s2X.s/ � 2s C 1
i
� ŒsX.s/ � 2� � 6 ŒX.s/� D 0;

which we quickly simplify to

.s2 � s � 6/X.s/ � 2s C 3 D 0:

Thus

X.s/ D 2s � 3
s2 � s � 6 D

2s � 3
.s � 3/.s C 2/ :

By the method of partial fractions (of integral calculus), there exist constants A and B such
that

2s � 3
.s � 3/.s C 2/ D

A

s � 3 C
B

s C 2 ;

and multiplication of both sides of this equation by .s � 3/.s C 2/ yields the identity

2s � 3 D A.s C 2/C B.s � 3/:

If we substitute s D 3, we find that A D 3
5 ; substitution of s D �2 shows that B D 7

5 . Hence

X.s/ D ˇfx.t/g D
3
5

s � 3 C
7
5

s C 2 :

Because ˇ
�1f1=.s � a/g D eat , it follows that

x.t/ D 3
5e

3t C 7
5e

�2t

is the solution of the original initial value problem. Note that we did not first find the general
solution of the differential equation. The Laplace transform method directly yields the desired
particular solution, automatically taking into account—via Theorem 1 and its corollary—the
given initial conditions.

Remark In Example 1 we found the values of the partial-fraction coefficients A and B by
the “trick” of separately substituting the roots s D 3 and s D �2 of the original denominator
s2 � s � 6 D .s � 3/.s C 2/ into the equation

2s � 3 D A.s C 2/C B.s � 3/
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that resulted from clearing fractions. In lieu of any such shortcut, the “sure-fire” method is to
collect coefficients of powers of s on the right-hand side,

2s � 3 D .AC B/s C .2A � 3/:
Then upon equating coefficients of terms of like degree, we get the linear equations

A C B D 2,

2A � 3B D �3,

which are readily solved for the same values A D 3
5 and B D 7

5 .

Example 2 Solve the initial value problem

x00 C 4x D sin 3t I x.0/ D x0.0/ D 0:
Such a problem arises in the motion of a mass-and-spring system with external force, as
shown in Fig. 7.2.2.

Solution Because both initial values are zero, Eq. (5) yields ˇfx00.t/g D s2X.s/. We read the transform
of sin 3t from the table in Fig. 7.1.2 (Section 7.1) and thereby get the transformed equation

x (t )

k = 4 f (t ) = sin 3t
m = 1

FIGURE 7.2.2. A mass–and–
spring system satisfying the initial
value problem in Example 2. The mass
is initially at rest in its equilibrium
position.

s2X.s/C 4X.s/ D 3

s2 C 9 :

Therefore,

X.s/ D 3

.s2 C 4/.s2 C 9/ :

The method of partial fractions calls for

3

.s2 C 4/.s2 C 9/ D
As C B
s2 C 4 C

Cs CD
s2 C 9 :

The sure-fire approach would be to clear fractions by multiplying both sides by the common
denominator, and then collect coefficients of powers of s on the right-hand side. Equating
coefficients of like powers on the two sides of the resulting equation would then yield four
linear equations that we could solve for A, B , C , and D.

However, here we can anticipate that A D C D 0, because neither the numerator nor
the denominator on the left involves any odd powers of s, whereas nonzero values for A or
C would lead to odd-degree terms on the right. So we replace A and C with zero before
clearing fractions. The result is the identity

3 D B.s2 C 9/CD.s2 C 4/ D .B CD/s2 C .9B C 4D/:
When we equate coefficients of like powers of s we get the linear equations

B CD D 0;
9B C 4D D 3;

which are readily solved for B D 3
5 and D D �3

5 . Hence

X.s/ D ˇfx.t/g D 3

10
� 2

s2 C 4 �
1

5
� 3

s2 C 9 :

Because ˇfsin 2tg D 2=.s2 C 4/ and ˇfsin 3tg D 3=.s2 C 9/, it follows that

x.t/ D 3
10 sin 2t � 1

5 sin 3t:

Figure 7.2.3 shows the graph of this period 2� position function of the mass. Note that
the Laplace transform method again gives the solution directly, without the necessity of first
finding the complementary function and a particular solution of the original nonhomogeneous
differential equation. Thus nonhomogeneous equations are solved in exactly the same manner

π π π
t

x

2 4 6

1
2

1
2

–

FIGURE 7.2.3. The position
function x.t/ in Example 2.

as are homogeneous equations.

Examples 1 and 2 illustrate the solution procedure that is outlined in Fig. 7.2.4.
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Differential
equation

in x(t)

Solution x(t)
of differential

equation

Algebraic
equation 

in X(s)

Solution X(s)
of algebraic

equation

–1

Solve
algebraically

FIGURE 7.2.4. Using the Laplace transform to solve an initial value
problem.

Linear Systems
Laplace transforms are used frequently in engineering problems to solve linear sys-
tems in which the coefficients are all constants. When initial conditions are speci-
fied, the Laplace transform reduces such a linear system of differential equations to
a linear system of algebraic equations in which the unknowns are the transforms of
the solution functions. As Example 3 illustrates, the technique for a system is essen-
tially the same as for a single linear differential equation with constant coefficients.

Example 3 Solve the system

2x00 D �6x C 2y;
y00 D 2x � 2y C 40 sin 3t;

(8)

subject to the initial conditions

x.0/ D x0.0/ D y.0/ D y0.0/ D 0: (9)

Thus the force f .t/ D 40 sin 3t is applied to the second mass of Fig. 7.2.5, beginning at time
t D 0 when the system is at rest in its equilibrium position.

x

k1 = 4

y

k2 = 2 f (t ) = 40 sin 3t
m1 = 2 m2 = 1

FIGURE 7.2.5. A mass–and–spring system satisfying the initial value
problem in Example 3. Both masses are initially at rest in their equilibrium
positions.

Solution We write X.s/ D ˇfx.t/g and Y.s/ D ˇfy.t/g. Then the initial conditions in (9) imply that

ˇfx00.t/g D s2X.s/ and ˇfy00.t/g D s2Y.s/:
Because ˇfsin 3tg D 3=.s2 C 9/, the transforms of the equations in (8) are the equations

2s2X.s/ D �6X.s/C 2Y.s/;

s2Y.s/ D 2X.s/ � 2Y.s/C 120

s2 C 9 :

Thus the transformed system is

.s2 C 3/X.s/ � Y.s/ D 0,

�2X.s/ C .s2 C 2/Y.s/ D 120

s2 C 9 .
(10)
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The determinant of this pair of linear equations in X.s/ and Y.s/ isˇ̌̌̌
s2 C 3 �1
�2 s2 C 2

ˇ̌̌̌
D .s2 C 3/.s2 C 2/ � 2 D .s2 C 1/.s2 C 4/;

and we readily solve—using Cramer’s rule, for instance—the system in (10) for

X.s/ D 120

.s2 C 1/.s2 C 4/.s2 C 9/ D
5

s2 C 1 �
8

s2 C 4 C
3

s2 C 9 (11a)

and

Y.s/ D 120.s2 C 3/
.s2 C 1/.s2 C 4/.s2 C 9/ D

10

s2 C 1 C
8

s2 C 4 �
18

s2 C 9 : (11b)

The partial fraction decompositions in Eqs. (11a) and (11b) are readily found using the
method of Example 2. For instance, noting that the denominator factors are linear in s2,
we can write

120

.s2 C 1/.s2 C 4/.s2 C 9/ D
A

s2 C 1 C
B

s2 C 4 C
C

s2 C 9 ;

and it follows that

120 D A.s2 C 4/.s2 C 9/C B.s2 C 1/.s2 C 9/C C.s2 C 1/.s2 C 4/: (12)

Substitution of s2 D �1 (that is, s D i , a zero of the factor s2 C 1) in Eq. (12) gives 120 D
A � 3 � 8, so A D 5. Similarly, substitution of s2 D �4 in Eq. (12) yields B D �8, and
substitution of s2 D �9 yields C D 3. Thus we obtain the partial fraction decomposition
shown in Eq. (11a).

At any rate, the inverse Laplace transforms of the expressions in Eqs. (11a) and (11b)
give the solution

x.t/ D 5 sin t � 4 sin 2t C sin 3t;

y.t/ D 10 sin t C 4 sin 2t � 6 sin 3t:

Figure 7.2.6 shows the graphs of these two period 2� position functions of the two masses.

2π 4π 6π
t

10

–10

y(t)

x(t)

FIGURE 7.2.6. The position
functions x.t/ and y.t/ in Example 3.

The Transform Perspective
Let us regard the general constant-coefficient second-order equation as the equation

x (t)

ck
m

f (t )

FIGURE 7.2.7. A mass–spring–
dashpot system with external force
f .t/.

of motion
mx00 C cx0 C kx D f .t/

of the familiar mass–spring–dashpot system (Fig. 7.2.7). Then the transformed
equation is

m


s2X.s/ � sx.0/ � x0.0/

�C c ŒsX.s/ � x.0/�C kX.s/ D F.s/: (13)

Note that Eq. (13) is an algebraic equation—indeed, a linear equation—in the “un-
known” X.s/. This is the source of the power of the Laplace transform method:

Linear differential equations are transformed
into readily solved algebraic equations.

If we solve Eq. (13) for X.s/, we get

X.s/ D F.s/

Z.s/
C I.s/

Z.s/
; (14)
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where

Z.s/ D ms2 C cs C k and I.s/ D mx.0/s Cmx0.0/C cx.0/:

Note that Z.s/ depends only on the physical system itself. Thus Eq. (14) presents
X.s/ D ˇfx.t/g as the sum of a term depending only on the external force and one
depending only on the initial conditions. In the case of an underdamped system,
these two terms are the transforms

ˇfxsp.t/g D
F.s/

Z.s/
and ˇfxtr.t/g D

I.s/

Z.s/

of the steady periodic solution and the transient solution, respectively. The only po-
tential difficulty in finding these solutions is in finding the inverse Laplace transform
of the right-hand side in Eq. (14). Much of the remainder of this chapter is devoted
to finding Laplace transforms and inverse transforms. In particular, we seek those
methods that are sufficiently powerful to enable us to solve problems that—unlike
those in Examples 1 and 2—cannot be solved readily by the methods of Chapter 3.

Additional Transform Techniques
Example 4 Show that

ˇfteat g D 1

.s � a/2 :

Solution If f .t/ D teat , then f .0/ D 0 and f 0.t/ D eat C ateat . Hence Theorem 1 gives

ˇfeat C ateat g D ˇff 0.t/g D sˇff .t/g D sˇfteat g:
It follows from the linearity of the transform that

ˇfeat g C aˇfteat g D sˇfteat g:
Hence

ˇfteat g D ˇfeat g
s � a D

1

.s � a/2 (15)

because ˇfeat g D 1=.s � a/.
Example 5 Find ˇft sin ktg.

Solution Let f .t/ D t sin kt . Then f .0/ D 0 and

f 0.t/ D sin kt C kt cos kt:

The derivative involves the new function t cos kt , so we note that f 0.0/ D 0 and differentiate
again. The result is

f 00.t/ D 2k cos kt � k2t sin kt:

But ˇff 00.t/g D s2
ˇff .t/g by the formula in (5) for the transform of the second derivative,

and ˇfcos ktg D s=.s2 C k2/, so we have

2ks

s2 C k2
� k2

ˇft sin ktg D s2ˇft sin ktg:

Finally, we solve this equation for

ˇft sin ktg D 2ks

.s2 C k2/2
: (16)

This procedure is considerably more pleasant than the alternative of evaluating the integral

ˇft sin ktg D
Z 1

0
te�st sin kt dt:
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Examples 4 and 5 exploit the fact that if f .0/ D 0, then differentiation of f
corresponds to multiplication of its transform by s. It is reasonable to expect the
inverse operation of integration (antidifferentiation) to correspond to division of the
transform by s.

THEOREM 2 Transforms of Integrals

If f .t/ is a piecewise continuous function for t = 0 and satisfies the condition of
exponential order jf .t/j 5 Mect for t = T , then

ˇ

�Z t

0

f .�/ d�


D 1

s
ˇff .t/g D F.s/

s
(17)

for s > c. Equivalently,

ˇ
�1

�
F.s/

s


D
Z t

0

f .�/ d�: (18)

Proof: Because f is piecewise continuous, the fundamental theorem of cal-
culus implies that

g.t/ D
Z t

0

f .�/ d�

is continuous and that g0.t/D f .t/ where f is continuous; thus g is continuous and
piecewise smooth for t = 0. Furthermore,

jg.t/j 5
Z t

0

jf .�/j d� 5 M

Z t

0

ec� d� D M

c
.ect � 1/ < M

c
ect ;

so g.t/ is of exponential order as t ! C1. Hence we can apply Theorem 1 to g;
this gives

ˇff .t/g D ˇfg0.t/g D sˇfg.t/g � g.0/:
Now g.0/ D 0, so division by s yields

ˇ

�Z t

0

f .�/ d�


D ˇfg.t/g D ˇff .t/g

s
;

which completes the proof.

Example 6 Find the inverse Laplace transform of

G.s/ D 1

s2.s � a/ :

Solution In effect, Eq. (18) means that we can delete a factor of s from the denominator, find the
inverse transform of the resulting simpler expression, and finally integrate from 0 to t (to
“correct” for the missing factor s). Thus

ˇ
�1

�
1

s.s � a/


D
Z t

0
ˇ

�1

�
1

s � a


d� D

Z t

0
ea� d� D 1

a
.eat � 1/:

We now repeat the technique to obtain

ˇ
�1

�
1

s2.s � a/


D
Z t

0
ˇ

�1

�
1

s.s � a/


d� D

Z t

0

1

a
.ea� � 1/ d�

D
�
1

a

�
1

a
ea� � �

��t

0

D 1

a2
.eat � at � 1/:
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This technique is often a more convenient way than the method of partial fractions for finding
an inverse transform of a fraction of the form P.s/=ŒsnQ.s/�.

Proof of Theorem 1: We conclude this section with the proof of Theorem 1
in the general case in which f 0 is merely piecewise continuous. We need to prove
that the limit

lim
b!1

Z b

0

e�stf 0.t/ dt

exists and also need to find its value. With b fixed, let t1; t2; : : : ; tk�1 be the points
interior to the interval Œ0; b� at which f 0 is discontinuous. Let t0 D 0 and tk D b.
Then we can integrate by parts on each interval .tn�1; tn/ where f 0 is continuous.
This yields

Z b

0

e�stf 0.t/ dt D
kX

nD1

Z tn

tn�1

e�stf 0.t/ dt

D
kX

nD1

h
e�stf .t/

itn

tn�1

C
kX

nD1

s

Z tn

tn�1

e�stf .t/ dt: (19)

Now the first summation

kX
nD1

h
e�stf .t/

itn

tn�1

D
h
�f .t0/C e�st1f .t1/

i
C
h
�e�st1f .t1/C e�st2f .t2/

i
C � � � C

h
�estk�2f .tk�2/C e�stk�1f .tk�1/

i
(20)

C
h
�estk�1f .tk�1/C e�stkf .tk/

i
in (19) telescopes down to �f .t0/C e�stkf .tk/ D �f .0/C e�sbf .b/, and the sec-
ond summation adds up to s times the integral from t0 D 0 to tk D b. Therefore (19)
reduces to Z b

0

e�stf 0.t/ dt D �f .0/C e�sbf .b/C s
Z b

0

e�stf .t/ dt:

But from Eq. (3) we getˇ̌̌
e�sbf .b/

ˇ̌̌
5 e�sb �Mecb DMe�b.s�c/ ! 0

if s > c. Therefore, finally taking limits (with s fixed) as b !C1 in the preceding
equation, we get the desired result

ˇff 0.t/g D sˇff .t/g � f .0/:

Extension of Theorem 1
Now suppose that the function f is only piecewise continuous (instead of continu-
ous), and let t1; t2; t3; : : : be the points (for t > 0) where either f or f 0 is discontin-
uous. The fact that f is piecewise continuous includes the assumption that—within
each interval Œtn�1; tn� between successive points of discontinuity—f agrees with a
function that is continuous on the whole closed interval and has “endpoint values”

f .tCn�1/ D lim
t!t

C

n�1

f .t/ and f .t�n / D lim
t!t�

n

f .t/
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that may not agree with the actual values f .tn�1/ and f .tn/. The value of an in-
tegral on an interval is not affected by changing the values of the integrand at the
endpoints. However, if the fundamental theorem of calculus is applied to find the
value of the integral, then the antiderivative function must be continuous on the
closed interval. We therefore use the “continuous from within the interval” end-
point values above in evaluating (by parts) the integrals on the right in (19). The
result is

kX
nD1

h
e�stf .t/

itn

tn�1

D
h
�f .tC0 /C e�st1f .t�1 /

i
C
h
�e�st1f .tC1 /C e�st2f .t�2 /

i
C � � � C

h
�estk�2f .tC

k�2
/C e�stk�1f .t�k�1/

i
C
h
�estk�1f .tC

k�1
/C e�stkf .t�k /

i
D �f .0C/ �

k�1X
nD1

jf .tn/C e�sbf .b�/; (200)

where

jf .tn/ D f .tCn / � f .t�n / (21)

denotes the (finite) jump in f .t/ at t D tn. Assuming that ˇff 0.t/g exists, we
therefore get the generalization

ˇff 0.t/g D sF.s/ � f .0C/ �
1X

nD1

e�stnjf .tn/ (22)

of ˇff 0.t/g D sF.s/ � f .0/ when we now take the limit in (19) as b !C1.

Example 7 Let f .t/ D 1C ŒŒt �� be the unit staircase function; its graph is shown in Fig. 7.2.8. Then
f .0/ D 1, f 0.t/ � 0, and jf .n/ D 1 for each integer n D 1, 2, 3, : : : . Hence Eq. (22) yields

t

f (t )

654321

1

2

3

4

5

6 …

FIGURE 7.2.8. The graph of the unit
staircase function of Example 7.

0 D sF.s/ � 1 �
1X

nD1

e�ns ;

so the Laplace transform of f .t/ is

F.s/ D 1

s

1X
nD0

e�ns D 1

s.1 � e�s/
:

In the last step we used the formula for the sum of a geometric series,

1X
nD0

xn D 1

1 � x ;

with x D e�s < 1.

7.2 Problems
Use Laplace transforms to solve the initial value problems in
Problems 1 through 16.

1. x00 C 4x D 0; x.0/ D 5, x0.0/ D 0
2. x00 C 9x D 0; x.0/ D 3, x0.0/ D 4
3. x00 � x0 � 2x D 0; x.0/ D 0, x0.0/ D 2

4. x00 C 8x0 C 15x D 0; x.0/ D 2, x0.0/ D �3
5. x00 C x D sin 2t ; x.0/ D 0 D x0.0/
6. x00 C 4x D cos t ; x.0/ D 0 D x0.0/
7. x00 C x D cos 3t ; x.0/ D 1, x0.0/ D 0
8. x00 C 9x D 1; x.0/ D 0 D x0.0/
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9. x00 C 4x0 C 3x D 1; x.0/ D 0 D x0.0/
10. x00 C 3x0 C 2x D t ; x.0/ D 0, x0.0/ D 2
11. x0 D 2x C y, y0 D 6x C 3y; x.0/ D 1, y.0/ D �2
12. x0 D x C 2y, y0 D x C e�t ; x.0/ D y.0/ D 0
13. x0 C 2y0 C x D 0, x0 � y0 C y D 0; x.0/ D 0, y.0/ D 1
14. x00 C 2x C 4y D 0, y00 C x C 2y D 0; x.0/ D y.0/ D 0,

x0.0/ D y0.0/ D �1
15. x00 C x0 C y0 C 2x � y D 0, y00 C x0 C y0 C 4x � 2y D 0;

x.0/ D y.0/ D 1, x0.0/ D y0.0/ D 0
16. x0 D xC ´, y0 D xC y, ´0 D�2x � ´; x.0/D 1, y.0/D 0,

´.0/ D 0

Apply Theorem 2 to find the inverse Laplace transforms of the
functions in Problems 17 through 24.

17. F.s/ D 1

s.s � 3/ 18. F.s/ D 3

s.s C 5/
19. F.s/ D 1

s.s2 C 4/ 20. F.s/ D 2s C 1
s.s2 C 9/

21. F.s/ D 1

s2.s2 C 1/ 22. F.s/ D 1

s.s2 � 9/
23. F.s/ D 1

s2.s2 � 1/ 24. F.s/ D 1

s.s C 1/.s C 2/
25. Apply Theorem 1 to derive ˇfsin ktg from the formula for

ˇfcos ktg.
26. Apply Theorem 1 to derive ˇfcosh ktg from the formula

for ˇfsinh ktg.
27. (a) Apply Theorem 1 to show that

ˇftneat g D n

s � aˇftn�1eat g:

(b) Deduce that ˇftneat g D nŠ=.s � a/nC1 for n D 1, 2,
3, : : : .

Apply Theorem 1 as in Example 5 to derive the Laplace trans-
forms in Problems 28 through 30.

28. ˇft cos ktg D s2 � k2

.s2 C k2/2

29. ˇft sinh ktg D 2ks

.s2 � k2/2

30. ˇft cosh ktg D s2 C k2

.s2 � k2/2

31. Apply the results in Example 5 and Problem 28 to show
that

ˇ
�1

�
1

.s2 C k2/2


D 1

2k3
.sin kt � kt cos kt/:

Apply the extension of Theorem 1 in Eq. (22) to derive the
Laplace transforms given in Problems 32 through 37.

32. ˇfu.t � a/g D s�1e�as for a > 0.
33. If f .t/ D 1 on the interval Œa; b� (where 0 < a < b) and

f .t/ D 0 otherwise, then

ˇff .t/g D e�as � e�bs

s
:

34. If f .t/D .�1/ŒŒt�� is the square-wave function whose graph
is shown in Fig. 7.2.9, then

ˇff .t/g D 1

s
tanh

s

2
:

(Suggestion: Use the geometric series.)

f (t )
…

t654321

1

–1

FIGURE 7.2.9. The graph of the square-wave
function of Problem 34.

35. If f .t/ is the unit on–off function whose graph is shown in
Fig. 7.2.10, then

ˇff .t/g D 1

s.1C e�s/
:

f (t )
…

t654321

1

FIGURE 7.2.10. The graph of the on–off
function of Problem 35.

36. If g.t/ is the triangular wave function whose graph is
shown in Fig. 7.2.11, then

ˇfg.t/g D 1

s2
tanh

s

2
:

…

g(t )

t654321

1

FIGURE 7.2.11. The graph of the triangular
wave function of Problem 36.

37. If f .t/ is the sawtooth function whose graph is shown in
Fig. 7.2.12, then

ˇff .t/g D 1

s2
� e�s

s.1 � e�s/
:

(Suggestion: Note that f 0.t/ � 1 where it is defined.)

f (t )

…

t654321

1

FIGURE 7.2.12. The graph of the sawtooth
function of Problem 37.
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7.2 Application Transforms of Initial Value Problems
The typical computer algebra system knows Theorem 1 and its corollary, hence can
transform not only functions (as in the Section 7.1 project), but also entire initial
value problems. We illustrate the technique here with Mathematica and in the Sec-
tion 7.3 project with Maple. Consider the initial value problem

x00 C 4x D sin 3t; x.0/ D x0.0/ D 0

of Example 2. First we define the differential equation with its initial conditions,
then load the Laplace transform package.

de = x''[t] + 4�x[t] == Sin[3�t]
inits = {x[0] �> 0, x'[0] �> 0}

The Laplace transform of the differential equation is given by

DE = LaplaceTransform[ de, t, s ]

The result of this command—which we do not show explicitly here—is a linear
(algebraic) equation in the as yet unknown LaplaceTransform[x[t],t,s]. We
proceed to solve for this transformX.s/ of the unknown function x.t/ and substitute
the initial conditions.

X = Solve[DE, LaplaceTransform[x[t],t,s]]
X = X // Last // Last // Last
X = X /. inits

3

.s2 C 4/.s2 C 9/
Finally we need only compute an inverse transform to find x.t/.

x = InverseLaplaceTransform[X,s,t]

1

5
.3 cos.t/ sin.t/ � sin.3t//

x /. {Cos[t] Sin[t] �> 1/2 Sin[2t]}// Expand

3

10
sin.2t/ � 1

5
sin.3t/

Of course we could probably get this result immediately with DSolve, but the in-
termediate output generated by the steps shown here can be quite instructive. You
can try it for yourself with the initial value problems in Problems 1 through 16.

7.3 Translation and Partial Fractions
As illustrated by Examples 1 and 2 of Section 7.2, the solution of a linear differential
equation with constant coefficients can often be reduced to the matter of finding the
inverse Laplace transform of a rational function of the form

R.s/ D P.s/

Q.s/
(1)

where the degree of P.s/ is less than that of Q.s/. The technique for finding
ˇ

�1fR.s/g is based on the same method of partial fractions that we use in ele-
mentary calculus to integrate rational functions. The following two rules describe
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the partial fraction decomposition of R.s/, in terms of the factorization of the de-
nominator Q.s/ into linear factors and irreducible quadratic factors corresponding
to the real and complex zeros, respectively, of Q.s/.

RULE 1 Linear Factor Partial Fractions

The portion of the partial fraction decomposition of R.s/ corresponding to the
linear factor s � a of multiplicity n is a sum of n partial fractions, having the
form

A1

s � a C
A2

.s � a/2 C � � � C
An

.s � a/n ; (2)

where A1; A2; : : : ; and An are constants.

RULE 2 Quadratic Factor Partial Fractions

The portion of the partial fraction decomposition corresponding to the irreducible
quadratic factor .s � a/2 C b2 of multiplicity n is a sum of n partial fractions,
having the form

A1s C B1

.s � a/2 C b2
C A2s C B2

Œ.s � a/2 C b2�2
C � � � C Ans C Bn

Œ.s � a/2 C b2�n
; (3)

where A1; A2; : : : ; An; B1; B2; : : : ; and Bn are constants.

Finding ˇ
�1fR.s/g involves two steps. First we must find the partial fraction

decomposition of R.s/, and then we must find the inverse Laplace transform of each
of the individual partial fractions of the types that appear in (2) and (3). The latter
step is based on the following elementary property of Laplace transforms.

THEOREM 1 Translation on the s-Axis

If F.s/ D ˇff .t/g exists for s > c, then ˇfeatf .t/g exists for s > aC c, and

ˇfeatf .t/g D F.s � a/: (4)

Equivalently,

ˇ
�1fF.s � a/g D eatf .t/: (5)

Thus the translation s ! s � a in the transform corresponds to multiplication of
the original function of t by eat .

Proof: If we simply replace s with s� a in the definition of F.s/Dˇff .t/g,
we obtain

F.s � a/ D
Z 1

0

e�.s�a/tf .t/ dt D
Z 1

0

e�st


eatf .t/

�
dt D ˇfeatf .t/g:

This is Eq. (4), and it is clear that Eq. (5) is the same.

If we apply the translation theorem to the formulas for the Laplace transforms
of tn, cos kt , and sin kt that we already know—multiplying each of these functions
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by eat and replacing s with s � a in the transforms—we get the following additions
to the table in Fig. 7.1.2.

f .t/ F.s/

eat tn

eat cos kt

eat sin kt

nŠ

.s � a/nC1
(s > a) (6)

s � a
.s � a/2 C k2

(s > a) (7)

k

.s � a/2 C k2
(s > a) (8)

For ready reference, all the Laplace transforms derived in this chapter are
listed in the table of transforms that appears in the endpapers.

x (t)

k = 17
m = 1

2

c = 3

FIGURE 7.3.1. The mass–spring–
dashpot system of Example 1.

Example 1 Consider a mass-and-spring system with m D 1
2 , k D 17, and c D 3 in mks units (Fig. 7.3.1).

As usual, let x.t/ denote the displacement of the mass m from its equilibrium position. If the
mass is set in motion with x.0/ D 3 and x0.0/ D 1, find x.t/ for the resulting damped free
oscillations.

Solution The differential equation is 1
2x

00C3x0C17xD 0, so we need to solve the initial value problem

x00 C 6x0 C 34x D 0I x.0/ D 3; x0.0/ D 1:

We take the Laplace transform of each term of the differential equation. Because (obviously)
ˇf0g � 0, we get the equationh

s2X.s/ � 3s � 1
i
C 6 ŒsX.s/ � 3�C 34X.s/ D 0;

which we solve for

X.s/ D 3s C 19
s2 C 6s C 34 D 3 �

s C 3
.s C 3/2 C 25 C 2 �

5

.s C 3/2 C 25 :

Applying the formulas in (7) and (8) with a D �3 and k D 5, we now see that

x.t/ D e�3t .3 cos 5t C 2 sin 5t/ :

Figure 7.3.2 shows the graph of this rapidly decaying damped oscillation.

t

1

2

3

x

π

2

π

4

FIGURE 7.3.2. The position
function x.t/ in Example 1.

Example 2 illustrates a useful technique for finding the partial fraction coeffi-
cients in the case of nonrepeated linear factors.

Example 2 Find the inverse Laplace transform of

R.s/ D s2 C 1
s3 � 2s2 � 8s :

Solution Note that the denominator of R.s/ factors as Q.s/ D s.s C 2/.s � 4/. Hence

s2 C 1
s3 � 2s2 � 8s D

A

s
C B

s C 2 C
C

s � 4 :

Multiplication of each term of this equation by Q.s/ yields

s2 C 1 D A.s C 2/.s � 4/C Bs.s � 4/C Cs.s C 2/:

When we successively substitute the three zeros s D 0, s D �2, and s D 4 of the denominator
Q.s/ in this equation, we get the results

�8A D 1; 12B D 5; and 24C D 17:
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Thus A D �1
8 , B D 5

12 , and C D 17
24 , so

s2 C 1
s3 � 2s2 � 8s D �

1
8

s
C

5
12

s C 2 C
17
24

s � 4 ;

and therefore

ˇ
�1

(
s2 C 1

s3 � 2s2 � 8s

)
D �1

8
C 5

12
e�2t C 17

24
e4t :

Example 3 illustrates a differentiation technique for finding the partial fraction
coefficients in the case of repeated linear factors.

Example 3 Solve the initial value problem

y00 C 4y0 C 4y D t2I y.0/ D y0.0/ D 0:

Solution The transformed equation is

s2Y.s/C 4sY.s/C 4Y.s/ D 2

s3
:

Thus

Y.s/ D 2

s3.s C 2/2 D
A

s3
C B

s2
C C

s
C D

.s C 2/2 C
E

s C 2 : (9)

To find A, B , and C , we multiply both sides by s3 to obtain

2

.s C 2/2 D AC Bs C Cs
2 C s3F.s/; (10)

where F.s/DD.sC 2/�2CE.sC 2/�1 is the sum of the two partial fractions corresponding
to .sC 2/2. Substitution of s D 0 in Eq. (10) yields A D 1

2 . To find B and C , we differentiate
Eq. (10) twice to obtain

�4
.s C 2/3 D B C 2Cs C 3s

2F.s/C s3F 0.s/ (11)

and

12

.s C 2/4 D 2C C 6sF.s/C 6s
2F 0.s/C s3F 00.s/: (12)

Now substitution of s D 0 in Eq. (11) yields B D �1
2 , and substitution of s D 0 in Eq. (12)

yields C D 3
8 .

To find D and E, we multiply each side in Eq. (9) by .s C 2/2 to get

2

s3
D D C E.s C 2/C .s C 2/2G.s/; (13)

where G.s/ D As�3 C Bs�2 C Cs�1, and then differentiate to obtain

� 6
s4
D E C 2.s C 2/G.s/C .s C 2/2G0.s/: (14)

Substitution of s D �2 in Eqs. (13) and (14) now yields D D �1
4 and E D �3

8 . Thus

Y.s/ D
1
2

s3
�

1
2

s2
C

3
8

s
�

1
4

.s C 2/2 �
3
8

s C 2 ;

so the solution of the given initial value problem is

y.t/ D 1
4 t

2 � 1
2 t C 3

8 � 1
4 te

�2t � 3
8e

�2t :
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Examples 4, 5, and 6 illustrate techniques for dealing with quadratic factors in
partial fraction decompositions.

Example 4 Consider the mass–spring–dashpot system as in Example 1, but with initial conditions x.0/D
x0.0/ D 0 and with the imposed external force F.t/ D 15 sin 2t . Find the resulting transient
motion and steady periodic motion of the mass.

Solution The initial value problem we need to solve is

x00 C 6x0 C 34x D 30 sin 2t I x.0/ D x0.0/ D 0:

The transformed equation is

s2X.s/C 6sX.s/C 34X.s/ D 60

s2 C 4 :

Hence

X.s/ D 60

.s2 C 4/Œ.s C 3/2 C 25� D
As C B
s2 C 4 C

Cs CD
.s C 3/2 C 25 :

When we multiply both sides by the common denominator, we get

60 D .As C B/Œ.s C 3/2 C 25�C .C s CD/.s2 C 4/: (15)

To find A and B , we substitute the zero s D 2i of the quadratic factor s2C4 in Eq. (15);
the result is

60 D .2iAC B/Œ.2i C 3/2 C 25�;
which we simplify to

60 D .�24AC 30B/C .60AC 12B/i:
We now equate real parts and imaginary parts on each side of this equation to obtain the two
linear equations

�24AC 30B D 60 and 60AC 12B D 0;
which are readily solved for A D �10

29 and B D 50
29 .

To find C andD, we substitute the zero sD�3C5i of the quadratic factor .sC3/2C25
in Eq. (15) and get

60 D ŒC.�3C 5i/CD�Œ.�3C 5i/2 C 4�;
which we simplify to

60 D .186C � 12D/C .30C � 30D/i:
Again we equate real parts and imaginary parts; this yields the two linear equations

186C � 12D D 60 and 30C � 30D D 0;

and we readily find their solution to be C D D D 10
29 .

With these values of the coefficients A, B , C , and D, our partial fractions decomposi-
tion of X.s/ is

X.s/ D 1

29

��10s C 50
s2 C 4 C 10s C 10

.s C 3/2 C 25

�

D 1

29

��10s C 25 � 2
s2 C 4 C 10.s C 3/ � 4 � 5

.s C 3/2 C 25

�
:

After we compute the inverse Laplace transforms, we get the position function

x.t/ D 5
29 .�2 cos 2t C 5 sin 2t/C 2

29e
�3t .5 cos 5t � 2 sin 5t/:

The terms of circular frequency 2 constitute the steady periodic forced oscillation of the
mass, whereas the exponentially damped terms of circular frequency 5 constitute its transient
motion, which disappears very rapidly (see Fig. 7.3.3). Note that the transient motion is
nonzero even though both initial conditions are zero.

1 2
t

–0.5

0.5

1

x

Periodic

Transient

x(t)

FIGURE 7.3.3. The periodic forced
oscillation xsp.t/, damped transient
motion xtr.t/, and solution
x.t/ D xsp.t/ C xtr.t/ in Example 4.
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Resonance and Repeated Quadratic Factors
The following two inverse Laplace transforms are useful in inverting partial frac-
tions that correspond to the case of repeated quadratic factors:

ˇ
�1

�
s

.s2 C k2/2


D 1

2k
t sin kt; (16)

ˇ
�1

�
1

.s2 C k2/2


D 1

2k3
.sin kt � kt cos kt/: (17)

These follow from Example 5 and Problem 31 of Section 7.2, respectively. Because
of the presence in Eqs. (16) and (17) of the terms t sin kt and t cos kt , a repeated
quadratic factor ordinarily signals the phenomenon of resonance in an undamped
mechanical or electrical system.

Example 5 Use Laplace transforms to solve the initial value problem

x00 C !2
0x D F0 sin!t I x.0/ D 0 D x0.0/

that determines the undamped forced oscillations of a mass on a spring.
Solution When we transform the differential equation, we get the equation

s2X.s/C !2
0X.s/ D

F0!

s2 C !2
; so X.s/ D F0!

.s2 C !2/.s2 C !2
0 /
:

If ! 6D !0, we find without difficulty that

X.s/ D F0!

!2 � !2
0

 
1

s2 C !2
0

� 1

s2 C !2

!
;

so it follows that

x.t/ D F0!

!2 � !2
0

�
1

!0
sin!0t �

1

!
sin!t

�
:

But if ! D !0, we have

X.s/ D F0!0

.s2 C !2
0 /

2
;

so Eq. (17) yields the resonance solution

x.t/ D F0

2!2
0

.sin!0t � !0t cos!0t /: (18)

Remark The solution curve defined in Eq. (18) bounces back and forth (see Fig. 7.3.4)
between the “envelope curves” x D ˙C.t/ that are obtained by writing (18) in the form

x.t/ D A.t/ cos!0t C B.t/ sin!0t

and then defining the usual “amplitude” C D
p
A2 C B2. In this case we find that

t

–4

4

x(t)
+C(t)

–C(t)

2π 4π

FIGURE 7.3.4. The resonance
solution in (18) with !0 D 1

2
and

F0 D 1, together with its envelope
curves x D ˙C.t/.

C.t/ D F0

2!2
0

q
!2

0 t
2 C 1:

This technique for constructing envelope curves of resonance solutions is illustrated further
in the application material for this section.

Example 6 Solve the initial value problem

y.4/ C 2y00 C y D 4tet I y.0/ D y0.0/ D y00.0/ D y.3/.0/ D 0:
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Solution First we observe that

ˇfy00.t/g D s2Y.s/; ˇfy.4/.t/g D s4Y.s/; and ˇftet g D 1

.s � 1/2 :

Hence the transformed equation is

.s4 C 2s2 C 1/Y.s/ D 4

.s � 1/2 :

Thus our problem is to find the inverse transform of

Y.s/ D 4

.s � 1/2.s2 C 1/2

D A

.s � 1/2 C
B

s � 1 C
Cs CD
.s2 C 1/2 C

Es C F
s2 C 1 : (19)

If we multiply by the common denominator .s � 1/2.s2 C 1/2, we get the equation

A.s2 C 1/2 C B.s � 1/.s2 C 1/2 C Cs.s � 1/2

CD.s � 1/2 CEs.s � 1/2.s2 C 1/C F.s � 1/2.s2 C 1/ D 4: (20)

Upon substituting s D 1 we find that A D 1.
Equation (20) is an identity that holds for all values of s. To find the values of the

remaining coefficients, we substitute in succession the values s D 0, s D �1, s D 2, s D �2,
and s D 3 in Eq. (20). This yields the system

�B C D C F D 3,

�8B � 4C C 4D � 8E C 8F D 0,

25B C 2C C D C 10E C 5F D �21,
�75B � 18C C 9D � 90E C 45F D �21,
200B C 12C C 4D C 120E C 40F D �96

(21)

of five linear equations in B , C , D, E, and F . With the aid of a calculator programmed to
solve linear systems, we find that B D �2, C D 2, D D 0, E D 2, and F D 1.

We now substitute in Eq. (19) the coefficients we have found, and thus obtain

Y.s/ D 1

.s � 1/2 �
2

s � 1 C
2s

.s2 C 1/2 C
2s C 1
s2 C 1 :

Recalling Eq. (16), the translation property, and the familiar transforms of cos t and sin t , we
see finally that the solution of the given initial value problem is

y.t/ D .t � 2/et C .t C 1/ sin t C 2 cos t:

7.3 Problems
Apply the translation theorem to find the Laplace transforms
of the functions in Problems 1 through 4.

1. f .t/ D t4e�t 2. f .t/ D t3=2e�4t

3. f .t/ D e�2t sin 3�t 4. f .t/ D e�t=2 cos 2
�
t � 1

8�
�

Apply the translation theorem to find the inverse Laplace trans-
forms of the functions in Problems 5 through 10.

5. F.s/ D 3

2s � 4 6. F.s/ D s � 1
.s C 1/3

7. F.s/ D 1

s2 C 4s C 4 8. F.s/ D s C 2
s2 C 4s C 5

9. F.s/ D 3s C 5
s2 � 6s C 25 10. F.s/ D 2s � 3

9s2 � 12s C 20
Use partial fractions to find the inverse Laplace transforms of
the functions in Problems 11 through 22.

11. F.s/ D 1

s2 � 4 12. F.s/ D 5s � 6
s2 � 3s

13. F.s/ D 5 � 2s
s2 C 7s C 10 14. F.s/ D 5s � 4

s3 � s2 � 2s
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15. F.s/ D 1

s3 � 5s2
16. F.s/ D 1

.s2 C s � 6/2

17. F.s/ D 1

s4 � 16 18. F.s/ D s3

.s � 4/4

19. F.s/ D s2 � 2s
s4 C 5s2 C 4 20. F.s/ D 1

s4 � 8s2 C 16

21. F.s/ D s2 C 3
.s2 C 2s C 2/2 22. F.s/ D 2s3 � s2

.4s2 � 4s C 5/2

Use the factorization

s4 C 4a4 D .s2 � 2as C 2a2/.s2 C 2as C 2a2/

to derive the inverse Laplace transforms listed in Problems 23
through 26.

23. ˇ
�1

(
s3

s4 C 4a4

)
D cosh at cos at

24. ˇ
�1

�
s

s4 C 4a4


D 1

2a2
sinh at sin at

25. ˇ
�1

(
s2

s4 C 4a4

)
D 1

2a
.cosh at sin at C sinh at cos at/

26. ˇ
�1

�
1

s4 C 4a4


D 1

4a3
.cosh at sin at � sinh at cos at/

Use Laplace transforms to solve the initial value problems in
Problems 27 through 38.

27. x00 C 6x0 C 25x D 0; x.0/ D 2; x0.0/ D 3
28. x00 � 6x0 C 8x D 2; x.0/ D x0.0/ D 0
29. x00 � 4x D 3t ; x.0/ D x0.0/ D 0
30. x00 C 4x0 C 8x D e�t ; x.0/ D x0.0/ D 0
31. x.3/ C x00 � 6x0 D 0; x.0/ D 0, x0.0/ D x00.0/ D 1
32. x.4/ � x D 0; x.0/ D 1, x0.0/ D x00.0/ D x.3/.0/ D 0
33. x.4/ C x D 0; x.0/ D x0.0/ D x00.0/ D 0, x.3/.0/ D 1

34. x.4/ C 13x00 C 36x D 0; x.0/ D x00.0/ D 0, x0.0/ D 2,
x.3/.0/ D �13

35. x.4/ C 8x00 C 16x D 0; x.0/ D x0.0/ D x00.0/ D 0,
x.3/.0/ D 1

36. x.4/C 2x00Cx D e2t ; x.0/D x0.0/D x00.0/D x.3/.0/D 0
37. x00 C 4x0 C 13x D te�t ; x.0/ D 0, x0.0/ D 2
38. x00 C 6x0 C 18x D cos 2t ; x.0/ D 1, x0.0/ D �1

Problems 39 and 40 illustrate two types of resonance in a
mass–spring–dashpot system with given external force F.t/
and with the initial conditions x.0/ D x0.0/ D 0.
39. Suppose that m D 1, k D 9, c D 0, and F.t/ D 6 cos 3t .

Use the inverse transform given in Eq. (16) to derive the
solution x.t/ D t sin 3t . Construct a figure that illustrates
the resonance that occurs.

40. Suppose that m D 1, k D 9:04, c D 0:4, and F.t/ D
6e�t=5 cos 3t . Derive the solution

x.t/ D te�t=5 sin 3t:

Show that the maximum value of the amplitude function
A.t/ D te�t=5 is A.5/ D 5=e. Thus (as indicated in
Fig. 7.3.5) the oscillations of the mass increase in am-
plitude during the first 5 s before being damped out as
t !C1.

10π

t

–2

2
x = + te –t/5

x = – te –t/5

FIGURE 7.3.5. The graph of the damped
oscillation in Problem 40.

7.3 Application Damping and Resonance Investigations
Here we outline a Maple investigation of the behavior of the mass–spring–dashpot
system

mx00 C cx0 C kx D F.t/; x.0/ D x0.0/ D 0 (1)

with parameter values

m := 25; c := 10; k := 226;

in response to a variety of possible external forces:

1. F.t/ � 226

This should give damped oscillations “leveling off” to a constant solution (why?).

2. F.t/ D 901 cos 3t

With this periodic external force you should see a steady periodic oscillation with
an exponentially damped transient motion (as illustrated in Fig. 3.6.13).
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3. F.t/ D 900e�t=5 cos 3t

Now the periodic external force is exponentially damped, and the transform X.s/

includes a repeated quadratic factor that signals the presence of a resonance phe-
nomenon. The response x.t/ is a constant multiple of that shown in Fig. 7.3.5.

4. F.t/ D 900te�t=5 cos 3t

We have inserted the factor t to make it a bit more interesting. The solution in this
case is illustrated below.

5. F.t/ D 162t3e�t=5 cos 3t

In this case you’ll find that the transform X.s/ involves the fifth power of a quadratic
factor, and its inverse transform by manual methods would be impossibly tedious.

To illustrate the Maple approach, we first set up the differential equation cor-
responding to Case 4.

F := 900�t�exp(--t/5)�cos(3�t);
de := m�diff(x(t),t$2) + c�diff(x(t),t) + k�x(t) = F;

Then we apply the Laplace transform and substitute the initial conditions.

with(inttrans):
DE := laplace(de, t, s):
X(s) := solve(DE, laplace(x(t), t, s)):
X(s) := simplify(subs(x(0)=0, D(x)(0)=0, X(s)));

At this point the command factor(denom(X(s))) shows that

X.s/ D 22500.25s2 C 10s � 224/
.25s2 C 10s C 226/3 :

The cubed quadratic factor would be difficult to handle manually, but the command

x(t) := invlaplace(X(s), s, t);

soon yields
x.t/ D e�t=5

�
t cos 3t C �3t2 � 1

3

	
sin 3t

	
:

The amplitude function for these damped oscillations is defined by

C(t) := exp(--t/5)�sqrt(t^2 + (3�t^2 -- 1/3)^2);

and finally the command

plot({x(t), C(t), --C(t)}, t=0..40);

produces the plot shown in Fig. 7.3.6. The resonance resulting from the repeated

40
t

–40

–20

20

40
x = + C(t)

x = – C(t)

FIGURE 7.3.6. The resonance
solution and its envelope curves in
Case 4.

quadratic factor consists of a temporary buildup before the oscillations are damped
out.

For a similar solution in one of the other cases listed previously, you need only
enter the appropriate force F in the initial command above and then re-execute the
subsequent commands. To see the advantage of using Laplace transforms, set up
the differential equation de for Case 5 and examine the result of the command

dsolve({de, x(0)=0, D(x)(0)=0}, x(t));

Of course you can substitute your own favorite mass–spring–dashpot parameters for
those used here. But it will simplify the calculations if you choose m, c, and k so
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that

mr2 C cr C k D .pr C a/2 C b2 (2)

where p, a, and b are integers. One way is to select the latter integers first, then use
Eq. (2) to determine m, c, and k.

7.4 Derivatives, Integrals, and Products of Transforms
The Laplace transform of the (initially unknown) solution of a differential equation
is sometimes recognizable as the product of the transforms of two known functions.
For example, when we transform the initial value problem

x00 C x D cos t I x.0/ D x0.0/ D 0;

we get

X.s/ D s

.s2 C 1/2 D
s

s2 C 1 �
1

s2 C 1 D ˇfcos tg �ˇfsin tg:

This strongly suggests that there ought to be a way of combining the two functions
sin t and cos t to obtain a function x.t/ whose transform is the product of their
transforms. But obviously x.t/ is not simply the product of cos t and sin t , because

ˇfcos t sin tg D ˇ
˚

1
2

sin 2t
� D 1

s2 C 4 6D
s

.s2 C 1/2 :

Thus ˇfcos t sin tg ¤ ˇfcos tg �ˇfsin tg.
Theorem 1 of this section will tell us that the function

h.t/ D
Z t

0

f .�/g.t � �/ d� (1)

has the desired property that

ˇfh.t/g D H.s/ D F.s/ �G.s/: (2)

The new function of t defined as the integral in (1) depends only on f and g and is
called the convolution of f and g. It is denoted by f � g, the idea being that it is a
new type of product of f and g, so tailored that its transform is the product of the
transforms of f and g.

DEFINITION The Convolution of Two Functions

The convolution f � g of the piecewise continuous functions f and g is defined
for t = 0 as follows:

.f � g/.t/ D
Z t

0

f .�/g.t � �/ d�: (3)
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We will also write f .t/ � g.t/ when convenient. In terms of the convolution
product, Theorem 1 of this section says that

ˇff � gg D ˇff g �ˇfgg:

If we make the substitution u D t � � in the integral in (3), we see that

f .t/ � g.t/ D
Z t

0

f .�/g.t � �/ d� D
Z 0

t

f .t � u/g.u/.�du/

D
Z t

0

g.u/f .t � u/ du D g.t/ � f .t/:

Thus the convolution is commutative: f � g D g � f .

Example 1 The convolution of cos t and sin t is

.cos t / � .sin t / D
Z t

0
cos � sin.t � �/ d�:

We apply the trigonometric identity

cosA sinB D 1
2 Œsin.AC B/ � sin.A � B/�

to obtain

.cos t / � .sin t / D
Z t

0

1
2 Œsin t � sin.2� � t /� d�

D 1
2

�
� sin t C 1

2 cos.2� � t /
�t

�D0

I

that is,
.cos t / � .sin t / D 1

2 t sin t:

And we recall from Example 5 of Section 7.2 that the Laplace transform of 1
2 t sin t is indeed

s=.s2 C 1/2.

Theorem 1 is proved at the end of this section.

THEOREM 1 The Convolution Property

Suppose that f .t/ and g.t/ are piecewise continuous for t = 0 and that jf .t/j
and jg.t/j are bounded by Mect as t ! C1. Then the Laplace transform of the
convolution f .t/ � g.t/ exists for s > c; moreover,

ˇff .t/ � g.t/g D ˇff .t/g �ˇfg.t/g (4)

and

ˇ
�1fF.s/ �G.s/g D f .t/ � g.t/: (5)

Thus we can find the inverse transform of the product F.s/ � G.s/, provided
that we can evaluate the integral

ˇ
�1fF.s/ �G.s/g D

Z t

0

f .�/g.t � �/ d�: (50)

Example 2 illustrates the fact that convolution often provides a convenient
alternative to the use of partial fractions for finding inverse transforms.
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Example 2 With f .t/ D sin 2t and g.t/ D et , convolution yields

ˇ
�1

�
2

.s � 1/.s2 C 4/


D .sin 2t/ � et D

Z t

0
et�� sin 2� d�

D et

Z t

0
e�� sin 2� d� D et

�
e��

5
.� sin 2� � 2 cos 2�/

�t

0

;

so

ˇ
�1

�
2

.s � 1/.s2 C 4/


D 2

5
et � 1

5
sin 2t � 2

5
cos 2t:

Differentiation of Transforms

According to Theorem 1 of Section 7.2, if f .0/ D 0 then differentiation of f .t/
corresponds to multiplication of its transform by s. Theorem 2, proved at the end
of this section, tells us that differentiation of the transform F.s/ corresponds to
multiplication of the original function f .t/ by �t .

THEOREM 2 Differentiation of Transforms

If f .t/ is piecewise continuous for t = 0 and jf .t/j 5 Mect as t !C1, then

ˇf�tf .t/g D F 0.s/ (6)

for s > c. Equivalently,

f .t/ D ˇ
�1fF.s/g D �1

t
ˇ

�1fF 0.s/g: (7)

Repeated application of Eq. (6) gives

ˇftnf .t/g D .�1/nF .n/.s/ (8)

for n D 1, 2, 3, : : : .

Example 3 Find ˇft2 sin ktg.
Solution Equation (8) gives

ˇft2 sin ktg D .�1/2 d
2

ds2

�
k

s2 C k2

�

D d

ds

� �2ks
.s2 C k2/2

�
D 6ks2 � 2k3

.s2 C k2/3
: (9)

The form of the differentiation property in Eq. (7) is often helpful in finding
an inverse transform when the derivative of the transform is easier to work with than
the transform itself.
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Example 4 Find ˇ
�1ftan�1.1=s/g.

Solution The derivative of tan�1.1=s/ is a simple rational function, so we apply Eq. (7):

ˇ
�1

�
tan�1 1

s


D �1

t
ˇ

�1

�
d

ds
tan�1 1

s



D �1
t

ˇ
�1

(
�1=s2

1C .1=s/2

)

D �1
t

ˇ
�1

� �1
s2 C 1


D �1

t
.� sin t /:

Therefore,

ˇ
�1

�
tan�1 1

s


D sin t

t
:

Equation (8) can be applied to transform a linear differential equation having
polynomial, rather than constant, coefficients. The result will be a differential equa-
tion involving the transform; whether this procedure leads to success depends, of
course, on whether we can solve the new equation more readily than the old one.

Example 5 Let x.t/ be the solution of Bessel’s equation of order zero,

tx00 C x0 C tx D 0;
such that x.0/ D 1 and x0.0/ D 0. This solution of Bessel’s equation is customarily denoted
by J0.t/. Because

ˇfx0.t/g D sX.s/ � 1 and ˇfx00.t/g D s2X.s/ � s;
and because x and x00 are each multiplied by t , application of Eq. (6) yields the transformed
equation

� d
ds

h
s2X.s/ � s

i
C ŒsX.s/ � 1� � d

ds
ŒX.s/� D 0:

The result of differentiation and simplification is the differential equation

.s2 C 1/X 0.s/C sX.s/ D 0:
This equation is separable—

X 0.s/
X.s/

D � s

s2 C 1 I

its general solution is

X.s/ D Cp
s2 C 1

:

In Problem 39 we outline the argument that C D 1. Because X.s/D ˇfJ0.t/g, it follows that

ˇfJ0.t/g D
1p
s2 C 1

: (10)

Integration of Transforms
Differentiation of F.s/ corresponds to multiplication of f .t/ by t (together with
a change of sign). It is therefore natural to expect that integration of F.s/ will
correspond to division of f .t/ by t . Theorem 3, proved at the end of this section,
confirms this, provided that the resulting quotient f .t/=t remains well behaved as
t ! 0 from the right; that is, provided that

lim
t!0C

f .t/

t
exists and is finite. (11)
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THEOREM 3 Integration of Transforms

Suppose that f .t/ is piecewise continuous for t = 0, that f .t/ satisfies the condi-
tion in (11), and that jf .t/j 5 Mect as t !C1. Then

ˇ

�
f .t/

t


D
Z 1

s

F.�/ d� (12)

for s > c. Equivalently,

f .t/ D ˇ
�1fF.s/g D tˇ�1

�Z 1

s

F.�/ d�


: (13)

Example 6 Find ˇf.sinh t /=tg.
Solution We first verify that the condition in (11) holds:

lim
t!0

sinh t
t
D lim

t!0

et � e�t

2t
D lim

t!0

et C e�t

2
D 1;

with the aid of l’Hôpital’s rule. Then Eq. (12), with f .t/ D sinh t , yields

ˇ

�
sinh t
t


D
Z 1

s
ˇfsinh tgd� D

Z 1

s

d�

�2 � 1

D 1

2

Z 1

s

�
1

� � 1 �
1

� C 1

�
d� D 1

2

�
ln
� � 1
� C 1

�1

s

:

Therefore,

ˇ

�
sinh t
t


D 1

2
ln
s C 1
s � 1 ;

because ln 1 D 0.
The form of the integration property in Eq. (13) is often helpful in finding an

inverse transform when the indefinite integral of the transform is easier to handle
than the transform itself.

Example 7 Find ˇ
�1f2s=.s2 � 1/2g.

Solution We could use partial fractions, but it is much simpler to apply Eq. (13). This gives

ˇ
�1

�
2s

.s2 � 1/2

D tˇ�1

�Z 1

s

2�

.�2 � 1/2 d�


D tˇ�1

�� �1
�2 � 1

�1

s


D tˇ�1

�
1

s2 � 1


;

and therefore

ˇ
�1

�
2s

.s2 � 1/2

D t sinh t:

*Proofs of Theorems
Proof of Theorem 1: The transforms F.s/ and G.s/ exist when s > c by

Theorem 2 of Section 7.1. For any � > 0 the definition of the Laplace transform
gives

G.s/ D
Z 1

0

e�sug.u/ du D
Z 1

�

e�s.t��/g.t � �/ dt .u D t � �/;
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and therefore

G.s/ D es�

Z 1

0

e�stg.t � �/ dt;

because we may define f .t/ and g.t/ to be zero for t < 0. Then

F.s/G.s/ D G.s/
Z 1

0

e�s�f .�/ d� D
Z 1

0

e�s�f .�/G.s/ d�

D
Z 1

0

e�s�f .�/

�
es�

Z 1

0

e�stg.t � �/ dt
�
d�

D
Z 1

0

�Z 1

0

e�stf .�/g.t � �/ dt
�
d�:

Now our hypotheses on f and g imply that the order of integration may be reversed.
(The proof of this requires a discussion of uniform convergence of improper inte-
grals, and can be found in Chapter 2 of Churchill’s Operational Mathematics, 3rd
ed. (New York: McGraw-Hill, 1972).) Hence

F.s/G.s/ D
Z 1

0

�Z 1

0

e�stf .�/g.t � �/ d�
�
dt

D
Z 1

0

e�st

�Z t

0

f .�/g.t � �/ d�
�
dt

D
Z 1

0

e�st Œf .t/ � g.t/� dt;

and therefore,
F.s/G.s/ D ˇff .t/ � g.t/g:

We replace the upper limit of the inner integral with t because g.t � �/D 0whenever
� > t . This completes the proof of Theorem 1.

Proof of Theorem 2: Because

F.s/ D
Z 1

0

e�stf .t/ dt;

differentiation under the integral sign yields

F.s/ D d

ds

Z 1

0

e�stf .t/ dt

D
Z 1

0

d

ds



e�stf .t/

�
dt D

Z 1

0

e�st Œ�tf .t/� dt I

thus
F 0.s/ D ˇf�tf .t/g;

which is Eq. (6). We obtain Eq. (7) by applying ˇ
�1 and then dividing by �t . The

validity of differentiation under the integral sign depends on uniform convergence
of the resulting integral; this is discussed in Chapter 2 of the book by Churchill just
mentioned.

Proof of Theorem 3: By definition,

F.�/ D
Z 1

0

e��tf .t/ dt:
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So integration of F.�/ from s to C1 givesZ 1

s

F.�/ d� D
Z 1

s

�Z 1

0

e��tf .t/ dt

�
d�:

Under the hypotheses of the theorem, the order of integration may be reversed (see
Churchill’s book once again); it follows thatZ 1

s

F.�/ d� D
Z 1

0

�Z 1

s

e��tf .t/ d�

�
dt

D
Z 1

0

�
e��t

�t

�1

�Ds

f .t/ dt

D
Z 1

0

e�st f .t/

t
dt D ˇ

�
f .t/

t


:

This verifies Eq. (12), and Eq. (13) follows upon first applying ˇ
�1 and then multi-

plying by t .

7.4 Problems
Find the convolution f .t/ � g.t/ in Problems 1 through 6.

1. f .t/ D t , g.t/ � 1 2. f .t/ D t , g.t/ D eat

3. f .t/ D g.t/ D sin t 4. f .t/ D t2, g.t/ D cos t
5. f .t/ D g.t/ D eat

6. f .t/ D eat , g.t/ D ebt .a 6D b/

Apply the convolution theorem to find the inverse Laplace
transforms of the functions in Problems 7 through 14.

7. F.s/ D 1

s.s � 3/ 8. F.s/ D 1

s.s2 C 4/
9. F.s/ D 1

.s2 C 9/2 10. F.s/ D 1

s2.s2 C k2/

11. F.s/ D s2

.s2 C 4/2 12. F.s/ D 1

s.s2 C 4s C 5/
13. F.s/ D s

.s � 3/.s2 C 1/ 14. F.s/ D s

s4 C 5s2 C 4
In Problems 15 through 22, apply either Theorem 2 or Theo-
rem 3 to find the Laplace transform of f .t/.

15. f .t/ D t sin 3t 16. f .t/ D t2 cos 2t
17. f .t/ D te2t cos 3t 18. f .t/ D te�t sin2 t

19. f .t/ D sin t
t

20. f .t/ D 1 � cos 2t
t

21. f .t/ D e3t � 1
t

22. f .t/ D et � e�t

t

Find the inverse transforms of the functions in Problems 23
through 28.

23. F.s/ D ln
s � 2
s C 2 24. F.s/ D ln

s2 C 1
s2 C 4

25. F.s/ D ln
s2 C 1

.s C 2/.s � 3/ 26. F.s/ D tan�1 3

s C 2

27. F.s/ D ln
�
1C 1

s2

�
28. F.s/ D s

.s2 C 1/3

In Problems 29 through 34, transform the given differential
equation to find a nontrivial solution such that x.0/ D 0.
29. tx00 C .t � 2/x0 C x D 0
30. tx00 C .3t � 1/x0 C 3x D 0
31. tx00 � .4t C 1/x0 C 2.2t C 1/x D 0
32. tx00 C 2.t � 1/x0 � 2x D 0
33. tx00 � 2x0 C tx D 0
34. tx00 C .4t � 2/x0 C .13t � 4/x D 0
35. Apply the convolution theorem to show that

ˇ
�1

�
1

.s � 1/ps


D 2et

p
�

Z p
t

0
e�u2

du D et erf
p
t :

(Suggestion: Substitute u D pt .)

In Problems 36 through 38, apply the convolution theorem
to derive the indicated solution x.t/ of the given differential
equation with initial conditions x.0/ D x0.0/ D 0.

36. x00 C 4x D f .t/; x.t/ D 1

2

Z t

0
f .t � �/ sin 2� d�

37. x00 C 2x0 C x D f .t/; x.t/ D
Z t

0
�e��f .t � �/ d�

38. x00 C 4x0 C 13x D f .t/I

x.t/ D 1

3

Z t

0
f .t � �/e�2� sin 3� d�
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Termwise Inverse Transformation of Series
In Chapter 2 of Churchill’s Operational Mathematics, the fol-
lowing theorem is proved. Suppose that f .t/ is continuous for
t = 0, that f .t/ is of exponential order as t !C1, and that

F.s/ D
1X

nD0

an

snCkC1

where 0 5 k < 1 and the series converges absolutely for s > c.
Then

f .t/ D
1X

nD0

ant
nCk

�.nC k C 1/ :

Apply this result in Problems 39 through 41.

39. In Example 5 it was shown that

ˇfJ0.t/g D
Cp
s2 C 1

D C

s

�
1C 1

s2

��1=2

:

Expand with the aid of the binomial series and then com-
pute the inverse transformation term by term to obtain

J0.t/ D C
1X

nD0

.�1/nt2n

22n.nŠ/2
:

Finally, note that J0.0/ D 1 implies that C D 1.
40. Expand the function F.s/ D s�1=2e�1=s in powers of s�1

to show that

ˇ
�1

�
1p
s
e�1=s


D 1p

�t
cos 2
p
t :

41. Show that

ˇ
�1

�
1

s
e�1=s


D J0

�
2
p
t
�
:

7.5 Periodic and Piecewise Continuous Input Functions
Mathematical models of mechanical or electrical systems often involve functions
with discontinuities corresponding to external forces that are turned abruptly on or
off. One such simple on–off function is the unit step function that we introduced in
Section 7.1. Recall that the unit step function at t D a is defined by

ua.t/ D u.t � a/ D
(
0 if t < a,
1 if t = a.

(1)

The notation ua.t/ indicates succinctly where the unit upward step in value takes
place (Fig. 7.5.1), whereas u.t � a/ connotes the sometimes useful idea of a “time

x = ua(t )

a

x

1

t

…

FIGURE 7.5.1. The graph of the unit
step function at t D a.

delay” a before the step is made.
In Example 8 of Section 7.1 we saw that if a = 0, then

ˇfu.t � a/g D e�as

s
: (2)

Because ˇfu.t/g D 1=s, Eq. (2) implies that multiplication of the transform of u.t/
by e�as corresponds to the translation t! t �a in the original independent variable.
Theorem 1 tells us that this fact, when properly interpreted, is a general property of
the Laplace transformation.

THEOREM 1 Translation on the t-Axis

If ˇff .t/g exists for s > c, then

ˇfu.t � a/f .t � a/g D e�asF.s/ (3a)

and

ˇ
�1fe�asF.s/g D u.t � a/f .t � a/ (3b)

for s > c C a.
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Note that

u.t � a/f .t � a/ D
(
0 if t < a,
f .t � a/ if t = a.

(4)

Thus Theorem 1 implies that ˇ
�1fe�asF.s/g is the function whose graph for t = a

is the translation by a units to the right of the graph of f .t/ for t = 0. Note that the
part (if any) of the graph of f .t/ to the left of t D 0 is “cut off” and is not translated
(Fig. 7.5.2). In some applications the function f .t/ describes an incoming signal
that starts arriving at time t D 0. Then u.t � a/f .t � a/ denotes a signal of the same
“shape” but with a time delay of a, so it does not start arriving until time t D a.

Proof of Theorem 1: From the definition of ˇff .t/g, we get

e�asF.s/ D e�as

Z 1

0

e�s�f .�/ d� D
Z 1

0

e�s.�Ca/f .�/ d�:

The substitution t D � C a then yields

f (t )

a t

x

a

u (t – a) f (t – a)

FIGURE 7.5.2. Translation of f .t/
a units to the right.

e�asF.s/ D
Z 1

a

e�stf .t � a/ dt:

From Eq. (4) we see that this is the same as

e�asF.s/ D
Z 1

0

e�stu.t � a/f .t � a/ dt D ˇfu.t � a/f .t � a/g;

because u.t � a/f .t � a/ D 0 for t < a. This completes the proof of
Theorem 1.

Example 1 With f .t/ D 1
2 t

2, Theorem 1 gives

ˇ
�1

�
e�as

s3


D u.t � a/1

2
.t � a/2 D

(
0 if t < a,
1
2 .t � a/2 if t = a

(Fig. 7.5.3).

Example 2 Find ˇfg.t/g if

g.t/ D
(
0 if t < 3,

t2 if t = 3
(Fig. 7.5.4).

Solution Before applying Theorem 1, we must first write g.t/ in the form u.t � 3/f .t � 3/. The
function f .t/ whose translation 3 units to the right agrees (for t = 3) with g.t/ D t2 is
f .t/ D .t C 3/2 because f .t � 3/ D t2. But then

F.s/ D ˇft2 C 6t C 9g D 2

s3
C 6

s2
C 9

s
;

so now Theorem 1 yields

ˇfg.t/g D ˇfu.t � 3/f .t � 3/g D e�3sF.s/ D e�3s

�
2

s3
C 6

s2
C 9

s

�
:

Example 3 Find ˇff .t/g if

f .t/ D
(

cos 2t if 0 5 t < 2� ,

0 if t = 2�
(Fig. 7.5.5).
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a t

x

a

x = 1
2

t2 ua(t )(t – a)2x = 1
2

FIGURE 7.5.3. The graph of the
inverse transform of Example 1.

5

10

15

20

x

3 41 2 t

x = t2 x = g(t )

FIGURE 7.5.4. The graph of the
function g.t/ of Example 2.

t

x

π π3π2

x = f (t )

FIGURE 7.5.5. The function f .t/ of
Examples 3 and 4.

Solution We note first that

f .t/ D Œ1 � u.t � 2�/� cos 2t D cos 2t � u.t � 2�/ cos 2.t � 2�/
because of the periodicity of the cosine function. Hence Theorem 1 gives

ˇff .t/g D ˇfcos 2tg � e�2�s
ˇfcos 2tg D s.1 � e�2�s/

s2 C 4 :

Example 4 A mass that weighs 32 lb (mass m D 1 slug) is attached to the free end of a long, light spring
that is stretched 1 ft by a force of 4 lb (k D 4 lb=ft). The mass is initially at rest in its
equilibrium position. Beginning at time t D 0 (seconds), an external force f .t/ D cos 2t is
applied to the mass, but at time t D 2� this force is turned off (abruptly discontinued) and the
mass is allowed to continue its motion unimpeded. Find the resulting position function x.t/
of the mass.

Solution We need to solve the initial value problem

x00 C 4x D f .t/I x.0/ D x0.0/ D 0;
where f .t/ is the function of Example 3. The transformed equation is

.s2 C 4/X.s/ D F.s/ D s.1 � e�2�s/

s2 C 4 ;

so
X.s/ D s

.s2 C 4/2 � e
�2�s s

.s2 C 4/2 :

Because

ˇ
�1

�
s

.s2 C 4/2

D 1

4 t sin 2t

by Eq. (16) of Section 7.3, it follows from Theorem 1 that

x.t/ D 1
4 t sin 2t � u.t � 2�/ � 1

4 .t � 2�/ sin 2.t � 2�/

D 1
4 Œt � u.t � 2�/ � .t � 2�/� sin 2t:

If we separate the cases t < 2� and t = 2� , we find that the position function may be written
in the form

x.t/ D
8<:

1
4 t sin 2t if t < 2� ,

1
2� sin 2t if t = 2� .

As indicated by the graph of x.t/ shown in Fig. 7.5.6, the mass oscillates with circular fre-
quency !D 2 and with linearly increasing amplitude until the force is removed at time t D 2� .

0
t

x

π–

π

2π 4π 6π

π– /2

π/2

0

π/2x = –

π/2x = 

FIGURE 7.5.6. The graph of the
function x.t/ of Example 4.
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Thereafter, the mass continues to oscillate with the same frequency but with constant ampli-
tude �=2. The force F.t/ D cos 2t would produce pure resonance if continued indefinitely,
but we see that its effect ceases immediately at the moment it is turned off.

If we were to attack Example 4 with the methods of Chapter 3, we would
need to solve one problem for the interval 0 5 t < 2� and then solve a new problem
with different initial conditions for the interval t = 2� . In such a situation the
Laplace transform method enjoys the distinct advantage of not requiring the solution
of different problems on different intervals.

Example 5 Consider the RLC circuit shown in Fig. 7.5.7, with R D 110 �, L D 1 H, C D 0:001 F, and a
battery supplying E0 D 90 V. Initially there is no current in the circuit and no charge on the
capacitor. At time t D 0 the switch is closed and left closed for 1 second. At time t D 1 it is
opened and left open thereafter. Find the resulting current in the circuit.

Solution We recall from Section 3.7 the basic series circuit equation

L
di

dt
C Ri C 1

C
q D e.t/I (5)

we use lowercase letters for current, charge, and voltage and reserve uppercase letters for

C

L

R

Switch

E0

FIGURE 7.5.7. The series RLC
circuit of Example 5.

their transforms. With the given circuit elements, Eq. (5) is

di

dt
C 110i C 1000q D e.t/; (6)

where e.t/ D 90Œ1 � u.t � 1/�, corresponding to the opening and closing of the switch.
In Section 3.7 our strategy was to differentiate both sides of Eq. (5), then apply the

relation

i D dq

dt
(7)

to obtain the second-order equation

L
d2i

dt2
CRdi

dt
C 1

C
i D e0.t/:

Here we do not use that method, because e0.t/ D 0 except at t D 1, whereas the jump from
e.t/ D 90 when t < 1 to e.t/ D 0 when t > 1 would seem to require that e0.1/ D �1. Thus
e0.t/ appears to have an infinite discontinuity at t D 1. This phenomenon will be discussed in
Section 7.6. For now, we will simply note that it is an odd situation and circumvent it rather
than attempt to deal with it here.

To avoid the possible problem at t D 1, we observe that the initial value q.0/ D 0 and
Eq. (7) yield, upon integration,

q.t/ D
Z t

0
i.�/ d�: (8)

We substitute Eq. (8) in Eq. (5) to obtain

L
di

dt
CRi C 1

C

Z t

0
i.�/ d� D e.t/: (9)

This is the integrodifferential equation of a series RLC circuit; it involves both the integral
and the derivative of the unknown function i.t/. The Laplace transform method works well
with such an equation.

In the present example, Eq. (9) is

di

dt
C 110i C 1000

Z t

0
i.�/ d� D 90 Œ1 � u.t � 1/� : (10)

Because

ˇ

�Z t

0
i.�/ d�


D I.s/

s
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by Theorem 2 of Section 7.2 on transforms of integrals, the transformed equation is

sI.s/C 110I.s/C 1000I.s/
s
D 90

s
.1 � e�s/:

We solve this equation for I.s/ to obtain

I.s/ D 90.1 � e�s/

s2 C 110s C 1000 :

But
90

s2 C 110s C 1000 D
1

s C 10 �
1

s C 100 ;
so we have

I.s/ D 1

s C 10 �
1

s C 100 � e
�s

�
1

s C 10 �
1

s C 100

�
:

We now apply Theorem 1 with f .t/ D e�10t � e�100t ; thus the inverse transform is

i.t/ D e�10t � e�100t � u.t � 1/
h
e�10.t�1/ � e�100.t�1/

i
:

After we separate the cases t < 1 and t = 1, we find that the current in the circuit is given by

i.t/ D
(
e�10t � e�100t if t < 1,

e�10t � e�10.t�1/ � e�100t C e�100.t�1/ if t = 1.

The portion e�10t � e�100t of the solution would describe the current if the switch were left
closed for all t rather than being open for t = 1.

Transforms of Periodic Functions
Periodic forcing functions in practical mechanical or electrical systems often are
more complicated than pure sines or cosines. The nonconstant function f .t/ defined
for t = 0 is said to be periodic if there is a number p > 0 such that

f .t C p/ D f .t/ (11)

for all t = 0. The least positive value of p (if any) for which Eq. (11) holds is called
the period of f . Such a function is shown in Fig. 7.5.8. Theorem 2 simplifies the
computation of the Laplace transform of a periodic function.

t
p

FIGURE 7.5.8. The graph of a
function with period p.

THEOREM 2 Transforms of Periodic Functions

Let f .t/ be periodic with period p and piecewise continuous for t = 0. Then the
transform F.s/ D ˇff .t/g exists for s > 0 and is given by

F.s/ D 1

1 � e�ps

Z p

0

e�stf .t/ dt: (12)

Proof: The definition of the Laplace transform gives

F.s/ D
Z 1

0

e�stf .t/ dt D
1X

nD0

Z .nC1/p

np

e�stf .t/ dt:

The substitution t D � C np in the nth integral following the summation sign yieldsZ .nC1/p

np

e�stf .t/ dt D
Z p

0

e�s.�Cnp/f .� C np/ d� D e�nps

Z p

0

e�s�f .�/ d�
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because f .� C np/ D f .�/ by periodicity. Thus

F.s/ D
1X

nD0

�
e�nps

Z p

0

e�s�f .�/ d�

�

D �1C e�ps C e�2ps C � � � 	 Z p

0

e�s�f .�/ d�:

Consequently,

F.s/ D 1

1 � e�ps

Z p

0

e�s�f .�/ d�:

We use the geometric series

1

1 � x D 1C x C x
2 C x3 C � � � ;

with x D e�ps < 1 (for s > 0) to sum the series in the final step. Thus we have
derived Eq. (12).

The principal advantage of Theorem 2 is that it enables us to find the Laplace
transform of a periodic function without the necessity of an explicit evaluation of an
improper integral.

Example 6 Figure 7.5.9 shows the graph of the square-wave function f .t/D .�1/ŒŒt=a�� of period p D 2a;
ŒŒx�� denotes the greatest integer not exceeding x. By Theorem 2 the Laplace transform of f .t/
isf (t )

6a5a4a3a2aa

…

t

1

–1

FIGURE 7.5.9. The graph of the
square-wave function of Example 6.

F.s/ D 1

1 � e�2as

Z 2a

0
e�stf .t/ dt

D 1

1 � e�2as

 Z a

0
e�st dt C

Z 2a

a
.�1/e�st dt

!

D 1

1 � e�2as

 �
�1
s
e�st

�a

0

�
�
�1
s
e�st

�2a

a

!

D .1 � e�as/2

s.1 � e�2as/
D 1 � e�as

s.1C e�as/
:

Therefore,

6a5a4a3a2aa

a …

g(t )

t

FIGURE 7.5.10. The graph of the
triangular-wave function of Example 7.

F.s/ D 1 � e�as

s.1C e�as/
(13a)

D eas=2 � e�as=2

s.eas=2 C e�as=2/
D 1

s
tanh

as

2
: (13b)

Example 7 Figure 7.5.10 shows the graph of a triangular-wave function g.t/ of period p D 2a. Because
the derivative g0.t/ is the square wave function of Example 6, it follows from the formula in
(13b) and Theorem 2 of Section 7.2 that the transform of this triangular-wave function is

G.s/ D F.s/

s
D 1

s2
tanh

as

2
: (14)



480 Chapter 7 Laplace Transform Methods

Example 8 Consider a mass–spring–dashpot system with m D 1, c D 4, and k D 20 in appropriate units.
Suppose that the system is initially at rest at equilibrium (x.0/ D x0.0/ D 0) and that the
mass is acted on beginning at time t D 0 by the external force f .t/ whose graph is shown
in Fig. 7.5.11: the square wave with amplitude 20 and period 2� . Find the position function
f .t/.

Solution The initial value problem is

x00 C 4x0 C 20x D f .t/I x.0/ D x0.0/ D 0:

The transformed equation is

s2X.s/C 4sX.s/C 20X.s/ D F.s/: (15)

From Example 6 with a D � we see that the transform of f .t/ is

F.s/ D 20

s
� 1 � e

��s

1C e��s

D 20

s

�
1 � e��s

	 �
1 � e��s C e�2�s � e�3�s C � � �

�

D 20

s

�
1 � 2e��s C 2e�2�s � 2e�3�s C � � �

�
;

so that

F.s/ D 20

s
C 40

s

1X
nD1

.�1/ne�n�s : (16)

Substitution of Eq. (16) in Eq. (15) yields

20

–20

π 2π 3π 4π 5π 6π t

f (t)

FIGURE 7.5.11. The graph of the
external-force function of Example 8.

X.s/ D F.s/

s2 C 4s C 20

D 20

sŒ.s C 2/2 C 16� C 2
1X

nD1

.�1/n 20e�n�s

sŒ.s C 2/2 C 16� : (17)

From the transform in Eq. (8) of Section 7.3, we get

ˇ
�1

�
20

.s C 2/2 C 16


D 5e�2t sin 4t;

so by Theorem 2 of Section 7.2 we have

g.t/ D ˇ
�1

�
20

sŒ.s C 2/2 C 16�


D
Z t

0
5e�2� sin 4� d�:

Using a tabulated formula for
R
eat sin bt dt , we get

g.t/ D 1 � e�2t
�

cos 4t C 1
2 sin 4t

�
D 1 � h.t/; (18)

where

h.t/ D e�2t
�

cos 4t C 1
2 sin 4t

�
: (19)

Now we apply Theorem 1 to find the inverse transform of the right-hand term in
Eq. (17). The result is

x.t/ D g.t/C 2
1X

nD1

.�1/nu.t � n�/g.t � n�/; (20)
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and we note that for any fixed value of t the sum in Eq. (20) is finite. Moreover,

g.t � n�/ D 1 � e�2.t�n�/
h
cos 4.t � n�/C 1

2 sin 4.t � n�/
i

D 1 � e2n�e�2t
�

cos 4t C 1
2 sin 4t

�
:

Therefore,

g.t � n�/ D 1 � e2n�h.t/: (21)

Hence if 0 < t < � , then
x.t/ D 1 � h.t/:

If � < t < 2� , then

x.t/ D Œ1 � h.t/� � 2
h
1 � e2�h.t/

i
D �1C h.t/ � 2h.t/

h
1 � e2�

i
:

If 2� < t < 3� , then

x.t/ D Œ1 � h.t/� � 2
h
1 � e2�h.t/

i
C 2

h
1 � e4�h.t/

i
D 1C h.t/ � 2h.t/

h
1 � e2� C e4�

i
:

The general expression for n� < t < .nC 1/� is

x.t/ D h.t/C .�1/n � 2h.t/
h
1 � e2� C � � � C .�1/ne2n�

i
D h.t/C .�1/n � 2h.t/ 1C .�1/

ne2.nC1/�

1C e2�
;

(22)

which we obtained with the aid of the familiar formula for the sum of a finite geometric
progression. A rearrangement of Eq. (22) finally gives, with the aid of Eq. (19),

x.t/ D e2� � 1
e2� C 1e

�2t
�

cos 4t C 1
2 sin 4t

�
C .�1/n

� 2 � .�1/
ne2�

e2� C 1 e�2.t�n�/
�

cos 4t C 1
2 sin 4t

�
(23)

for n� < t < .nC 1/� . The first term in Eq. (23) is the transient solution

xtr.t/ � .0:9963/e�2t
�

cos 4t C 1
2 sin 4t

�
� .1:1139/e�2t cos.4t � 0:4636/: (24)

The last two terms in Eq. (23) give the steady periodic solution xsp. To investigate it, we
write � D t � n� for t in the interval n� < t < .nC 1/� . Then

xsp.t/ D .�1/n
"
1 � 2e2�

e2� C 1e
�2�

�
cos 4� C 1

2 sin 4�
�#

� .�1/n
h
1 � .2:2319/e�2� cos.4� � 0:4636/

i
:

(25)

Figure 7.5.12 shows the graph of xsp.t/. Its most interesting feature is the appearance of
periodically damped oscillations with a frequency four times that of the imposed force f .t/.
In Chapter 9 (Fourier Series Methods and Partial Differential Equations) we will see why a
periodic external force sometimes excites oscillations at a higher frequency than the imposed
frequency.
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xsp

t

1

–1

1 + (2.23)e –2t

–1 + (2.23)e –2(t – π)

–1 – (2.23)e –2(t – π)

1 – (2.23)e –2t

FIGURE 7.5.12. The graph of the steady periodic solution for Example 8;
note the “periodically damped” oscillations with frequency four times that of
the imposed force.

7.5 Problems
Find the inverse Laplace transform f .t/ of each function given
in Problems 1 through 10. Then sketch the graph of f .

1. F.s/ D e�3s

s2
2. F.s/ D e�s � e�3s

s2

3. F.s/ D e�s

s C 2 4. F.s/ D e�s � e2�2s

s � 1
5. F.s/ D e��s

s2 C 1 6. F.s/ D se�s

s2 C �2

7. F.s/ D 1 � e�2�s

s2 C 1 8. F.s/ D s.1 � e�2s/

s2 C �2

9. F.s/ D s.1C e�3s/

s2 C �2
10. F.s/ D 2s.e��s � e�2�s/

s2 C 4
Find the Laplace transforms of the functions given in Problems
11 through 22.

11. f .t/ D 2 if 0 5 t < 3; f .t/ D 0 if t = 3

12. f .t/ D 1 if 1 5 t 5 4; f .t/ D 0 if t < 1 or if t > 4
13. f .t/ D sin t if 0 5 t 5 2�; f .t/ D 0 if t > 2�
14. f .t/ D cos�t if 0 5 t 5 2; f .t/ D 0 if t > 2
15. f .t/ D sin t if 0 5 t 5 3�; f .t/ D 0 if t > 3�
16. f .t/D sin 2t if � 5 t 5 2�; f .t/D 0 if t < � or if t > 2�
17. f .t/ D sin�t if 2 5 t 5 3; f .t/ D 0 if t < 2 or if t > 3
18. f .t/ D cos 1

2�t if 3 5 t 5 5; f .t/ D 0 if t < 3 or if t > 5
19. f .t/ D 0 if t < 1; f .t/ D t if t = 1

20. f .t/ D t if t 5 1; f .t/ D 1 if t > 1
21. f .t/ D t if t 5 1; f .t/ D 2 � t if 1 5 t 5 2; f .t/ D 0 if

t > 2

22. f .t/ D t3 if 1 5 t 5 2; f .t/ D 0 if t < 1 or if t > 2

23. Apply Theorem 2 with p D 1 to verify that ˇf1g D 1=s.
24. Apply Theorem 2 to verify that ˇfcos ktg D s=.s2 C k2/.

25. Apply Theorem 2 to show that the Laplace transform of
the square-wave function of Fig. 7.5.13 is

ˇff .t/g D 1

s.1C e�as/
:

1

6a5a4a3a2aa t

FIGURE 7.5.13. The graph of the square-wave
function of Problem 25.

26. Apply Theorem 2 to show that the Laplace transform of
the sawtooth function f .t/ of Fig. 7.5.14 is

F.s/ D 1

as2
� e�as

s.1 � e�as/
:

f (t )

1

6a5a4a3a2aa t

FIGURE 7.5.14. The graph of the sawtooth
function of Problem 26.
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27. Let g.t/ be the staircase function of Fig. 7.5.15. Show that
g.t/ D .t=a/ � f .t/, where f is the sawtooth function of
Fig. 7.5.14, and hence deduce that

ˇfg.t/g D e�as

s.1 � e�as/
:

4a3a2aa t

g(t )

1

2

3

4 …

FIGURE 7.5.15. The graph of the staircase
function of Problem 27.

28. Suppose that f .t/ is a periodic function of period 2a with
f .t/ D t if 0 5 t < a and f .t/ D 0 if a 5 t < 2a. Find
ˇff .t/g.

29. Suppose that f .t/ is the half-wave rectification of sin kt ,
shown in Fig. 7.5.16. Show that

ˇff .t/g D k

.s2 C k2/.1 � e��s=k/
:

f (t )

t
k
π3

k
π2

k
π

FIGURE 7.5.16. The half-wave rectification of sin kt .

30. Let g.t/ D u.t � �=k/f .t � �=k/, where f .t/ is the func-
tion of Problem 29 and k > 0. Note that h.t/D f .t/Cg.t/
is the full-wave rectification of sin kt shown in Fig. 7.5.17.
Hence deduce from Problem 29 that

ˇfh.t/g D k

s2 C k2
coth

�s

2k
:

t
k
π3

k
π2

k
π

h(t )

FIGURE 7.5.17. The full-wave rectification of sin kt .

In Problems 31 through 35, the values of mass m, spring con-
stant k, dashpot resistance c, and force f .t/ are given for a
mass–spring–dashpot system with external forcing function.
Solve the initial value problem

mx00 C cx0 C kx D f .t/; x.0/ D x0.0/ D 0
and construct the graph of the position function x.t/.

31. m D 1, k D 4, c D 0; f .t/ D 1 if 0 5 t < � , f .t/ D 0 if
t = �

32. m D 1, k D 4, c D 5; f .t/ D 1 if 0 5 t < 2, f .t/ D 0 if
t = 2

33. m D 1, k D 9, c D 0; f .t/ D sin t if 0 5 t 5 2� , f .t/ D 0
if t > 2�

34. m D 1, k D 1, c D 0; f .t/ D t if 0 5 t < 1, f .t/ D 0 if
t = 1

35. m D 1, k D 4, c D 4; f .t/ D t if 0 5 t 5 2, f .t/ D 0 if
t > 2

In Problems 36 through 40, the values of the elements of an
RLC circuit are given. Solve the initial value problem

L
di

dt
C Ri C 1

C

Z t

0
i.�/ d� D e.t/I i.0/ D 0

with the given impressed voltage e.t/.

36. L D 0, R D 100, C D 10�3; e.t/ D 100 if 0 5 t < 1;
e.t/ D 0 if t = 1

37. L D 1, R D 0, C D 10�4; e.t/ D 100 if 0 5 t < 2�;
e.t/ D 0 if t = 2�

38. L D 1, R D 0, C D 10�4; e.t/ D 100 sin 10t if 0 5 t < �;
e.t/ D 0 if t = �

39. L D 1, R D 150, C D 2 � 10�4; e.t/ D 100t if 0 5 t < 1;
e.t/ D 0 if t = 1

40. L D 1, R D 100, C D 4 � 10�4; e.t/ D 50t if 0 5 t < 1;
e.t/ D 0 if t = 1

In Problems 41 and 42, a mass–spring–dashpot system with
external force f .t/ is described. Under the assumption that
x.0/ D x0.0/ D 0, use the method of Example 8 to find the
transient and steady periodic motions of the mass. Then con-
struct the graph of the position function x.t/. If you would like
to check your graph using a numerical DE solver, it may be
useful to note that the function

f .t/ D AŒ2u..t � �/.t � 2�/.t � 3�/�
.t � 4�/.t � 5�/.t � 6�// � 1�

has the value CA if 0 < t < � , the value �A if � < t < 2� ,
and so forth, and hence agrees on the interval Œ0; 6�� with
the square-wave function that has amplitude A and period 2� .
(See also the definition of a square-wave function in terms of
sawtooth and triangular-wave functions in the application ma-
terial for this section.)

41. m D 1, k D 4, c D 0; f .t/ is a square-wave function with
amplitude 4 and period 2� .

42. mD 1, k D 10, c D 2; f .t/ is a square-wave function with
amplitude 10 and period 2� .
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7.5 Application Engineering Functions
Periodic piecewise linear functions occur so frequently as input functions in engi-
neering applications that they are sometimes called engineering functions. Com-
putations with such functions are readily handled by computer algebra systems.
In Mathematica, for instance, the SawToothWave, TriangleWave, and Square-
Wave functions can be used to create the corresponding inputs with specified range,
period, etc. Alternatively, we can define our own engineering functions using ele-
mentary functions available in any computer algebra system:

sawtooth[t ] := t -- 2 Floor[t/2] -- 1
triangularwave[t ] := 2 Abs[sawtooth[t -- 1/2]] -- 1
squarewave[t ] := Sign[ triangularwave[t]]

Plot each of the functions to verify that it has period 2 and that its name is aptly
chosen. For instance, the result of

Plot[squarewave[t], {t, 0, 6}]

should look like Fig. 7.5.9. If f .t/ is one of these engineering functions and p > 0,
then the function f .2t=p/ will have period p. To illustrate this, try

Plot[triangularwave[ 2 t=p ], {t, 0, 3 p}]

with various values of p.
Now let’s consider the mass-spring-dashpot equation

diffEq = m x''[t] + c x'[t] + k x[t] == input

with selected parameter values and an input forcing function with period p and
amplitude F0.

m = 4; c = 8; k = 5; p = 1; F0 = 4;
input = F0 squarewave[2 t=p];

You can plot this input function to verify that it has period 1:

Plot[input, {t, 0, 2}]

Finally, let’s suppose that the mass is initially at rest in its equilibrium position and
solve numerically the resulting initial value problem.

response = NDSolve[ {diffEq, x[0] == 0, x'[0] == 0},
x, {t, 0, 10}]

Plot[ x[t] =. response, {t, 0, 10}]

In the resulting Fig. 7.5.18 we see that after an initial transient dies out, the
response function x.t/ settles down (as expected?) to a periodic oscillation with the
same period as the input.

2 t

x
1
8

1
16

864

FIGURE 7.5.18. Response x.t/ to
period 1 square wave input.

Investigate this initial value problem with several mass–spring–dashpot para-
meters—for instance, selected digits of your student ID number—and with input
engineering functions having various amplitudes and periods.

7.6 Impulses and Delta Functions
Consider a force f .t/ that acts only during a very short time interval a 5 t 5 b,
with f .t/ D 0 outside this interval. A typical example would be the impulsive
force of a bat striking a ball—the impact is almost instantaneous. A quick surge
of voltage (resulting from a lightning bolt, for instance) is an analogous electrical
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phenomenon. In such a situation it often happens that the principal effect of the
force depends only on the value of the integral

p D
Z b

a

f .t/ dt (1)

and does not depend otherwise on precisely how f .t/ varies with time t . The num-
ber p in Eq. (1) is called the impulse of the force f .t/ over the interval Œa; b�.

In the case of a force f .t/ that acts on a particle of mass m in linear motion,
integration of Newton’s law

f .t/ D mv0.t/ D d

dt
Œmv.t/�

yields

p D
Z b

a

d

dt
Œmv.t/� dt D mv.b/ �mv.a/: (2)

Thus the impulse of the force is equal to the change in momentum of the particle.
So if change in momentum is the only effect with which we are concerned, we need
know only the impulse of the force; we need know neither the precise function f .t/
nor even the precise time interval during which it acts. This is fortunate, because
in a situation such as that of a batted ball, we are unlikely to have such detailed
information about the impulsive force that acts on the ball.

Our strategy for handling such a situation is to set up a reasonable mathemat-
ical model in which the unknown force f .t/ is replaced with a simple and explicit
force that has the same impulse. Suppose for simplicity that f .t/ has impulse 1 and
acts during some brief time interval beginning at time t D a = 0. Then we can select
a fixed number 
 > 0 that approximates the length of this time interval and replace
f .t/ with the specific function

da;	.t/ D

8̂<̂
:
1



if a 5 t < aC 
,

0 otherwise.

(3)

This is a function of t , with a and 
 being parameters that specify the time interval
Œa; aC 
�. If b = aC 
, then we see (Fig. 7.6.1) that the impulse of da;	 over Œa; b� is

p D
Z b

a

da;	.t/ dt D
Z aC	

a

1



dt D 1:

Thus da;	 has a unit impulse, whatever the number 
 may be. Essentially the same

a

Area = 1

a + ε

ε

t

x

ε

1

FIGURE 7.6.1. The graph of the
impulse function da;�.t/.

computation gives Z 1

0

da;	.t/ dt D 1: (4)

Because the precise time interval during which the force acts seems unimpor-
tant, it is tempting to think of an instantaneous impulse that occurs precisely at the
instant t D a. We might try to model such an instantaneous unit impulse by taking
the limit as 
 ! 0, thereby defining

ıa.t/ D lim
	!0

da;	.t/; (5)
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where a = 0. If we could also take the limit under the integral sign in Eq. (4), then
it would follow that Z 1

0

ıa.t/ dt D 1: (6)

But the limit in Eq. (5) gives

ıa.t/ D
(
C1 if t D a,

0 if t 6D a.
(7)

Obviously, no actual function can satisfy both (6) and (7)—if a function is zero
except at a single point, then its integral is not 1 but zero. Nevertheless, the symbol
ıa.t/ is very useful. However interpreted, it is called the Dirac delta function at a
after the British theoretical physicist P. A. M. Dirac (1902–1984), who in the early
1930s introduced a “function” allegedly enjoying the properties in Eqs. (6) and (7).

Delta Functions as Operators
The following computation motivates the meaning that we will attach here to the
symbol ıa.t/. If g.t/ is a continuous function, then the mean value theorem for
integrals implies that Z aC	

a

g.t/ dt D 
g � t 	
for some point t in Œa; aC 
�. It follows that

lim
	!0

Z 1

0

g.t/da;	.t/ dt D lim
	!0

Z aC	

a

g.t/ � 1


dt D lim

	!0
g
�
t
	 D g.a/ (8)

by continuity of g at t D a. If ıa.t/ were a function in the strict sense of the
definition, and if we could interchange the limit and the integral in Eq. (8), we
therefore could conclude thatZ 1

0

g.t/ıa.t/ dt D g.a/: (9)

We take Eq. (9) as the definition (!) of the symbol ıa.t/. Although we call it
the delta function, it is not a genuine function; instead, it specifies the operationZ 1

0

� � � ıa.t/ dt;

which—when applied to a continuous function g.t/—sifts out or selects the value
g.a/ of this function at the point a = 0. This idea is shown schematically in
Fig. 7.6.2. Note that we will use the symbol ıa.t/ only in the context of integrals
such as that in Eq. (9), or when it will appear subsequently in such an integral.

Function
g (t)

Number
g (a)

∞

0

δ
� … a(t)dt

FIGURE 7.6.2. A diagram
illustrating how the delta function
“sifts out” the value g.a/.

For instance, if we take g.t/ D e�st in Eq. (9), the result isZ 1

0

e�stıa.t/ dt D e�as : (10)

We therefore define the Laplace transform of the delta function to be

ˇfıa.t/g D e�as .a = 0/: (11)
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If we write

ı.t/ D ı0.t/ and ı.t � a/ D ıa.t/; (12)

then (11) with a D 0 gives

ˇfı.t/g D 1: (13)

Note that if ı.t/were an actual function satisfying the usual conditions for existence
of its Laplace transform, then Eq. (13) would contradict the corollary to Theorem 2
of Section 7.1. But there is no problem here; ı.t/ is not a function, and Eq. (13) is
our definition of ˇfı.t/g.

Delta Function Inputs
Now, finally, suppose that we are given a mechanical system whose response x.t/
to the external force f .t/ is determined by the differential equation

Ax00 C Bx0 C Cx D f .t/: (14)

To investigate the response of this system to a unit impulse at the instant t D a, it
seems reasonable to replace f .t/ with ıa.t/ and begin with the equation

Ax00 C Bx0 C Cx D ıa.t/: (15)

But what is meant by the solution of such an equation? We will call x.t/ a solution
of Eq. (15) provided that

x.t/ D lim
	!0

x	.t/; (16)

where x	.t/ is a solution of

Ax00 C Bx0 C Cx D da;	.t/: (17)

Because

da;	.t/ D
1



Œua.t/ � uaC	.t/� (18)

is an ordinary function, Eq. (17) makes sense. For simplicity suppose the initial
conditions to be x.0/D x0.0/D 0. When we transform Eq. (17), writingX	Dˇfx	g,
we get the equation

.As2 C Bs C C/X	.s/ D
1




 
e�as

s
� e

�.aC	/s

s

!
D .e�as/

1 � e�s	

s

:

If we take the limit in the last equation as 
 ! 0, and note that

lim
	!0

1 � e�s	

s

D 1

by l’Hôpital’s rule, we get the equation

.As2 C Bs C C/X.s/ D e�as (19)

if
X.s/ D lim

	!0
X	.x/:

Note that this is precisely the same result that we would obtain if we transformed
Eq. (15) directly, using the fact that ˇfıa.t/g D e�as .
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On this basis it is reasonable to solve a differential equation involving a delta
function by employing the Laplace transform method exactly as if ıa.t/ were an
ordinary function. It is important to verify that the solution so obtained agrees
with the one defined in Eq. (16), but this depends on a highly technical analysis of
the limiting procedures involved; we consider it beyond the scope of the present
discussion. The formal method is valid in all the examples of this section and will
produce correct results in the subsequent problem set.

Example 1 A mass m D 1 is attached to a spring with constant k D 4; there is no dashpot. The mass is
released from rest with x.0/ D 3. At the instant t D 2� the mass is struck with a hammer,
providing an impulse p D 8. Determine the motion of the mass.

Solution According to Problem 15, we need to solve the initial value problem

x00 C 4x D 8ı2� .t/I x.0/ D 3; x0.0/ D 0:
We apply the Laplace transform to get

s2X.s/ � 3s C 4X.s/ D 8e�2�s ;

so

X.s/ D 3s

s2 C 4 C
8e�2�s

s2 C 4 :
Recalling the transforms of sine and cosine, as well as the theorem on translations on the
t-axis (Theorem 1 of Section 7.5), we see that the inverse transform is

x.t/ D 3 cos 2t C 4u.t � 2�/ sin 2.t � 2�/
D 3 cos 2t C 4u2� .t/ sin 2t:

Because 3 cos 2t C 4 sin 2t D 5 cos.2t � ˛/ with ˛ D tan�1.4=3/ � 0:9273, separation of the
cases t < 2� and t = 2� gives

x.t/ �
(
3 cos 2t if t 5 2� ,

5 cos.2t � 0:9273/ if t = 2� .

The resulting motion is shown in Fig. 7.6.3. Note that the impulse at t D 2� results in a
visible discontinuity in the velocity at t D 2� , as it instantaneously increases the amplitude
of the oscillations of the mass from 3 to 5.

0
t

x

2π 4π 6π

0

x = 5

πt = 2

x = 3

x = –3

–6

6

x = –5

FIGURE 7.6.3. The motion of the mass of Example 1.

Delta Functions and Step Functions
It is useful to regard the delta function ıa.t/ as the derivative of the unit step function
ua.t/. To see why this is reasonable, consider the continuous approximation ua;	.t/

1

a a + ε
t

x

ua, (t)
ε

FIGURE 7.6.4. Approximation of
ua.t/ by ua;�.t/.

to ua.t/ shown in Fig. 7.6.4. We readily verify that

d

dt
ua;	.t/ D da;	.t/:
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Because
ua.t/ D lim

	!0
ua;	.t/ and ıa.t/ D lim

	!0
da;	.t/;

an interchange of limits and derivatives yields

d

dt
ua.t/ D lim

	!0

d

dt
ua;	.t/ D lim

	!0
da;	.t/;

and therefore

d

dt
ua.t/ D ıa.t/ D ı.t � a/: (20)

We may regard this as the formal definition of the derivative of the unit step function,
although ua.t/ is not differentiable in the ordinary sense at t D a.

Example 2 We return to the RLC circuit of Example 5 of Section 7.5, with R D 110 �, L D 1 H,
C D 0:001 F, and a battery supplying e0 D 90 V. Suppose that the circuit is initially passive—
no current and no charge. At time t D 0 the switch is closed, and at time t D 1 it is opened
and left open. Find the resulting current i.t/ in the circuit.

Solution In Section 7.5 we circumvented the discontinuity in the voltage by employing the integrodif-
ferential form of the circuit equation. Now that delta functions are available, we may begin
with the ordinary circuit equation

Li 00 CRi 0 C 1

C
i D e0.t/:

In this example we have

e.t/ D 90 � 90u.t � 1/ D 90 � 90u1.t/;

so e0.t/ D �90ı.t � 1/ by Eq. (20). Hence we want to solve the initial value problem

i 00 C 110i 0 C 1000i D �90ı.t � 1/I i.0/ D 0; i 0.0/ D 90: (21)

The fact that i 0.0/ D 90 comes from substitution of t D 0 in the equation

Li 0.t/CRi.t/C 1

C
q.t/ D e.t/

with the numerical values i.0/ D q.0/ D 0 and e.0/ D 90.
When we transform the problem in (21), we get the equation

s2I.s/ � 90C 110sI.s/C 1000I.s/ D �90e�s :

Hence

I.s/ D 90.1 � e�s/

s2 C 110s C 1000 :
This is precisely the same transform I.s/ we found in Example 5 of Section 7.5, so inversion
of I.s/ yields the same solution i.t/ recorded there.

Example 3 Consider a mass on a spring withmD k D 1 and x.0/D x0.0/D 0. At each of the instants t D
0; �; 2�; 3�; : : : ; n�; : : : ; the mass is struck a hammer blow with a unit impulse. Determine
the resulting motion.

Solution We need to solve the initial value problem

x00 C x D
1X

nD0

ın� .t/I x.0/ D 0 D x0.0/:

Because ˇfın� .t/g D e�n�s , the transformed equation is

s2X.s/CX.s/ D
1X

nD0

e�n�s ;
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so

X.s/ D
1X

nD0

e�n�s

s2 C 1 :

We compute the inverse Laplace transform term by term; the result is

x.t/ D
1X

nD0

u.t � n�/ sin.t � n�/:

Because sin.t � n�/ D .�1/n sin t and u.t � n�/ D 0 for t < n� , we see that if n� < t <

.nC 1/� , then
x.t/ D sin t � sin t C sin t � � � � C .�1/n sin t I

that is,

x.t/ D
(

sin t if n is even;

0 if n is odd:

Hence x.t/ is the half-wave rectification of sin t shown in Fig. 7.6.5. The physical explanation
is that the first hammer blow (at time t D 0) starts the mass moving to the right; just as it
returns to the origin, the second hammer blow stops it dead; it remains motionless until the
third hammer blow starts it moving again; and so on. Of course, if the hammer blows are not
perfectly synchronized, then the motion of the mass will be quite different.

π π2 π3 π4

x(t )

t

FIGURE 7.6.5. The half-wave
rectification of sin t .

Systems Analysis and Duhamel’s Principle
Consider a physical system in which the output or response x.t/ to the input func-
tion f .t/ is described by the differential equation

ax00 C bx0 C cx D f .t/; (22)

where the constant coefficients a, b, and c are determined by the physical parameters
of the system and are independent of f .t/. The mass-spring-dashpot system and the
series RLC circuit are familiar examples of this general situation.

For simplicity we assume that the system is initially passive: x.0/D x0.0/D 0.
Then the transform of Eq. (22) is

as2X.s/C bsX.s/C cX.s/ D F.s/;

so

X.s/ D F.s/

as2 C bs C c D W.s/F.s/: (23)

The function

W.s/ D 1

as2 C bs C c (24)

is called the transfer function of the system. Thus the transform of the response to
the input f .t/ is the product of W.s/ and the transform F.s/.

The function

w.t/ D ˇ
�1fW.s/g (25)

is called the weight function of the system. From Eq. (24) we see by convolution
that

x.t/ D
Z t

0

w.�/f .t � �/ d�: (26)
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This formula is Duhamel’s principle for the system. What is important is that
the weight function w.t/ is determined completely by the parameters of the system.
Once w.t/ has been determined, the integral in (26) gives the response of the system
to an arbitrary input function f .t/.

In principle—that is, via the convolution integral—Duhamel’s principle re-
duces the problem of finding a system’s outputs for all possible inputs to calculation
of the single inverse Laplace transform in (25) that is needed to find its weight func-
tion. Hence, a computational analogue for a physical mass–spring–dashpot system
described by (22) can be constructed in the form of a “black box” that is hard wired
to calculate automatically (and then tabulate or graph, for instance) the response
x.t/ given by (26) whenever a desired force function f .t/ is input. In engineer-
ing practice, all manner of physical systems are “modeled” in this manner, so their
behaviors can be studied without need for expensive or time-consuming experimen-
tation.

Example 4 Consider a mass–spring–dashpot system (initially passive) that responds to the external force
f .t/ in accord with the equation x00 C 6x0 C 10x D f .t/. Then

W.s/ D 1

s2 C 6s C 10 D
1

.s C 3/2 C 1 ;

so the weight function is w.t/ D e�3t sin t . Then Duhamel’s principle implies that the re-
sponse x.t/ to the force f .t/ is

x.t/ D
Z t

0
e�3� .sin �/f .t � �/ d�:

Note that

W.s/ D 1

as2 C bs C c D
ˇfı.t/g

as2 C bs C c :

Consequently, it follows from Eq. (23) that the weight function is simply the re-
sponse of the system to the delta function input ı.t/. For this reason w.t/ is some-
times called the unit impulse response. A response that is usually easier to measure
in practice is the response h.t/ to the unit step function u.t/; h.t/ is the unit step
response. Because ˇfu.t/g D 1=s, we see from Eq. (23) that the transform of h.t/
is

H.s/ D W.s/

s
:

It follows from the formula for transforms of integrals that

h.t/ D
Z t

0

w.�/ d�; so that w.t/ D h0.t/: (27)

Thus the weight function, or unit impulse response, is the derivative of the unit step
response. Substitution of (27) in Duhamel’s principle gives

x.t/ D
Z t

0

h0.t/f .t � �/ d� (28)

for the response of the system to the input f .t/.
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APPLICATIONS: To describe a typical application of Eq. (28), suppose that we are
given a complex series circuit containing many inductors, resistors, and capacitors.
Assume that its circuit equation is a linear equation of the form in (22), but with
i in place of x. What if the coefficients a, b, and c are unknown, perhaps only
because they are too difficult to compute? We would still want to know the current
i.t/ corresponding to any input f .t/ D e0.t/. We connect the circuit to a linearly
increasing voltage e.t/D t , so that f .t/D e0.t/D 1Du.t/, and measure the response
h.t/ with an ammeter. We then compute the derivative h0.t/, either numerically or
graphically. Then according to Eq. (28), the output current i.t/ corresponding to the
input voltage e.t/ will be given by

i.t/ D
Z t

0

h0.�/e0.t � �/ d�

(using the fact that f .t/ D e0.t/).
Historical Remark In conclusion, we remark that around 1950, after engineers and physi-
cists had been using delta functions widely and fruitfully for about 20 years without rigorous
justification, the French mathematician Laurent Schwartz developed a rigorous mathematical
theory of generalized functions that supplied the missing logical foundation for delta function
techniques. Every piecewise continuous ordinary function is a generalized function, but the
delta function is an example of a generalized function that is not an ordinary function.

7.6 Problems
Solve the initial value problems in Problems 1 through 8, and
graph each solution function x.t/.

1. x00 C 4x D ı.t/; x.0/ D x0.0/ D 0
2. x00 C 4x D ı.t/C ı.t � �/; x.0/ D x0.0/ D 0
3. x00 C 4x0 C 4x D 1C ı.t � 2/; x.0/ D x0.0/ D 0
4. x00 C 2x0 C x D t C ı.t/; x.0/ D 0, x0.0/ D 1
5. x00 C 2x0 C 2x D 2ı.t � �/; x.0/ D x0.0/ D 0
6. x00 C 9x D ı.t � 3�/C cos 3t ; x.0/ D x0.0/ D 0
7. x00C 4x0C 5x D ı.t ��/C ı.t � 2�/; x.0/D 0; x0.0/D 2
8. x00 C 2x0 C x D ı.t/ � ı.t � 2/; x.0/ D x0.0/ D 2

Apply Duhamel’s principle to write an integral formula for the
solution of each initial value problem in Problems 9 through
12.

9. x00 C 4x D f .t/; x.0/ D x0.0/ D 0
10. x00 C 6x0 C 9x D f .t/; x.0/ D x0.0/ D 0
11. x00 C 6x0 C 8x D f .t/; x.0/ D x0.0/ D 0
12. x00 C 4x0 C 8x D f .t/; x.0/ D x0.0/ D 0
13. This problem deals with a mass m, initially at rest at the

origin, that receives an impulse p at time t D 0. (a) Find
the solution x	.t/ of the problem

mx00 D pd0;	.t/I x.0/ D x0.0/ D 0:
(b) Show that lim

	!0
x	.t/ agrees with the solution of the

problem

mx00 D pı.t/I x.0/ D x0.0/ D 0:
(c) Show that mv D p for t > 0 (v D dx=dt).

14. Verify that u0.t � a/ D ı.t � a/ by solving the problem

x0 D ı.t � a/I x.0/ D 0

to obtain x.t/ D u.t � a/.
15. This problem deals with a mass m on a spring (with con-

stant k) that receives an impulse p0 D mv0 at time t D 0.
Show that the initial value problems

mx00 C kx D 0I x.0/ D 0; x0.0/ D v0

and

mx00 C kx D p0ı.t/I x.0/ D 0; x0.0/ D 0

have the same solution. Thus the effect of p0ı.t/ is, in-
deed, to impart to the particle an initial momentum p0.

16. This is a generalization of Problem 15. Show that the
problems

ax00 C bx0 C cx D f .t/I x.0/ D 0; x0.0/ D v0

and

ax00 C bx0 C cx D f .t/C av0ı.t/I x.0/ D x0.0/ D 0

have the same solution for t > 0. Thus the effect of the
term av0ı.t/ is to supply the initial condition x0.0/ D v0.

17. Consider an initially passive RC circuit (no inductance)
with a battery supplying e0 volts. (a) If the switch to the
battery is closed at time t D a and opened at time t D b > a
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(and left open thereafter), show that the current in the cir-
cuit satisfies the initial value problem

Ri 0 C 1

C
i D e0ı.t � a/ � e0ı.t � b/I i.0/ D 0:

(b) Solve this problem if R D 100 �, C D 10�4 F,
e0 D 100 V, a D 1 (s), and b D 2 (s). Show that i.t/ > 0 if
1 < t < 2 and that i.t/ < 0 if t > 2.

18. Consider an initially passive LC circuit (no resistance)
with a battery supplying e0 volts. (a) If the switch is
closed at time t D 0 and opened at time t D a > 0, show
that the current in the circuit satisfies the initial value prob-
lem

Li 00 C 1

C
i D e0ı.t/ � e0ı.t � a/I

i.0/ D i 0.0/ D 0:
(b) If L D 1 H, C D 10�2 F, e0 D 10 V, and a D � (s),
show that

i.t/ D
(

sin 10t if t < � ,

0 if t > � .

Thus the current oscillates through five cycles and then
stops abruptly when the switch is opened (Fig. 7.6.6).

t

–1

1

π

i(t)

FIGURE 7.6.6. The current function of Problem 18.

19. Consider the LC circuit of Problem 18(b), except suppose
that the switch is alternately closed and opened at times
t D 0, �=10, 2�=10, : : : . (a) Show that i.t/ satisfies the
initial value problem

i 00 C 100i D 10
1X

nD0

.�1/nı
�
t � n�

10

�
I i.0/ D i 0.0/ D 0:

(b) Solve this initial value problem to show that

i.t/ D .nC 1/ sin 10t if
n�

10
< t <

.nC 1/�
10

:

Thus a resonance phenomenon occurs (see Fig. 7.6.7).

t

–10

10

ππ

5 5

2π

5

3π

5

4π

i(t)

FIGURE 7.6.7. The current function of Problem 19.

20. Repeat Problem 19, except suppose that the switch is al-
ternately closed and opened at times t D 0, �=5, 2�=5, : : : ,
n�=5, : : : . Now show that if

n�

5
< t <

.nC 1/�
5

;

then

i.t/ D
(

sin 10t if n is evenI
0 if n is odd.

Thus the current in alternate cycles of length �=5 first ex-
ecutes a sine oscillation during one cycle, then is dormant
during the next cycle, and so on (see Fig. 7.6.8).

t
ππ

5 5

2π

5

3π

5

4π

i(t)

FIGURE 7.6.8. The current function of Problem 20.

21. Consider an RLC circuit in series with a battery, with
L D 1 H, R D 60 �, C D 10�3 F, and e0 D 10 V.
(a) Suppose that the switch is alternately closed and
opened at times t D 0, �=10, 2�=10, : : : . Show that i.t/
satisfies the initial value problem

i 00 C 60i 0 C 1000i D 10
1X

nD0

.�1/nı
�
t � n�

10

�
I

i.0/ D i 0.0/ D 0:
(b) Solve this problem to show that if

n�

10
< t <

.nC 1/�
10

;

then

i.t/ D e3n�C3� � 1
e3� � 1 e�30t sin 10t:

Construct a figure showing the graph of this current func-
tion.

22. Consider a mass m D 1 on a spring with constant k D 1,
initially at rest, but struck with a hammer at each of the in-
stants t D 0, 2� , 4� , : : : . Suppose that each hammer blow
imparts an impulse ofC1. Show that the position function
x.t/ of the mass satisfies the initial value problem

x00 C x D
1X

nD0

ı.t � 2n�/I x.0/ D x0.0/ D 0:

Solve this problem to show that if 2n� < t < 2.nC 1/� ,
then x.t/ D .nC 1/ sin t . Thus resonance occurs because
the mass is struck each time it passes through the origin
moving to the right—in contrast with Example 3, in which
the mass was struck each time it returned to the origin. Fi-
nally, construct a figure showing the graph of this position
function.



88 Power Series
Methods

8.1 Introduction and Review of Power Series

In Section 3.3 we saw that solving a homogeneous linear differential equation
with constant coefficients can be reduced to the algebraic problem of finding the

roots of its characteristic equation. There is no similar procedure for solving linear
differential equations with variable coefficients, at least not routinely and in finitely
many steps. With the exception of special types, such as the occasional equation that
can be solved by inspection, linear equations with variable coefficients generally
require the power series techniques of this chapter.

These techniques suffice for many of the nonelementary differential equations
that appear most frequently in applications. Perhaps the most important (because of
its applications in such areas as acoustics, heat flow, and electromagnetic radiation)
is Bessel’s equation of order n:

x2y00 C xy0 C .x2 � n2/y D 0:

Legendre’s equation of order n is important in many applications. It has the form

.1 � x2/y00 � 2xy0 C n.nC 1/y D 0:

In this section we introduce the power series method in its simplest form and,
along the way, state (without proof) several theorems that constitute a review of the
basic facts about power series. Recall first that a power series in (powers of) x � a
is an infinite series of the form

1X
nD0

cn.x � a/n D c0 C c1.x � a/C c2.x � a/2 C � � � C cn.x � a/n C � � � : (1)

If a D 0, this is a power series in x:

1X
nD0

cnx
n D c0 C c1x C c2x

2 C � � � C cnx
n C � � � : (2)

494
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We will confine our review mainly to power series in x, but every general property
of power series in x can be converted to a general property of power series in x � a
by replacement of x with x � a.

The power series in (2) converges on the interval I provided that the limit

1X
nD0

cnx
n D lim

N !1

NX
nD0

cnx
n (3)

exists for all x in I . In this case the sum

f .x/ D
1X

nD0

cnx
n (4)

is defined on I , and we call the series
P
cnx

n a power series representation of
the function f on I . The following power series representations of elementary
functions should be familiar to you from introductory calculus:

ex D
1X

nD0

xn

nŠ
D 1C x C x2

2Š
C x3

3Š
C � � � I (5)

cos x D
1X

nD0

.�1/nx2n

.2n/Š
D 1 � x

2

2Š
C x4

4Š
� � � � I (6)

sin x D
1X

nD0

.�1/nx2nC1

.2nC 1/Š D x �
x3

3Š
C x5

5Š
� � � � I (7)

coshx D
1X

nD0

x2n

.2n/Š
D 1C x2

2Š
C x4

4Š
C � � � I (8)

sinh x D
1X

nD0

x2nC1

.2nC 1/Š D x C
x3

3Š
C x5

5Š
C � � � I (9)

ln.1C x/ D
1X

nD1

.�1/nC1xn

n
D x � x

2

2
C x3

3
� � � � I (10)

1

1 � x D
1X

nD0

xn D 1C x C x2 C x3 C � � � I (11)

and

.1C x/˛ D 1C ˛x C ˛.˛ � 1/x2

2Š
C ˛.˛ � 1/.˛ � 2/x3

3Š
C � � � : (12)

In compact summation notation, we observe the usual conventions that 0Š D 1 and
that x0 D 1 for all x, including x D 0. The series in (5) through (9) converge to
the indicated functions for all x. In contrast, the series in (10) and (11) converge if
jxj < 1 but diverge if jxj > 1. (What if jxj D 1?) The series in (11) is the geometric
series. The series in (12), with ˛ an arbitrary real number, is the binomial series.
If ˛ is a nonnegative integer n, then the series in (12) terminates and the binomial
series reduces to a polynomial of degree n which converges for all x. Otherwise,
the series is actually infinite and it converges if jxj < 1 and diverges if jxj > 1; its
behavior for jxj D 1 depends on the value of ˛.
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Remark Power series such as those listed in (5) through (12) are often derived as Taylor
series. The Taylor series with center x D a of the function f is the power series

1X
nD0

f .n/.a/

nŠ
.x � a/n D f .a/C f 0.a/.x � a/C f 00.a/

2Š
.x � a/2 C � � � (13)

in powers of x � a, under the hypothesis that f is infinitely differentiable at x D a (so that
the coefficients in Eq. (13) are all defined). If a D 0, then the series in (13) is the Maclaurin
series

1X
nD0

f .n/.0/

nŠ
xn D f .0/C f 0.0/x C f 00.0/

2Š
x2 C f .3/.0/

3Š
x3 C � � � : (130)

For example, suppose that f .x/ D ex . Then f .n/.x/ D ex , and hence f .n/.0/ D 1 for all
n = 0. In this case Eq. (130) reduces to the exponential series in (5).

Power Series Operations
If the Taylor series of the function f converges to f .x/ for all x in some open
interval containing a, then we say that the function f is analytic at x D a. For
example,

� every polynomial function is analytic everywhere;
� every rational function is analytic wherever its denominator is nonzero;
� more generally, if the two functions f and g are both analytic at x D a, then so

are their sum f Cg and their product f �g, as is their quotient f=g if g.a/ 6D 0.

For instance, the function h.x/ D tan x D .sin x/=.cosx/ is analytic at x D 0
because cos 0 D 1 6D 0 and the sine and cosine functions are analytic (by virtue of
their convergent power series representations in Eqs. (6) and (7)). It is rather awk-
ward to compute the Taylor series of the tangent function using Eq. (13) because
of the way in which its successive derivatives grow in complexity (try it!). Fortu-
nately, power series may be manipulated algebraically in much the same way as
polynomials. For example, if

f .x/ D
1X

nD0

anx
n and g.x/ D

1X
nD0

bnx
n; (14)

then

f .x/C g.x/ D
1X

nD0

.an C bn/x
n (15)

and

f .x/g.x/ D
1X

nD0

cnx
n

D a0b0 C .a0b1 C a1b0/x C .a0b2 C a1b1 C a2b0/x
2 C � � � ; (16)

where cn D a0bnC a1bn�1C � � � C anb0. The series in (15) is the result of termwise
addition, and the series in (16) is the result of formal multiplication—multiplying
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each term of the first series by each term of the second and then collecting coef-
ficients of like powers of x. (Thus the processes strongly resemble addition and
multiplication of ordinary polynomials.) The series in (15) and (16) converge to
f .x/ C g.x/ and f .x/g.x/, respectively, on any open interval on which both the
series in (14) converge. For example,

sin x cos x D
�
x � 1

6
x3 C 1

120
x5 � � � �

��
1 � 1

2
x2 C 1

24
x4 � � � �

�

D x C
�
�1
6
� 1
2

�
x3 C

�
1

24
C 1

12
C 1

120

�
x5 C � � �

D x � 4
6
x3 C 16

120
x5 � � � �

D 1

2

�
.2x/ � .2x/

3

3Š
C .2x/5

5Š
� � � �

�
D 1

2
sin 2x

for all x.
Similarly, the quotient of two power series can be computed by long division,

as illustrated by the computation shown in Fig. 8.1.1. This division of the Taylor
series for cos x into that for sinx yields the first few terms of the series

tan x D x C 1

3
x3 C 2

15
x5 C 17

315
x7 C � � � : (17)

Division of power series is more treacherous than multiplication; the series thus
obtained for f=g may fail to converge at some points where the series for f and g
both converge. For example, the sine and cosine series converge for all x, but the
tangent series in (17) converges only if jxj < �=2.

The Power Series Method
The power series method for solving a differential equation consists of substituting
the power series

y D
1X

nD0

cnx
n (18)

in the differential equation and then attempting to determine what the coefficients
c0, c1, c2, : : : must be in order that the power series will satisfy the differential
equation. This is reminiscent of the method of undetermined coefficients, but now
we have infinitely many coefficients somehow to determine. This method is not
always successful, but when it is we obtain an infinite series representation of a
solution, in contrast to the “closed form” solutions that our previous methods have
yielded.

Before we can substitute the power series in (18) in a differential equation, we
must first know what to substitute for the derivatives y0, y00, : : : . The following the-
orem (stated without proof) tells us that the derivative y0 of y DP cnx

n is obtained
by the simple procedure of writing the sum of the derivatives of the individual terms
in the series for y.
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x C x3

3
C 2x5

15
C 17x7

315
C � � �

1 � x
2

2
C x4

24
� x6

720
C � � �

1A x � x3

6
C x5

120
� x7

5040
C � � �

x � x3

2
C x5

24
� x7

720
C � � �

x3

3
� x5

30
C x7

840
C � � �

x3

3
� x5

6
C x7

72
� � � �

2x5

15
� 4x7

315
C � � �

2x5

15
� x7

15
C � � �

17x7

315
C � � �

:::

FIGURE 8.1.1. Obtaining the series for tan x by division of series.

THEOREM 1 Termwise Differentiation of Power Series

If the power series representation

f .x/ D
1X

nD0

cnx
n D c0 C c1x C c2x

2 C c3x
3 C � � � (19)

of the function f converges on the open interval I , then f is differentiable on I ,
and

f 0.x/ D
1X

nD1

ncnx
n�1 D c1 C 2c2x C 3c3x

2 C � � � (20)

at each point of I .

For example, differentiation of the geometric series

1

1 � x D
1X

nD0

xn D 1C x C x2 C x3 C � � � (11)
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gives
1

.1 � x/2 D
1X

nD1

nxn�1 D 1C 2x C 3x2 C 4x3 C � � � :

The process of determining the coefficients in the series y D P
cnx

n so
that it will satisfy a given differential equation depends also on Theorem 2. This
theorem—also stated without proof—tells us that if two power series represent the
same function, then they are the same series. In particular, the Taylor series in (13)
is the only power series (in powers of x � a) that represents the function f .

THEOREM 2 Identity Principle

If 1X
nD0

anx
n D

1X
nD0

bnx
n

for every point x in some open interval I , then an D bn for all n = 0.

In particular, if
P
anx

n D 0 for all x in some open interval, it follows from
Theorem 2 that an D 0 for all n = 0.

Example 1 Solve the equation y0 C 2y D 0.
Solution We substitute the series

y D
1X

nD0

cnx
n and y0 D

1X
nD1

ncnx
n�1

and obtain
1X

nD1

ncnx
n�1 C 2

1X
nD0

cnx
n D 0: (21)

To compare coefficients here, we need the general term in each sum to be the term containing
xn. To accomplish this, we shift the index of summation in the first sum. To see how to do
this, note that

1X
nD1

ncnx
n�1 D c1 C 2c2x C 3c3x

2 C � � � D
1X

nD0

.nC 1/cnC1x
n:

Thus we can replace n with nC 1 if, at the same time, we start counting one step lower; that
is, at n D 0 rather than at n D 1. This is a shift of C1 in the index of summation. The result
of making this shift in Eq. (21) is the identity

1X
nD0

.nC 1/cnC1x
n C 2

1X
nD0

cnx
n D 0I

that is,
1X

nD0

Œ.nC 1/cnC1 C 2cn�x
n D 0:

If this equation holds on some interval, then it follows from the identity principle that .nC
1/cnC1 C 2cn D 0 for all n = 0; consequently,

cnC1 D �
2cn

nC 1 (22)

for all n= 0. Equation (22) is a recurrence relation from which we can successively compute
c1, c2, c3, : : : in terms of c0; the latter will turn out to be the arbitrary constant that we expect
to find in a general solution of a first-order differential equation.
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With n D 0, Eq. (22) gives

c1 D �
2c0

1
:

With n D 1, Eq. (22) gives

c2 D �
2c1

2
D C2

2c0

1 � 2 D
22c0

2Š
:

With n D 2, Eq. (22) gives

c3 D �
2c2

3
D � 23c0

1 � 2 � 3 D �
23c0

3Š
:

By now it should be clear that after n such steps, we will have

cn D .�1/n
2nc0

nŠ
; n = 1:

(This is easy to prove by induction on n.) Consequently, our solution takes the form

y.x/ D
1X

nD0

cnx
n D

1X
nD0

.�1/n 2
nc0

nŠ
xn D c0

1X
nD0

.�2x/n
nŠ

D c0e
�2x :

In the final step we have used the familiar exponential series in Eq. (5) to identify our power
series solution as the same solution y.x/ D c0e

�2x we could have obtained by the method of
separation of variables.

Shift of Index of Summation
In the solution of Example 1 we wrote

1X
nD1

ncnx
n�1 D

1X
nD0

.nC 1/cnC1x
n (23)

by shifting the index of summation by C1 in the series on the left. That is, we
simultaneously increased the index of summation by 1 (replacing n with n C 1,
n ! nC 1) and decreased the starting point by 1, from n D 1 to n D 0, thereby
obtaining the series on the right. This procedure is valid because each infinite series
in (23) is simply a compact notation for the single series

c1 C 2c2x C 3c3x
2 C 4c4x

3 C � � � : (24)

More generally, we can shift the index of summation by k in an infinite series
by simultaneously increasing the summation index by k (n! nCk) and decreasing
the starting point by k. For instance, a shift by C2 (n! nC 2) yields

1X
nD3

anx
n�1 D

1X
nD1

anC2x
nC1:

If k is negative, we interpret a “decrease by k” as an increase by �k D jkj. Thus a
shift by �2 (n! n � 2) in the index of summation yields

1X
nD1

ncnx
n�1 D

1X
nD3

.n � 2/cn�2x
n�3I

we have decreased the index of summation by 2 but increased the starting point by
2, from n D 1 to n D 3. You should check that the summation on the right is merely
another representation of the series in (24).
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We know that the power series obtained in Example 1 converges for all x
because it is an exponential series. More commonly, a power series solution is
not recognizable in terms of the familiar elementary functions. When we get an
unfamiliar power series solution, we need a way of finding where it converges.
After all, y D P

cnx
n is merely an assumed form of the solution. The procedure

illustrated in Example 1 for finding the coefficients fcng is merely a formal process
and may or may not be valid. Its validity—in applying Theorem 1 to compute
y0 and applying Theorem 2 to obtain a recurrence relation for the coefficients—
depends on the convergence of the initially unknown series y D P

cnx
n. Hence

this formal process is justified only if in the end we can show that the power series
we obtain converges on some open interval. If so, it then represents a solution of
the differential equation on that interval. The following theorem (which we state
without proof) may be used for this purpose.

THEOREM 3 Radius of Convergence

Given the power series
P
cnx

n, suppose that the limit

� D lim
n!1

ˇ̌̌̌
cn

cnC1

ˇ̌̌̌
(25)

exists (� is finite) or is infinite (in this case we will write � D1). Then

(a) If � D 0, then the series diverges for all x 6D 0.
(b) If 0 < � <1, then

P
cnx

n converges if jxj < � and diverges if jxj > �.
(c) If � D1, then the series converges for all x.

The number � in (25) is called the radius of convergence of the power seriesP
cnx

n. For instance, for the power series obtained in Example 1, we have

� D lim
n!1

ˇ̌̌̌
.�1/n2nc0=nŠ

.�1/nC12nC1c0=.nC 1/Š

ˇ̌̌̌
D lim

n!1
nC 1
2
D1;

and consequently the series we obtained in Example 1 converges for all x. Even
if the limit in (25) fails to exist, there always will be a number � such that exactly
one of the three alternatives in Theorem 3 holds. This number may be difficult to
find, but for the power series we will consider in this chapter, Eq. (25) will be quite
sufficient for computing the radius of convergence.

Example 2 Solve the equation .x � 3/y0 C 2y D 0.
Solution As before, we substitute

y D
1X

nD0

cnx
n and y0 D

1X
nD1

ncnx
n�1

to obtain

.x � 3/
1X

nD1

ncnx
n�1 C 2

1X
nD0

cnx
n D 0

so that
1X

nD1

ncnx
n � 3

1X
nD1

ncnx
n�1 C 2

1X
nD0

cnx
n D 0:
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In the first sum we can replace n D 1 with n D 0 with no effect on the sum. In the second
sum we shift the index of summation by C1. This yields

1X
nD0

ncnx
n � 3

1X
nD0

.nC 1/cnC1x
n C 2

1X
nD0

cnx
n D 0I

that is,
1X

nD0

Œncn � 3.nC 1/cnC1 C 2cn� x
n D 0:

The identity principle then gives

ncn � 3.nC 1/cnC1 C 2cn D 0;

from which we obtain the recurrence relation

cnC1 D
nC 2
3.nC 1/ cn for n = 0:

We apply this formula with n D 0, n D 1, and n D 2, in turn, and find that

c1 D
2

3
c0; c2 D

3

3 � 2c1 D
3

32
c0; and c3 D

4

3 � 3c2 D
4

33
c0:

This is almost enough to make the pattern evident; it is not difficult to show by induction on
n that

cn D
nC 1
3n

c0 if n = 1:

Hence our proposed power series solution is

y.x/ D c0

1X
nD0

nC 1
3n

xn: (26)

Its radius of convergence is

� D lim
n!1

ˇ̌̌̌
cn

cnC1

ˇ̌̌̌
D lim

n!1
3nC 3
nC 2 D 3:

Thus the series in (26) converges if �3 < x < 3 and diverges if jxj > 3. In this particular
example we can explain why. An elementary solution (obtained by separation of variables)
of our differential equation is y D 1=.3 � x/2. If we differentiate termwise the geometric
series

1

3 � x D
1

3

1 � x
3

D 1

3

1X
nD0

xn

3n
;

we get a constant multiple of the series in (26). Thus this series (with the arbitrary constant
c0 appropriately chosen) represents the solution

y.x/ D 1

.3 � x/2

on the interval �3 < x < 3, and the singularity at x D 3 is the reason why the radius of
convergence of the power series solution turned out to be � D 3.
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Example 3 Solve the equation x2y0 D y � x � 1.
Solution We make the usual substitutions y DP cnx

n and y0 DPncnx
n�1, which yield

x2
1X

nD1

ncnx
n�1 D �1 � x C

1X
nD0

cnx
n

so that 1X
nD1

ncnx
nC1 D �1 � x C

1X
nD0

cnx
n:

Because of the presence of the two terms �1 and �x on the right-hand side, we need to split
off the first two terms, c0C c1x, of the series on the right for comparison. If we also shift the
index of summation on the left by �1 (replace n D 1 with n D 2 and n with n � 1), we get

1X
nD2

.n � 1/cn�1x
n D �1 � x C c0 C c1x C

1X
nD2

cnx
n:

Because the left-hand side contains neither a constant term nor a term containing x to the first
power, the identity principle now yields c0 D 1, c1 D 1, and cn D .n � 1/cn�1 for n = 2. It
follows that

c2 D 1 � c1 D 1Š; c3 D 2 � c2 D 2Š; c4 D 3 � c3 D 3Š;
and, in general, that

cn D .n � 1/Š for n = 2:

Thus we obtain the power series

y.x/ D 1C x C
1X

nD2

.n � 1/Š xn:

But the radius of convergence of this series is

� D lim
n!1

.n � 1/Š
nŠ

D lim
n!1

1

n
D 0;

so the series converges only for x D 0. What does this mean? Simply that the given dif-
ferential equation does not have a (convergent) power series solution of the assumed form
y D P

cnx
n. This example serves as a warning that the simple act of writing y D P

cnx
n

involves an assumption that may be false.

Example 4 Solve the equation y00 C y D 0.
Solution If we assume a solution of the form

y D
1X

nD0

cnx
n;

we find that

y0 D
1X

nD1

ncnx
n�1 and y00 D

1X
nD2

n.n � 1/cnx
n�2:

Substitution for y and y00 in the differential equation then yields

1X
nD2

n.n � 1/cnx
n�2 C

1X
nD0

cnx
n D 0:

We shift the index of summation in the first sum by C2 (replace n D 2 with n D 0 and n with
nC 2). This gives

1X
nD0

.nC 2/.nC 1/cnC2x
n C

1X
nD0

cnx
n D 0:
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The identity .nC 2/.nC 1/cnC2 C cn D 0 now follows from the identity principle, and thus
we obtain the recurrence relation

cnC2 D �
cn

.nC 1/.nC 2/ (27)

for n = 0. It is evident that this formula will determine the coefficients cn with even subscript
in terms of c0 and those of odd subscript in terms of c1; c0 and c1 are not predetermined and
thus will be the two arbitrary constants we expect to find in a general solution of a second-
order equation.

When we apply the recurrence relation in (27) with n D 0, 2, and 4 in turn, we get

c2 D �
c0

2Š
; c4 D

c0

4Š
; and c6 D �

c0

6Š
:

Taking n D 1, 3, and 5 in turn, we find that

c3 D �
c1

3Š
; c5 D

c1

5Š
; and c7 D �

c1

7Š
:

Again, the pattern is clear; we leave it for you to show (by induction) that for k = 1,

c2k D
.�1/kc0

.2k/Š
and c2kC1 D

.�1/kc1

.2k C 1/Š :

Thus we get the power series solution

y.x/ D c0

 
1 � x

2

2Š
C x4

4Š
� x

6

6Š
C � � �

!
C c1

 
x � x

3

3Š
C x5

5Š
� x

7

7Š
C � � �

!
I

that is, y.x/ D c0 cos x C c1 sin x. Note that we have no problem with the radius of conver-
gence here; the Taylor series for the sine and cosine functions converge for all x.

The solution of Example 4 can bear further comment. Suppose that we had
never heard of the sine and cosine functions, let alone their Taylor series. We would
then have discovered the two power series solutions

C.x/ D
1X

nD0

.�1/nx2n

.2n/Š
D 1 � x

2

2Š
C x4

4Š
� � � � (28)

and

S.x/ D
1X

nD0

.�1/nx2nC1

.2nC 1/Š D x �
x3

3Š
C x5

5Š
� � � � (29)

of the differential equation y00 C y D 0. Both of these power series converge for
all x. For instance, the ratio test in Theorem 3 implies convergence for all ´ of the
series

P
.�1/n´n=.2n/Š obtained from (28) by writing ´ D x2. Hence it follows that

(28) itself converges for all x, as does (by a similar ploy) the series in (29).
It is clear that C.0/ D 1 and S.0/ D 0, and termwise differentiation of the two

series in (28) and (29) yields

C 0.x/ D �S.x/ and S 0.x/ D C.x/: (30)

Consequently, C 0.0/ D 0 and S 0.0/ D 1. Thus with the aid of the power series
method (all the while knowing nothing about the sine and cosine functions), we
have discovered that y D C.x/ is the unique solution of

y00 C y D 0
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that satisfies the initial conditions y.0/ D 1 and y0.0/ D 0, and that y D S.x/ is
the unique solution that satisfies the initial conditions y.0/ D 0 and y0.0/ D 1.
It follows that C.x/ and S.x/ are linearly independent, and—recognizing the im-
portance of the differential equation y00C y D 0—we can agree to call C the cosine
function and S the sine function. Indeed, all the usual properties of these two func-
tions can be established, using only their initial values (at x D 0) and the derivatives
in (30); there is no need to refer to triangles or even to angles. (Can you use the se-
ries in (28) and (29) to show that ŒC.x/�2C ŒS.x/�2D 1 for all x?) This demonstrates
that

The cosine and sine functions are fully determined by the differen-
tial equation y 00 C y D 0 of which they are the two natural linearly
independent solutions.

Figures 8.1.2 and 8.1.3 show how the geometric character of the graphs of cos x and
sin x is revealed by the graphs of the Taylor polynomial approximations that we get
by truncating the infinite series in (28) and (29).

This is by no means an uncommon situation. Many important special func-
tions of mathematics occur in the first instance as power series solutions of differ-
ential equations and thus are in practice defined by means of these power series.
In the remaining sections of this chapter we will see numerous examples of such
functions.

x

y
n = 8

n = 6 n = 14 n = 22

n = 16 n = 24

π π2 π3

2

1

–1

–2

y = cos x

FIGURE 8.1.2. Taylor polynomial approximations to cos x.

n = 5 n = 13 n = 21

x

y

y = sin x

n = 7 n = 15 n = 23

π π2 π3

2

1

–1

–2

FIGURE 8.1.3. Taylor polynomial approximations to sin x.

8.1 Problems
In Problems 1 through 10, find a power series solution of the
given differential equation. Determine the radius of conver-
gence of the resulting series, and use the series in Eqs. (5)
through (12) to identify the series solution in terms of famil-
iar elementary functions. (Of course, no one can prevent you
from checking your work by also solving the equations by the
methods of earlier chapters!)

1. y0 D y 2. y0 D 4y
3. 2y0 C 3y D 0 4. y0 C 2xy D 0
5. y0 D x2y 6. .x � 2/y0 C y D 0
7. .2x � 1/y0 C 2y D 0 8. 2.x C 1/y0 D y
9. .x � 1/y0 C 2y D 0 10. 2.x � 1/y0 D 3y

In Problems 11 through 14, use the method of Example 4 to find
two linearly independent power series solutions of the given
differential equation. Determine the radius of convergence of
each series, and identify the general solution in terms of famil-
iar elementary functions.

11. y00 D y 12. y00 D 4y
13. y00 C 9y D 0 14. y00 C y D x

Show (as in Example 3) that the power series method fails to
yield a power series solution of the form y D P

cnx
n for the

differential equations in Problems 15 through 18.

15. xy0 C y D 0 16. 2xy0 D y
17. x2y0 C y D 0 18. x3y0 D 2y
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In Problems 19 through 22, first derive a recurrence relation
giving cn for n = 2 in terms of c0 or c1 (or both). Then ap-
ply the given initial conditions to find the values of c0 and c1.
Next determine cn (in terms of n, as in the text) and, finally,
identify the particular solution in terms of familiar elementary
functions.

19. y00 C 4y D 0; y.0/ D 0, y0.0/ D 3
20. y00 � 4y D 0; y.0/ D 2, y0.0/ D 0
21. y00 � 2y0 C y D 0; y.0/ D 0, y0.0/ D 1
22. y00 C y0 � 2y D 0; y.0/ D 1, y0.0/ D �2
23. Show that the equation

x2y00 C x2y0 C y D 0
has no power series solution of the form y DP cnx

n.
24. Establish the binomial series in (12) by means of the fol-

lowing steps. (a) Show that y D .1 C x/˛ satisfies the
initial value problem .1C x/y0 D ˛y, y.0/D 1. (b) Show
that the power series method gives the binomial series in
(12) as the solution of the initial value problem in part (a),
and that this series converges if jxj < 1. (c) Explain why
the validity of the binomial series given in (12) follows
from parts (a) and (b).

25. For the initial value problem

y00 D y0 C y; y.0/ D 0; y.1/ D 1
derive the power series solution

y.x/ D
1X

nD1

Fn

nŠ
xn

where fFng1nD0 is the sequence 0, 1, 1, 2, 3, 5, 8, 13,
: : : of Fibonacci numbers defined by F0 D 0, F1 D 1,
Fn D Fn�2 C Fn�1 for n > 1.

26. (a) Show that the solution of the initial value problem

y0 D 1C y2; y.0/ D 0
is y.x/ D tan x. (b) Because y.x/ D tan x is an odd func-
tion with y0.0/ D 1, its Taylor series is of the form

y D x C c3x
3 C c5x

5 C c7x7 C � � � :
Substitute this series in y0D 1Cy2 and equate like powers
of x to derive the following relations:

3c3 D 1; 5c5 D 2c3;

7c7 D 2c5 C .c3/
2; 9c9 D 2c7 C 2c3c5;

11c11 D 2c9 C 2c3c7 C .c5/
2:

(c) Conclude that

tan x D x C 1

3
x3 C 2

15
x5 C 17

315
x7

C 62

2835
x9 C 1382

155925
x11 C � � � :

(d) Would you prefer to use the Maclaurin series formula
in (13) to derive the tangent series in part (c)? Think about
it!

27. This section introduces the use of infinite series to solve
differential equations. Conversely, differential equations
can sometimes be used to sum infinite series. For exam-
ple, consider the infinite series

1C 1

1Š
� 1

2Š
C 1

3Š
C 1

4Š
� 1

5Š
C � � � I

note the C C � C C � � � � pattern of signs superimposed
on the terms of the series for the number e. We could
evaluate this series if we could obtain a formula for the
function

f .x/ D 1C x � 1

2Š
x2 C 1

3Š
x3 C 1

4Š
x4 � 1

5Š
x5 C � � � ;

because the sum of the numerical series in question is sim-
ply f .1/. (a) It’s possible to show that the power series
given here converges for all x and that termwise differen-
tiation is valid. Given these facts, show that f .x/ satisfies
the initial value problem

y.3/ D yI y.0/ D y0.0/ D 1; y00.0/ D �1:

(b) Solve this initial value problem to show that

f .x/ D 1

3
ex C 2

3
e�x=2

 
cos

p
3

2
x C
p
3 sin

p
3

2
x

!
:

For a suggestion, see Problem 48 of Section 3.3. (c) Eval-
uate f .1/ to find the sum of the numerical series given
here.

8.2 Series Solutions Near Ordinary Points
The power series method introduced in Section 8.1 can be applied to linear equa-
tions of any order (as well as to certain nonlinear equations), but its most important
applications are to homogeneous second-order linear differential equations of the
form

A.x/y00 C B.x/y0 C C.x/y D 0; (1)
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where the coefficients A, B , and C are analytic functions of x. Indeed, in most
applications these coefficient functions are simple polynomials.

We saw in Example 3 of Section 8.1 that the series method does not always
yield a series solution. To discover when it does succeed, we rewrite Eq. (1) in the
form

y00 C P.x/y0 CQ.x/y D 0 (2)

with leading coefficient 1, and with P D B=A and Q D C=A. Note that P.x/ and
Q.x/ will generally fail to be analytic at points where A.x/ vanishes. For instance,
consider the equation

xy00 C y0 C xy D 0: (3)

The coefficient functions in (3) are continuous everywhere. But in the form of (2) it
is the equation

y00 C 1

x
y0 C y D 0 (4)

with P.x/ D 1=x not analytic at x D 0.
The point x D a is called an ordinary point of Eq. (2)—and of the equiva-

lent Eq. (1)—provided that the functions P.x/ and Q.x/ are both analytic at x D a.
Otherwise, x D a is a singular point. Thus the only singular point of Eqs. (3) and
(4) is x D 0. Recall that a quotient of analytic functions is analytic wherever the
denominator is nonzero. It follows that, if A.a/ 6D 0 in Eq. (1) with analytic coef-
ficients, then x D a is an ordinary point. If A.x/, B.x/, and C.x/ are polynomials
with no common factors, then x D a is an ordinary point if and only if A.a/ 6D 0.

Example 1 The point x D 0 is an ordinary point of the equation

xy00 C .sin x/y0 C x2y D 0;
despite the fact that A.x/ D x vanishes at x D 0. The reason is that

P.x/ D sin x
x
D 1

x

 
x � x

3

3Š
C x5

5Š
� � � �

!
D 1 � x

2

3Š
C x4

5Š
� � � �

is nevertheless analytic at x D 0 because the division by x yields a convergent power series.

Example 2 The point x D 0 is not an ordinary point of the equation

y00 C x2y0 C x1=2y D 0:
For while P.x/ D x2 is analytic at the origin, Q.x/ D x1=2 is not. The reason is that Q.x/ is
not differentiable at x D 0 and hence is not analytic there. (Theorem 1 of Section 8.1 implies
that an analytic function must be differentiable.)

Example 3 The point x D 0 is an ordinary point of the equation

.1 � x3/y00 C .7x2 C 3x5/y0 C .5x � 13x4/y D 0
because the coefficient functions A.x/, B.x/, and C.x/ are polynomials with A.0/ 6D 0.

Theorem 2 of Section 3.1 implies that Eq. (2) has two linearly independent
solutions on any open interval where the coefficient functions P.x/ and Q.x/ are
continuous. The basic fact for our present purpose is that near an ordinary point a,
these solutions will be power series in powers of x � a. A proof of the following
theorem can be found in Chapter 3 of Coddington, An Introduction to Ordinary
Differential Equations (Dover Publications, 1989).
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THEOREM 1 Solutions Near an Ordinary Point

Suppose that a is an ordinary point of the equation

A.x/y00 C B.x/y0 C C.x/y D 0I (1)

that is, the functions P D B=A and Q D C=A are analytic at x D a. Then Eq. (1)
has two linearly independent solutions, each of the form

y.x/ D
1X

nD0

cn.x � a/n: (5)

The radius of convergence of any such series solution is at least as large as the
distance from a to the nearest (real or complex) singular point of Eq. (1). The
coefficients in the series in (5) can be determined by its substitution in Eq. (1).

Example 4 Determine the radius of convergence guaranteed by Theorem 1 of a series solution of

.x2 C 9/y00 C xy0 C x2y D 0 (6)

in powers of x. Repeat for a series in powers of x � 4.
Solution This example illustrates the fact that we must take into account complex singular points as

well as real ones. Because

P.x/ D x

x2 C 9 and Q.x/ D x2

x2 C 9 ;

the only singular points of Eq. (6) are ˙3i . The distance (in the complex plane) of each of
these from 0 is 3, so a series solution of the form

P
cnx

n has radius of convergence at least 3.
The distance of each singular point from 4 is 5, so a series solution of the form

P
cn.x � 4/n

has radius of convergence at least 5 (see Fig. 8.2.1).

Example 5 Find the general solution in powers of x of

.x2 � 4/y00 C 3xy0 C y D 0: (7)

Then find the particular solution with y.0/ D 4, y0.0/ D 1.
Solution The only singular points of Eq. (7) are ˙2, so the series we get will have radius of conver-

gence at least 2. (See Problem 35 for the exact radius of convergence.) Substitution of

y D
1X

nD0

cnx
n; y0 D

1X
nD1

ncnx
n�1; and y00 D

1X
nD2

n.n � 1/cnx
n�2

in Eq. (7) yields

1X
nD2

n.n � 1/cnx
n � 4

1X
nD2

n.n � 1/cnx
n�2 C 3

1X
nD1

ncnx
n C

1X
nD0

cnx
n D 0:

We can begin the first and third summations at n D 0 as well, because no nonzero terms are
thereby introduced. We shift the index of summation in the second sum by C2, replacing n
with nC 2 and using the initial value n D 0. This gives

3i

x

y

4

–3i

5

FIGURE 8.2.1. Radius of
convergence as distance to nearest
singularity.

1X
nD0

n.n � 1/cnx
n � 4

1X
nD0

.nC 2/.nC 1/cnC2x
n C 3

1X
nD0

ncnx
n C

1X
nD0

cnx
n D 0:
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After collecting coefficients of cn and cnC2, we obtain

1X
nD0

h
.n2 C 2nC 1/cn � 4.nC 2/.nC 1/cnC2

i
xn D 0:

The identity principle yields

.nC 1/2cn � 4.nC 2/.nC 1/cnC2 D 0;
which leads to the recurrence relation

cnC2 D
.nC 1/cn
4.nC 2/ (8)

for n = 0. With n D 0, 2, and 4 in turn, we get

c2 D
c0

4 � 2 ; c4 D
3c2

4 � 4 D
3c0

42 � 2 � 4 ; and c6 D
5c4

4 � 6 D
3 � 5c0

43 � 2 � 4 � 6 :

Continuing in this fashion, we evidently would find that

c2n D
1 � 3 � 5 � � � .2n � 1/
4n � 2 � 4 � � � .2n/ c0:

With the common notation

.2nC 1/ŠŠ D 1 � 3 � 5 � � � .2nC 1/ D .2nC 1/Š
2n � nŠ

and the observation that 2 � 4 � 6 � � � .2n/ D 2n � nŠ, we finally obtain

c2n D
.2n � 1/ŠŠ
23n � nŠ c0: (9)

(We also used the fact that 4n � 2n D 23n.)
With n D 1, 3, and 5 in Eq. (8), we get

c3 D
2c1

4 � 3 ; c5 D
4c3

4 � 5 D
2 � 4c1
42 � 3 � 5 ; and c7 D

6c5

4 � 7 D
2 � 4 � 6c1

43 � 3 � 5 � 7 :

It is apparent that the pattern is

c2nC1 D
2 � 4 � 6 � � � .2n/

4n � 1 � 3 � 5 � � � .2nC 1/ c1 D
nŠ

2n � .2nC 1/ŠŠ c1: (10)

The formula in (9) gives the coefficients of even subscript in terms of c0; the formula
in (10) gives the coefficients of odd subscript in terms of c1. After we separately collect the
terms of the series of even and odd degree, we get the general solution

y.x/ D c0

 
1C

1X
nD1

.2n � 1/ŠŠ
23n � nŠ x

2n

!
C c1

 
x C

1X
nD1

nŠ

2n � .2nC 1/ŠŠ x
2nC1

!
: (11)

Alternatively,

y.x/ D c0

�
1C 1

8
x2 C 3

128
x4 C 5

1024
x6 C � � �

�

C c1

�
x C 1

6
x3 C 1

30
x5 C 1

140
x7 C � � �

�
: .110/

Because y.0/ D c0 and y0.0/ D c1, the given initial conditions imply that c0 D 4 and c1 D 1.
Using these values in Eq. (110), the first few terms of the particular solution satisfying y.0/D 4
and y0.0/ D 1 are

y.x/ D 4C x C 1

2
x2 C 1

6
x3 C 3

32
x4 C 1

30
x5 C � � � : (12)
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Remark As in Example 5, substitution of y D P
cnx

n in a linear second-order equation
with x D 0 an ordinary point typically leads to a recurrence relation that can be used to
express each of the successive coefficients c2, c3, c4, : : : in terms of the first two, c0 and c1.
In this event two linearly independent solutions are obtained as follows. Let y0.x/ be the
solution obtained with c0 D 1 and c1 D 0, and let y1.x/ be the solution obtained with c0 D 0
and c1 D 1. Then

y0.0/ D 1; y0
0.0/ D 0 and y1.0/ D 0; y0

1.0/ D 1;
so it is clear that y0 and y1 are linearly independent. In Example 5, y0.x/ and y1.x/ are
defined by the two series that appear on the right-hand side in Eq. (11), which expresses the
general solution in the form y D c0y0 C c1y1.

Translated Series Solutions
If in Example 5 we had sought a particular solution with given initial values y.a/
and y0.a/, we would have needed the general solution in the form

y.x/ D
1X

nD0

cn.x � a/nI (13)

that is, in powers of x � a rather than in powers of x. For only with a solution of the
form in (13) is it true that the initial conditions

y.a/ D c0 and y0.a/ D c1

determine the arbitrary constants c0 and c1 in terms of the initial values of y and y0.
Consequently, to solve an initial value problem, we need a series expansion of the
general solution centered at the point where the initial conditions are specified.

Example 6 Solve the initial value problem

.t2 � 2t � 3/d
2y

dt2
C 3.t � 1/dy

dt
C y D 0I y.1/ D 4; y0.1/ D �1: (14)

Solution We need a general solution of the form
P
cn.t � 1/n. But instead of substituting this series

in (14) to determine the coefficients, it simplifies the computations if we first make the sub-
stitution x D t � 1, so that we wind up looking for a series of the form

P
cnx

n after all. To
transform Eq. (14) into one with the new independent variable x, we note that

t2 � 2t � 3 D .x C 1/2 � 2.x C 1/ � 3 D x2 � 4;

dy

dt
D dy

dx

dx

dt
D dy

dx
D y0;

and

d2y

dt2
D
�
d

dx

�
dy

dx

��
dx

dt
D d

dx
.y0/ D y00;

where primes denote differentiation with respect to x. Hence we transform Eq. (14) into

.x2 � 4/y00 C 3xy0 C y D 0
with initial conditions y D 4 and y0 D 1 at x D 0 (corresponding to t D 1). This is the initial
value problem we solved in Example 5, so the particular solution in (12) is available. We
substitute t � 1 for x in Eq. (12) and thereby obtain the desired particular solution

y.t/ D 4C .t � 1/C 1

2
.t � 1/2 C 1

6
.t � 1/3

C 3

32
.t � 1/4 C 1

30
.t � 1/5 C � � � :
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This series converges if �1 < t < 3. (Why?) A series such as this can be used to estimate
numerical values of the solution. For instance,

y.0:8/ D 4C .�0:2/C 1

2
.�0:2/2 C 1

6
.�0:2/3

C 3

32
.�0:2/4 C 1

30
.�0:2/5 C � � � ;

so that y.0:8/ � 3:8188.
The last computation in Example 6 illustrates the fact that series solutions of

differential equations are useful not only for establishing general properties of a
solution, but also for numerical computations when an expression of the solution in
terms of elementary functions is unavailable.

Types of Recurrence Relations
The formula in Eq. (8) is an example of a two-term recurrence relation; it expresses
each coefficient in the series in terms of one of the preceding coefficients. A many-
term recurrence relation expresses each coefficient in the series in terms of two or
more preceding coefficients. In the case of a many-term recurrence relation, it is
generally inconvenient or even impossible to find a formula that gives the typical
coefficient cn in terms of n. The next example shows what we sometimes can do
with a three-term recurrence relation.

Example 7 Find two linearly independent solutions of

y00 � xy0 � x2y D 0: (15)

Solution We make the usual substitution of the power series y DP cnx
n. This results in the equation

1X
nD2

n.n � 1/cnx
n�2 �

1X
nD1

ncnx
n �

1X
nD0

cnx
nC2 D 0:

We can start the second sum at n D 0 without changing anything else. To make each term
include xn in its general term, we shift the index of summation in the first sum byC2 (replace
n with nC 2), and we shift it by �2 in the third sum (replace n with n� 2). These shifts yield

1X
nD0

.nC 2/.nC 1/cnC2x
n �

1X
nD0

ncnx
n �

1X
nD2

cn�2x
n D 0:

The common range of these three summations is n = 2, so we must separate the terms corre-
sponding to n D 0 and n D 1 in the first two sums before collecting coefficients of xn. This
gives

2c2 C 6c3x � c1x C
1X

nD2

Œ.nC 2/.nC 1/cnC2 � ncn � cn�2� x
n D 0:

The identity principle now implies that 2c2 D 0, that c3 D 1
6c1, and the three-term recurrence

relation

cnC2 D
ncn C cn�2

.nC 2/.nC 1/ (16)

for n = 2. In particular,

c4 D
2c2 C c0

12
; c5 D

3c3 C c1

20
; c6 D

4c4 C c2

30
;

c7 D
5c5 C c3

42
; c8 D

6c6 C c4

56
:

(17)
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Thus all values of cn for n = 4 are given in terms of the arbitrary constants c0 and c1 because
c2 D 0 and c3 D 1

6c1.
To get our first solution y1 of Eq. (15), we choose c0D 1 and c1D 0, so that c2D c3D 0.

Then the formulas in (17) yield

c4 D
1

12
; c5 D 0; c6 D

1

90
; c7 D 0; c8 D

3

1120
I

thus

y1.x/ D 1C
1

12
x4 C 1

90
x6 C 3

1120
x8 C � � � : (18)

Because c1 D c3 D 0, it is clear from Eq. (16) that this series contains only terms of even
degree.

To obtain a second linearly independent solution y2 of Eq. (15), we take c0 D 0 and
c1 D 1, so that c2 D 0 and c3 D 1

6 . Then the formulas in (17) yield

c4 D 0; c5 D
3

40
; c6 D 0; c7 D

13

1008
;

so that

y2.x/ D x C
1

6
x3 C 3

40
x5 C 13

1008
x7 C � � � : (19)

Because c0 D c2 D 0, it is clear from Eq. (16) that this series contains only terms of odd
degree. The solutions y1.x/ and y2.x/ are linearly independent because y1.0/ D 1 and
y0

1.0/ D 0, whereas y2.0/ D 0 and y0
2.0/ D 1. A general solution of Eq. (15) is a linear

combination of the power series in (18) and (19). Equation (15) has no singular points, so the
power series representing y1.x/ and y2.x/ converge for all x.

The Legendre Equation
The Legendre equation of order ˛ is the second-order linear differential equation

.1 � x2/y00 � 2xy0 C ˛.˛ C 1/y D 0; (20)

where the real number ˛ satisfies the inequality ˛ > �1. This differential equation
has extensive applications, ranging from numerical integration formulas (such as
Gaussian quadrature) to the problem of determining the steady-state temperature
within a solid spherical ball when the temperatures at points of its boundary are
known. The only singular points of the Legendre equation are at C1 and �1, so
it has two linearly independent solutions that can be expressed as power series in
powers of x with radius of convergence at least 1. The substitution y DP cmx

m in
Eq. (20) leads (see Problem 31) to the recurrence relation

cmC2 D �
.˛ �m/.˛ CmC 1/
.mC 1/.mC 2/ cm (21)

for m = 0. We are using m as the index of summation because we have another role
for n to play.

In terms of the arbitrary constants c0 and c1, Eq. (21) yields

c2 D �
˛.˛ C 1/

2Š
c0;

c3 D �
.˛ � 1/.˛ C 2/

3Š
c1;

c4 D
˛.˛ � 2/.˛ C 1/.˛ C 3/

4Š
c0;

c5 D
.˛ � 1/.˛ � 3/.˛ C 2/.˛ C 4/

5Š
c1:
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We can show without much trouble that for m > 0,

c2m D .�1/m
˛.˛ � 2/.˛ � 4/� � �.˛ � 2mC 2/.˛ C 1/.˛ C 3/� � �.˛ C 2m � 1/

.2m/Š
c0

(22)

and

c2mC1 D .�1/m
.˛ � 1/.˛ � 3/ � � � .˛ � 2mC 1/.˛ C 2/.˛ C 4/ � � � .˛ C 2m/

.2mC 1/Š c1:

(23)

Alternatively,

c2m D .�1/ma2mc0 and c2mC1 D .�1/ma2mC1c1;

where a2m and a2mC1 denote the fractions in Eqs. (22) and (23), respectively. With
this notation, we get two linearly independent power series solutions

y1.x/ D c0

1X
mD0

.�1/ma2mx
2m and y2.x/ D c1

1X
mD0

.�1/ma2mC1x
2mC1 (24)

of Legendre’s equation of order ˛.
Now suppose that ˛ D n, a nonnegative integer. If ˛ D n is even, we see from

Eq. (22) that a2m D 0 when 2m > n. In this case, y1.x/ is a polynomial of degree n
and y2 is a (nonterminating) infinite series. If ˛D n is an odd positive integer, we see
from Eq. (23) that a2mC1 D 0 when 2mC 1 > n. In this case, y2.x/ is a polynomial
of degree n and y1 is a (nonterminating) infinite series. Thus in either case, one of
the two solutions in (24) is a polynomial and the other is a nonterminating series.

With an appropriate choice (made separately for each n) of the arbitrary con-
stants c0 (n even) or c1 (n odd), the nth-degree polynomial solution of Legendre’s
equation of order n,

.1 � x2/y00 � 2xy0 C n.nC 1/y D 0; (25)

is denoted by Pn.x/ and is called the Legendre polynomial of degree n. It is
customary (for a reason indicated in Problem 32) to choose the arbitrary constant so
that the coefficient of xn in Pn.x/ is .2n/Š=



2n.nŠ/2

�
. It then turns out that

Pn.x/ D
NX

kD0

.�1/k.2n � 2k/Š
2nkŠ .n � k/Š .n � 2k/Šx

n�2k ; (26)

where N D ŒŒn=2��, the integral part of n=2. The first six Legendre polynomials are

P0.x/ � 1; P1.x/ D x;

P2.x/ D
1

2
.3x2 � 1/; P3.x/ D

1

2
.5x3 � 3x/;

P4.x/ D
1

8
.35x4 � 30x2 C 3/; P5.x/ D

1

8
.63x5 � 70x3 C 15x/;

and their graphs are shown in Fig. 8.2.2.
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–1 1
x

–1

1

y

P1

P3 P4

P2

P5

FIGURE 8.2.2. Graphs y D Pn.x/ of the Legendre polynomials for n D 1, 2,
3, 4, and 5. The graphs are distinguished by the fact that all n zeros of Pn.x/ lie in
the interval �1 < x < 1.

8.2 Problems
Find general solutions in powers of x of the differential equa-
tions in Problems 1 through 15. State the recurrence relation
and the guaranteed radius of convergence in each case.

1. .x2 � 1/y00 C 4xy0 C 2y D 0
2. .x2 C 2/y00 C 4xy0 C 2y D 0
3. y00 C xy0 C y D 0
4. .x2 C 1/y00 C 6xy0 C 4y D 0
5. .x2 � 3/y00 C 2xy0 D 0
6. .x2 � 1/y00 � 6xy0 C 12y D 0
7. .x2 C 3/y00 � 7xy0 C 16y D 0
8. .2 � x2/y00 � xy0 C 16y D 0
9. .x2 � 1/y00 C 8xy0 C 12y D 0

10. 3y00 C xy0 � 4y D 0
11. 5y00 � 2xy0 C 10y D 0
12. y00 � x2y0 � 3xy D 0
13. y00 C x2y0 C 2xy D 0
14. y00 C xy D 0 (an Airy equation)
15. y00 C x2y D 0

Use power series to solve the initial value problems in Prob-
lems 16 and 17.

16. .1C x2/y00 C 2xy0 � 2y D 0; y.0/ D 0, y0.0/ D 1
17. y00 C xy0 � 2y D 0; y.0/ D 1, y0.0/ D 0

Solve the initial value problems in Problems 18 through 22.
First make a substitution of the form t D x � a, then find a
solution

P
cnt

n of the transformed differential equation. State
the interval of values of x for which Theorem 1 of this section
guarantees convergence.

18. y00 C .x � 1/y0 C y D 0; y.1/ D 2, y0.1/ D 0
19. .2x � x2/y00 � 6.x � 1/y0 � 4y D 0; y.1/ D 0, y0.1/ D 1
20. .x2 � 6x C 10/y00 � 4.x � 3/y0 C 6y D 0; y.3/ D 2,

y0.3/ D 0
21. .4x2 C 16x C 17/y00 D 8y; y.�2/ D 1, y0.�2/ D 0
22. .x2C6x/y00C .3xC9/y0�3yD 0; y.�3/D 0, y0.�3/D 2

In Problems 23 through 26, find a three-term recurrence re-
lation for solutions of the form y D P

cnx
n. Then find the

first three nonzero terms in each of two linearly independent
solutions.

23. y00 C .1C x/y D 0
24. .x2 � 1/y00 C 2xy0 C 2xy D 0
25. y00 C x2y0 C x2y D 0 26. .1C x3/y00 C x4y D 0
27. Solve the initial value problem

y00 C xy0 C .2x2 C 1/y D 0I y.0/ D 1; y0.0/ D �1:
Determine sufficiently many terms to compute y.1=2/ ac-
curate to four decimal places.

In Problems 28 through 30, find the first three nonzero terms
in each of two linearly independent solutions of the form
y D P

cnx
n. Substitute known Taylor series for the analytic

functions and retain enough terms to compute the necessary
coefficients.

28. y00 C e�xy D 0
29. .cos x/y00 C y D 0 30. xy00C .sin x/y0CxyD 0
31. Derive the recurrence relation in (21) for the Legendre

equation.
32. Follow the steps outlined in this problem to establish Ro-

drigues’s formula

Pn.x/ D
1

nŠ 2n

dn

dxn
.x2 � 1/n

for the nth-degree Legendre polynomial. (a) Show that
v D .x2 � 1/n satisfies the differential equation

.1 � x2/v0 C 2nxv D 0:
Differentiate each side of this equation to obtain

.1 � x2/v00 C 2.n � 1/xv0 C 2nv D 0:
(b) Differentiate each side of the last equation n times in
succession to obtain

.1 � x2/v.nC2/ � 2xv.nC1/ C n.nC 1/v.n/ D 0:
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Thus u D v.n/ D Dn.x2 � 1/n satisfies Legendre’s equa-
tion of order n. (c) Show that the coefficient of xn

in u is .2n/Š=nŠ; then state why this proves Rodrigues’
formula. (Note that the coefficient of xn in Pn.x/ is
.2n/Š=



2n.nŠ/2

�
.)

33. The Hermite equation of order ˛ is

y00 � 2xy0 C 2˛y D 0:
(a) Derive the two power series solutions

y1 D 1C
1X

mD1

.�1/m 2
m˛.˛ � 2/ � � � .˛ � 2mC 2/

.2m/Š
x2m

and

y2 D x

C
1X

mD1

.�1/m 2
m.˛ � 1/.˛ � 3/ � � � .˛ � 2mC 1/

.2mC 1/Š x2mC1:

Show that y1 is a polynomial if ˛ is an even integer,
whereas y2 is a polynomial if ˛ is an odd integer. (b) The
Hermite polynomial of degree n is denoted by Hn.x/. It
is the nth-degree polynomial solution of Hermite’s equa-
tion, multiplied by a suitable constant so that the coeffi-
cient of xn is 2n. Show that the first six Hermite polyno-
mials are

H0.x/ � 1; H1.x/ D 2x;
H2.x/ D 4x2 � 2; H3.x/ D 8x3 � 12x;
H4.x/ D 16x4 � 48x2 C 12;
H5.x/ D 32x5 � 160x3 C 120x:
A general formula for the Hermite polynomials is

Hn.x/ D .�1/nex2 dn

dxn

�
e�x2

�
:

Verify that this formula does in fact give an nth-degree
polynomial. It is interesting to use a computer alge-
bra system to investigate the conjecture that (for each
n) the zeros of the Hermite polynomials Hn and HnC1

are “interlaced”—that is, the n zeros of Hn lie in the n
bounded open intervals whose endpoints are successive
pairs of zeros of HnC1.

34. The discussion following Example 4 in Section 8.1 sug-
gests that the differential equation y00 C y D 0 could be
used to introduce and define the familiar sine and cosine
functions. In a similar fashion, the Airy equation

y00 D xy
serves to introduce two new special functions that appear
in applications ranging from radio waves to molecular vi-
brations. Derive the first three or four terms of two dif-
ferent power series solutions of the Airy equation. Then
verify that your results agree with the formulas

y1.x/ D 1C
1X

kD1

1 � 4 � � � � � .3k � 2/
.3k/Š

x3k

and

y2.x/ D x C
1X

kD1

2 � 5 � � � � � .3k � 1/
.3k C 1/Š x3kC1

for the solutions that satisfy the initial conditions y1.0/ D
1, y0

1.0/ D 0 and y2.0/ D 0, y0
2.0/ D 1, respectively. The

special combinations

Ai.x/ D y1.x/

32=3�.2
3 /
� y2.x/

31=3�.1
3 /

and

Bi.x/ D y1.x/

31=6�.2
3 /
C y2.x/

3�1=6�.1
3 /

define the standard Airy functions that appear in math-
ematical tables and computer algebra systems. Their
graphs shown in Fig. 8.2.3 exhibit trigonometric-like
oscillatory behavior for x < 0, whereas Ai.x/ de-
creases exponentially and Bi.x/ increases exponentially as
x ! C1. It is interesting to use a computer algebra sys-
tem to investigate how many terms must be retained in the
y1- and y2-series above to produce a figure that is visu-
ally indistinguishable from Fig. 8.2.3 (which is based on
high-precision approximations to the Airy functions).

x

–0.5

1

y

–10 –5

Bi(x)

Ai(x)

FIGURE 8.2.3. The Airy function graphs
y D Ai.x/ and y D Bi.x/.

35. (a) To determine the radius of convergence of the series
solution in Example 5, write the series of terms of even
degree in Eq. (11) in the form

y0.x/ D 1C
1X

nD1

c2nx
2n D 1C

1X
nD1

an´
n

where an D c2n and ´ D x2. Then apply the recurrence
relation in Eq. (8) and Theorem 3 in Section 8.1 to show
that the radius of convergence of the series in ´ is 4. Hence
the radius of convergence of the series in x is 2. How does
this corroborate Theorem 1 in this section? (b) Write the
series of terms of odd degree in Eq. (11) in the form

y1.x/ D x
 
1C

1X
nD1

c2nC1x
2n

!
D x

 
1C

1X
nD1

bn´
n

!
to show similarly that its radius of convergence (as a
power series in x) is also 2.
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8.2 Application Automatic Computation of Series Coefficients
Repeated application of a recurrence relation to grind out successive coefficients
is—especially in the case of a recurrence relation with three or more terms—a te-
dious aspect of the infinite series method. Here we illustrate the use of a computer
algebra system not only to automate this task, but also to explore interactively the
graphical effect of changing the number k of terms we include in a partial-sum
approximation to the actual solution given by the full infinite series. In Example
7 we saw that the coefficients in the series solution y D P

cnx
n of the differential

equation
y00 � xy0 � x2y D 0 (1)

are given in terms of the two arbitrary coefficients c0 and c1 by

c2 D 0; c3 D
c1

6
; and cnC2 D

ncn C cn�2

.nC 2/.nC 1/ for n = 2: (2)

It would appear to be a routine matter to implement such a recurrence relation,
but a twist results from the fact that a typical computer system array is indexed by
the subscripts 1, 2, 3, : : : ; rather than by the subscripts 0, 1, 2, : : : that match the
exponents in the successive terms of a power series that begins with a constant term.
For this reason we first rewrite our proposed power series solution in the form

y D
1X

nD0

cnx
n D

1X
nD1

bnx
n�1 (3)

where bn D cn�1 for each n = 1. Then the first two conditions in (1) imply that
b3 D 0 and b4 D 1

6
b2; also, the recurrence relation (with n replaced with n � 1)

yields the new recurrence relation

bnC2 D cnC1 D
.n � 1/cn�1 C cn�3

.nC 1/n D .n � 1/bn C bn�2

n.nC 1/ : (4)

Now we are ready to begin. Suppose that we want to calculate the terms
through the 10th degree in (2) with the initial conditions b1 D b2 D 1. Then either
the Maple commands

k := 11: # k terms
b := array(1..k):
b[1] := 1: # arbitrary
b[2] := 1: # arbitrary
b[3] := 0:
b[4] := b[2]/6:
for n from 3 by 1 to k -- 2 do

b[n+2] := ((n--1)�b[n] + b[n--2])/(n�(n+1));
od;

or the Mathematica commands

k = 11; (� k terms �)
b = Table[0, {n,1,k}];
b[[1]] = 1; (� arbitrary �)
b[[2]] = 1; (� arbitrary �)
b[[3]] = 0;
b[[4]] = b[[2]]/6;
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For[n=3, n<=k--2,
b[[n+2]]=((n--1)�b[[n]] + b[[n--2]])/(n�(n+1)); n=n+1];

quickly yield the coefficients fbng corresponding to the solution

y.x/ D

1C x C x3

6
C x4

12
C 3x5

40
C x6

90
C 13x7

1008
C 3x8

1120
C 119x9

51840
C 41x10

113400
C � � � : (5)

You might note that the even- and odd-degree terms here agree with those shown in
Eqs. (18) and (19), respectively, of Example 7.

The MATLAB commands

k = 11; % k terms
b = 0�(1:k);
b(1) = 1; % arbitrary
b(2) = 1; % arbitrary
b(3) = 0;
b(4) = b(2)/6;
for n = 3:k--2

b(n+2) = ((n--1)�b(n) + b(n--2))/(n�(n+1));
end

format rat, b

give the same results, except that the coefficient b10 of x9 is shown as 73=31801

−3 −2 −1 0 1 2 3
−2

−1

0

1

2

3

4

x

y

(0, 1)

Value of k: 5

FIGURE 8.2.4. MATLAB interactive
display. The blue curve represents the
actual solution of the initial value
problem y00 � xy0 � x2y D 0 ,
y.0/ D y0.0/ D 1, whereas the black
curve shows the partial-sum
approximation of the series solution (5)
with terms through the fourth degree
(k D 5).

rather than the correct value 119=51840 shown in Eq. (4). It happens that

73

31801
� 0:0022955253 while

119

51840
� 0:0022955247;

so the two rational fractions agree when rounded to 9 decimal places. The explana-
tion is that (unlike Mathematica and Maple) MATLAB works internally with deci-
mal rather than exact arithmetic. But at the end its format rat algorithm converts
a correct 14-place approximation for b10 into an incorrect rational fraction that’s
“close but no cigar.”

The MATLAB commands above form the basis for the interactive display
shown in Fig. 8.2.4, which graphs the actual solution (blue curve) of the differential
equation (1), with initial conditions b1 D b2 D 1, together with the approximate so-
lution (black curve) consisting of the terms through the fourth degree (k D 5) in (5).
The pop-up menu allows the user to vary the number of terms k and thus immedi-
ately see the graphical effect of changing the number of terms included in the series
expansion. With k D 10, the actual and approximate solutions are indistinguishable
in this viewing window.

Finally, you can substitute b1 D 1, b2 D 0 and b1 D 0, b2 D 1 separately
(instead of b1 D b2 D 1) in the commands shown here to derive partial sums of the
two linearly independent solutions displayed in Eqs. (18) and (19) of Example 7.
This technique can be applied to any of the examples and problems in this section.

8.3 Regular Singular Points
We now investigate the solution of the homogeneous second-order linear equation

A.x/y00 C B.x/y0 C C.x/y D 0 (1)
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near a singular point. Recall that if the functions A, B , and C are polynomials
having no common factors, then the singular points of Eq. (1) are simply those
points where A.x/ D 0. For instance, x D 0 is the only singular point of the Bessel
equation of order n,

x2y00 C xy0 C .x2 � n2/y D 0;
whereas the Legendre equation of order n,

.1 � x2/y00 � 2xy0 C n.nC 1/y D 0;

has the two singular points x D �1 and x D 1. It turns out that some of the features
of the solutions of such equations of the most importance for applications are largely
determined by their behavior near their singular points.

We will restrict our attention to the case in which x D 0 is a singular point of
Eq. (1). A differential equation having xD a as a singular point is easily transformed
by the substitution t D x�a into one having a corresponding singular point at 0. For
example, let us substitute t D x � 1 into the Legendre equation of order n. Because

y0 D dy

dx
D dy

dt

dt

dx
D dy

dt
;

y00 D d2y

dx2
D
�
d

dt

�
dy

dx

��
dt

dx
D d2y

dt2
;

and 1 � x2 D 1 � .t C 1/2 D �2t � t2, we get the equation

�t .t C 2/d
2y

dt2
� 2.t C 1/dy

dt
C n.nC 1/y D 0:

This new equation has the singular point t D 0 corresponding to x D 1 in the original
equation; it also has the singular point t D �2 corresponding to x D �1.

Types of Singular Points
A differential equation having a singular point at 0 ordinarily will not have power
series solutions of the form y.x/ DP

cnx
n, so the straightforward method of Sec-

tion 8.2 fails in this case. To investigate the form that a solution of such an equation
might take, we assume that Eq. (1) has analytic coefficient functions and rewrite it
in the standard form

y00 C P.x/y0 CQ.x/y D 0; (2)

where P D B=A and Q D C=A. Recall that x D 0 is an ordinary point (as opposed
to a singular point) of Eq. (2) if the functions P.x/ and Q.x/ are analytic at x D 0;
that is, if P.x/ andQ.x/ have convergent power series expansions in powers of x on
some open interval containing xD 0. Now it can be proved that each of the functions
P.x/ andQ.x/ either is analytic or approaches˙1 as x! 0. Consequently, x D 0
is a singular point of Eq. (2) provided that either P.x/ or Q.x/ (or both) approaches
˙1 as x! 0. For instance, if we rewrite the Bessel equation of order n in the form

y00 C 1

x
y0 C

�
1 � n

2

x2

�
y D 0;

we see that P.x/ D 1=x and Q.x/ D 1 � .n=x/2 both approach infinity as x ! 0.
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We will see presently that the power series method can be generalized to apply
near the singular point x D 0 of Eq. (2), provided that P.x/ approaches infinity no
more rapidly than 1=x, and Q.x/ no more rapidly than 1=x2, as x ! 0. This is a
way of saying that P.x/ and Q.x/ have only “weak” singularities at x D 0. To state
this more precisely, we rewrite Eq. (2) in the form

y00 C p.x/

x
y0 C q.x/

x2
y D 0; (3)

where

p.x/ D xP.x/ and q.x/ D x2Q.x/: (4)

DEFINITION Regular Singular Point

The singular point x D 0 of Eq. (3) is a regular singular point if the functions
p.x/ and q.x/ are both analytic at x D 0. Otherwise it is an irregular singular
point.

In particular, the singular point x D 0 is a regular singular point if p.x/ and
q.x/ are both polynomials. For instance, we see that x D 0 is a regular singular
point of Bessel’s equation of order n by writing that equation in the form

y00 C 1

x
y0 C x2 � n2

x2
y D 0;

noting that p.x/ � 1 and q.x/ D x2 � n2 are both polynomials in x.
By contrast, consider the equation

2x3y00 C .1C x/y0 C 3xy D 0;

which has the singular point x D 0. If we write this equation in the form of (3), we
get

y00 C .1C x/=.2x2/

x
y0 C

3
2

x2
y D 0:

Because

p.x/ D 1C x
2x2

D 1

2x2
C 1

2x
!1

as x ! 0 (although q.x/ � 3
2

is a polynomial), we see that x D 0 is an irregular
singular point. We will not discuss the solution of differential equations near irreg-
ular singular points; this is a considerably more advanced topic than the solution of
differential equations near regular singular points.

Example 1 Consider the differential equation

x2.1C x/y00 C x.4 � x2/y0 C .2C 3x/y D 0:

In the standard form y00 C Py0 CQy D 0 it is

y00 C 4 � x2

x.1C x/y
0 C 2C 3x

x2.1C x/y D 0:

Because

P.x/ D 4 � x2

x.1C x/ and Q.x/ D 2C 3x
x2.1C x/
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both approach1 as x ! 0, we see that x D 0 is a singular point. To determine the nature of
this singular point, we write the differential equation in the form of Eq. (3):

y00 C .4 � x2/=.1C x/
x

y0 C .2C 3x/=.1C x/
x2

y D 0:

Thus

p.x/ D 4 � x2

1C x and q.x/ D 2C 3x
1C x :

Because a quotient of polynomials is analytic wherever the denominator is nonzero, we see
that p.x/ and q.x/ are both analytic at x D 0. Hence x D 0 is a regular singular point of the
given differential equation.

It may happen that when we begin with a differential equation in the general
form in Eq. (1) and rewrite it in the form in (3), the functions p.x/ and q.x/ as given
in (4) are indeterminate forms at x D 0. In this case the situation is determined by
the limits

p0 D p.0/ D lim
x!0

p.x/ D lim
x!0

xP.x/ (5)

and

q0 D q.0/ D lim
x!0

q.x/ D lim
x!0

x2Q.x/: (6)

If p0 D 0 D q0, then x D 0 may be an ordinary point of the differential equation
x2y00 C xp.x/y0 C q.x/y D 0 in (3). Otherwise:

� If both the limits in (5) and (6) exist and are finite, then x D 0 is a regular
singular point.

� If either limit fails to exist or is infinite, then x D 0 is an irregular singular
point.

Remark The most common case in applications, for the differential equation written in the
form

y00 C p.x/

x
y0 C q.x/

x2
y D 0; (3)

is that the functions p.x/ and q.x/ are polynomials. In this case p0 D p.0/ and q0 D q.0/ are
simply the constant terms of these polynomials, so there is no need to evaluate the limits in
Eqs. (5) and (6).

Example 2 To investigate the nature of the point x D 0 for the differential equation

x4y00 C .x2 sin x/y0 C .1 � cos x/y D 0;

we first write it in the form in (3):

y00 C .sin x/=x
x

y0 C .1 � cos x/=x2

x2
y D 0:

Then l’Hôpital’s rule gives the values

p0 D lim
x!0

sin x
x
D lim

x!0

cos x
1
D 1

and

q0 D lim
x!0

1 � cos x
x2

D lim
x!0

sin x
2x
D 1

2
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for the limits in (5) and (6). Since they are not both zero, we see that x D 0 is not an ordinary
point. But both limits are finite, so the singular point x D 0 is regular. Alternatively, we could
write

p.x/ D sin x
x
D 1

x

 
x � x

3

3Š
C x5

5Š
� � � �

!
D 1 � x

2

3Š
C x4

5Š
� � � �

and

q.x/ D 1 � cos x
x2

D 1

x2

"
1 �

 
1 � x

2

2Š
C x4

4Š
� x

6

6Š
C � � �

!#

D 1

2Š
� x

2

4Š
C x4

6Š
� � � � :

These (convergent) power series show explicitly that p.x/ and q.x/ are analytic and moreover
that p0 D p.0/ D 1 and q0 D q.0/ D 1

2 , thereby verifying directly that x D 0 is a regular
singular point.

The Method of Frobenius
We now approach the task of actually finding solutions of a second-order linear dif-
ferential equation near the regular singular point x D 0. The simplest such equation
is the constant-coefficient equidimensional equation

x2y00 C p0xy
0 C q0y D 0 (7)

to which Eq. (3) reduces when p.x/ � p0 and q.x/ � q0 are constants. In this case
we can verify by direct substitution that the simple power function y.x/ D xr is a
solution of Eq. (7) if and only if r is a root of the quadratic equation

r.r � 1/C p0r C q0 D 0: (8)

In the general case, in which p.x/ and q.x/ are power series rather than con-
stants, it is a reasonable conjecture that our differential equation might have a solu-
tion of the form

y.x/ D xr

1X
nD0

cnx
n D

1X
nD0

cnx
nCr D c0x

r C c1x
rC1 C c2x

rC2 C � � � (9)

—the product of xr and a power series. This turns out to be a very fruitful con-
jecture; according to Theorem 1 (soon to be stated formally), every equation of the
form in (1) having x D 0 as a regular singular point does, indeed, have at least one
such solution. This fact is the basis for the method of Frobenius, named for the
German mathematician Georg Frobenius (1848–1917), who discovered the method
in the 1870s.

An infinite series of the form in (9) is called a Frobenius series. Note that
a Frobenius series is generally not a power series. For instance, with r D �1

2
the

series in (9) takes the form

y D c0x
�1=2 C c1x

1=2 C c2x
3=2 C c3x

5=2 C � � � I

it is not a series in integral powers of x.
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To investigate the possible existence of Frobenius series solutions, we begin
with the equation

x2y00 C xp.x/y0 C q.x/y D 0; (10)

obtained by multiplying the equation in (3) by x2. If x D 0 is a regular singular
point, then p.x/ and q.x/ are analytic at x D 0, so

p.x/ D p0 C p1x C p2x
2 C p3x

3 C � � � ;
q.x/ D q0 C q1x C q2x

2 C q3x
3 C � � � : (11)

Suppose that Eq. (10) has the Frobenius series solution

y D
1X

nD0

cnx
nCr : (12)

We may (and always do) assume that c0 6D 0 because the series must have a first
nonzero term. Termwise differentiation in Eq. (12) leads to

y0 D
1X

nD0

cn.nC r/xnCr�1 (13)

and

y00 D
1X

nD0

cn.nC r/.nC r � 1/xnCr�2: (14)

Substitution of the series in Eqs. (11) through (14) in Eq. (10) now yields

Œr.r � 1/c0x
r C .r C 1/rc1x

rC1 C � � � �
C 
p0x C p1x

2 C � � � � � 
rc0x
r�1 C .r C 1/c1x

r C � � � �
C 
q0 C q1x C � � �

� � 
c0x
r C c1x

rC1 C � � � � D 0: (15)

Upon multiplying initial terms of the two products on the left-hand side here and
then collecting coefficients of xr , we see that the lowest-degree term in Eq. (15) is
c0Œr.r�1/Cp0rCq0�x

r . If Eq. (15) is to be satisfied identically, then the coefficient
of this term (as well as those of the higher-degree terms) must vanish. But we are
assuming that c0 6D 0, so it follows that r must satisfy the quadratic equation

r.r � 1/C p0r C q0 D 0 (16)

of precisely the same form as that obtained with the equidimensional equation in (7).
Equation (16) is called the indicial equation of the differential equation in (10), and
its two roots (possibly equal) are the exponents of the differential equation (at the
regular singular point x D 0).

Our derivation of Eq. (16) shows that if the Frobenius series y D xr
P
cnx

n

is to be a solution of the differential equation in (10), then the exponent r must be
one of the roots r1 and r2 of the indicial equation in (16). If r1 6D r2, it follows that
there are two possible Frobenius series solutions, whereas if r1D r2 there is only one
possible Frobenius series solution; the second solution cannot be a Frobenius series.
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The exponents r1 and r2 in the possible Frobenius series solutions are determined
(using the indicial equation) by the values p0 D p.0/ and q0 D q.0/ that we have
discussed. In practice, particularly when the coefficients in the differential equation
in the original form in (1) are polynomials, the simplest way of finding p0 and q0 is
often to write the equation in the form

y00 C p0 C p1x C p2x
2 C � � �

x
y0 C q0 C q1x C q2x

2 C � � �
x2

y D 0: (17)

Then inspection of the series that appear in the two numerators reveals the constants
p0 and q0.

Example 3 Find the exponents in the possible Frobenius series solutions of the equation

2x2.1C x/y00 C 3x.1C x/3y0 � .1 � x2/y D 0:

Solution We divide each term by 2x2.1C x/ to recast the differential equation in the form

y00 C
3
2 .1C 2x C x2/

x
y0 C �

1
2 .1 � x/
x2

y D 0;

and thus see that p0 D 3
2 and q0 D �1

2 . Hence the indicial equation is

r.r � 1/C 3
2 r � 1

2 D r2 C 1
2 r � 1

2 D .r C 1/.r � 1
2 / D 0;

with roots r1 D 1
2 and r2 D �1. The two possible Frobenius series solutions are then of the

forms

y1.x/ D x1=2
1X

nD0

anx
n and y2.x/ D x�1

1X
nD0

bnx
n:

Frobenius Series Solutions

Once the exponents r1 and r2 are known, the coefficients in a Frobenius series so-
lution are determined by substitution of the series in Eqs. (12) through (14) in the
differential equation, essentially the same method as was used to determine coef-
ficients in power series solutions in Section 8.2. If the exponents r1 and r2 are
complex conjugates, then there always exist two linearly independent Frobenius se-
ries solutions. We will restrict our attention here to the case in which r1 and r2 are
both real. We also will seek solutions only for x > 0. Once such a solution has been
found, we need only replace xr1 with jxjr1 to obtain a solution for x < 0. The fol-
lowing theorem is proved in Chapter 4 of Coddington’s An Introduction to Ordinary
Differential Equations.
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THEOREM 1 Frobenius Series Solutions

Suppose that x D 0 is a regular singular point of the equation

x2y00 C xp.x/y0 C q.x/y D 0: (10)

Let � > 0 denote the minimum of the radii of convergence of the power series

p.x/ D
1X

nD0

pnx
n and q.x/ D

1X
nD0

qnx
n:

Let r1 and r2 be the (real) roots, with r1 = r2, of the indicial equation r.r � 1/C
p0r C q0 D 0. Then

(a) For x > 0, there exists a solution of Eq. (10) of the form

y1.x/ D xr1

1X
nD0

anx
n .a0 6D 0/ (18)

corresponding to the larger root r1.

(b) If r1 � r2 is neither zero nor a positive integer, then there exists a second
linearly independent solution for x > 0 of the form

y2.x/ D xr2

1X
nD0

bnx
n .b0 6D 0/ (19)

corresponding to the smaller root r2.

The radii of convergence of the power series in Eqs. (18) and (19) are each
at least �. The coefficients in these series can be determined by substituting
the series in the differential equation

x2y00 C xp.x/y0 C q.x/y D 0:

We have already seen that if r1 D r2, then there can exist only one Frobenius
series solution. It turns out that, if r1 � r2 is a positive integer, there may or may
not exist a second Frobenius series solution of the form in Eq. (19) corresponding to
the smaller root r2. These exceptional cases are discussed in Section 8.4. Examples
4 through 6 illustrate the process of determining the coefficients in those Frobenius
series solutions that are guaranteed by Theorem 1.

Example 4 Find the Frobenius series solutions of

2x2y00 C 3xy0 � .x2 C 1/y D 0: (20)

Solution First we divide each term by 2x2 to put the equation in the form in (17):

y00 C
3
2

x
y0 C �

1
2 � 1

2x
2

x2
y D 0: (21)

We now see that x D 0 is a regular singular point, and that p0 D 3
2 and q0 D �1

2 . Because
p.x/� 3

2 and q.x/D�1
2 � 1

2x
2 are polynomials, the Frobenius series we obtain will converge

for all x > 0. The indicial equation is

r.r � 1/C 3
2 r � 1

2 D
�
r � 1

2

�
.r C 1/ D 0;
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so the exponents are r1 D 1
2 and r2 D �1. They do not differ by an integer, so Theorem 1

guarantees the existence of two linearly independent Frobenius series solutions. Rather than
separately substituting

y1 D x1=2
1X

nD0

anx
n and y2 D x�1

1X
nD0

bnx
n

in Eq. (20), it is more efficient to begin by substituting y D xr
P
cnx

n. We will then get a
recurrence relation that depends on r . With the value r1 D 1

2 it becomes a recurrence relation
for the series for y1, whereas with r2 D �1 it becomes a recurrence relation for the series for
y2.

When we substitute

y D
1X

nD0

cnx
nCr ; y0 D

1X
nD0

.nC r/cnx
nCr�1;

and

y00 D
1X

nD0

.nC r/.nC r � 1/cnx
nCr�2

in Eq. (20)—the original differential equation, rather than Eq. (21)—we get

2

1X
nD0

.nC r/.nC r � 1/cnx
nCr C 3

1X
nD0

.nC r/cnx
nCr

�
1X

nD0

cnx
nCrC2 �

1X
nD0

cnx
nCr D 0: (22)

At this stage there are several ways to proceed. A good standard practice is to shift indices so
that each exponent will be the same as the smallest one present. In this example, we shift the
index of summation in the third sum by �2 to reduce its exponent from nC r C 2 to nC r .
This gives

2

1X
nD0

.nC r/.nC r � 1/cnx
nCr C 3

1X
nD0

.nC r/cnx
nCr

�
1X

nD2

cn�2x
nCr �

1X
nD0

cnx
nCr D 0: (23)

The common range of summation is n = 2, so we must treat nD 0 and nD 1 separately. Fol-
lowing our standard practice, the terms corresponding to n D 0 will always give the indicial
equation

Œ2r.r � 1/C 3r � 1�c0 D 2
�
r2 C 1

2 r � 1
2

�
c0 D 0:

The terms corresponding to n D 1 yield

Œ2.r C 1/r C 3.r C 1/ � 1�c1 D .2r2 C 5r C 2/c1 D 0:
Because the coefficient 2r2 C 5r C 2 of c1 is nonzero whether r D 1

2 or r D �1, it follows
that

c1 D 0 (24)

in either case.
The coefficient of xnCr in Eq. (23) is

2.nC r/.nC r � 1/cn C 3.nC r/cn � cn�2 � cn D 0:
We solve for cn and simplify to obtain the recurrence relation

cn D
cn�2

2.nC r/2 C .nC r/ � 1 for n = 2. (25)
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CASE 1: r1 D 1
2

. We now write an in place of cn and substitute r D 1
2 in Eq. (25). This

gives the recurrence relation

an D
an�2

2n2 C 3n for n = 2. (26)

With this formula we can determine the coefficients in the first Frobenius solution y1. In view
of Eq. (24) we see that an D 0 whenever n is odd. With n D 2, 4, and 6 in Eq. (26), we get

a2 D
a0

14
; a4 D

a2

44
D a0

616
; and a6 D

a4

90
D a0

55;440
:

Hence the first Frobenius solution is

y1.x/ D a0x
1=2

 
1C x2

14
C x4

616
C x6

55;440
C � � �

!
:

CASE 2: r2 D �1. We now write bn in place of cn and substitute r D �1 in Eq. (25).
This gives the recurrence relation

bn D
bn�2

2b2 � 3n for n = 2: (27)

Again, Eq. (24) implies that bn D 0 for n odd. With n D 2, 4, and 6 in (27), we get

b2 D
b0

2
; b4 D

b2

20
D b0

40
; and b6 D

b4

54
D b0

2160
:

Hence the second Frobenius solution is

y2.x/ D b0x
�1

 
1C x2

2
C x4

40
C x6

2160
C � � �

!
:

Example 5 Find a Frobenius solution of Bessel’s equation of order zero,

x2y00 C xy0 C x2y D 0: (28)

Solution In the form of (17), Eq. (28) becomes

y00 C 1

x
y0 C x2

x2
y D 0:

Hence x D 0 is a regular singular point with p.x/ � 1 and q.x/ D x2, so our series will
converge for all x > 0. Because p0 D 1 and q0 D 0, the indicial equation is

r.r � 1/C r D r2 D 0:

Thus we obtain only the single exponent r D 0, and so there is only one Frobenius series
solution

y.x/ D x0
1X

nD0

cnx
n

of Eq. (28); it is in fact a power series.
Thus we substitute y DP cnx

n in (28); the result is

1X
nD0

n.n � 1/cnx
n C

1X
nD0

ncnx
n C

1X
nD0

cnx
nC2 D 0:

We combine the first two sums and shift the index of summation in the third by �2 to obtain

1X
nD0

n2cnx
n C

1X
nD2

cn�2x
n D 0:
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The term corresponding to x0 gives 0 D 0: no information. The term corresponding to x1

gives c1 D 0, and the term for xn yields the recurrence relation

cn D �
cn�2

n2
for n = 2. (29)

Because c1 D 0, we see that cn D 0 whenever n is odd. Substituting n D 2, 4, and 6 in
Eq. (29), we get

c2 D �
c0

22
; c4 D �

c2

42
D c0

22 � 42
; and c6 D �

c4

62
D � c0

22 � 42 � 62
:

Evidently, the pattern is

c2n D
.�1/nc0

22 � 42 � � � .2n/2 D
.�1/nc0

22n.nŠ/2
:

The choice c0 D 1 gives us one of the most important special functions in mathematics, the
Bessel function of order zero of the first kind, denoted by J0.x/. Thus

J0.x/ D
1X

nD0

.�1/nx2n

22n.nŠ/2
D 1 � x

2

4
C x4

64
� x6

2304
C � � � : (30)

In this example we have not been able to find a second linearly independent solution of
Bessel’s equation of order zero. We will derive that solution in Section 8.4; it will not be a
Frobenius series.

When r1 � r2 Is an Integer
Recall that, if r1 � r2 is a positive integer, then Theorem 1 guarantees only the
existence of the Frobenius series solution corresponding to the larger exponent r1.
Example 6 illustrates the fortunate case in which the series method nevertheless
yields a second Frobenius series solution. The case in which the second solution is
not a Frobenius series will be discussed in Section 8.4.

Example 6 Find the Frobenius series solutions of

xy00 C 2y0 C xy D 0: (31)

Solution In standard form the equation becomes

y00 C 2

x
y0 C x2

x2
y D 0;

so we see that x D 0 is a regular singular point with p0 D 2 and q0 D 0. The indicial equation

r.r � 1/C 2r D r.r C 1/ D 0
has roots r1D 0 and r2D�1, which differ by an integer. In this case when r1�r2 is an integer,
it is better to depart from the standard procedure of Example 4 and begin our work with the
smaller exponent. As you will see, the recurrence relation will then tell us whether or not a
second Frobenius series solution exists. If it does exist, our computations will simultaneously
yield both Frobenius series solutions. If the second solution does not exist, we begin anew
with the larger exponent r D r1 to obtain the one Frobenius series solution guaranteed by
Theorem 1.

Hence we begin by substituting

y D x�1
1X

nD0

cnx
n D

1X
nD0

cnx
n�1

in Eq. (31). This gives

1X
nD0

.n � 1/.n � 2/cnxn�2 C 2
1X

nD0

.n � 1/cnx
n�2 C

1X
nD0

cnx
n D 0:
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We combine the first two sums and shift the index by �2 in the third to obtain

1X
nD0

n.n � 1/cnx
n�2 C

1X
nD2

cn�2x
n�2 D 0: (32)

The cases n D 0 and n D 1 reduce to

0 � c0 D 0 and 0 � c1 D 0:

Hence we have two arbitrary constants c0 and c1 and therefore can expect to find a general
solution incorporating two linearly independent Frobenius series solutions. If, for n D 1, we
had obtained an equation such as 0 � c1 D 3, which can be satisfied for no choice of c1, this
would have told us that no second Frobenius series solution could exist.

Now knowing that all is well, from (32) we read the recurrence relation

cn D �
cn�2

n.n � 1/ for n = 2. (33)

The first few values of n give

c2 D �
1

2 � 1c0; c3D �
1

3 � 2c1;

c4 D �
1

4 � 3c2 D c0

4Š
; c5 D �

1

5 � 4c3 D
c1

5Š
;

c6 D �
1

6 � 5c4 D �
c0

6Š
; c7 D �

1

7 � 6c6 D �
c1

7Š
I

evidently the pattern is

c2n D
.�1/nc0

.2n/Š
; c2nC1 D

.�1/nc1

.2nC 1/Š

for n = 1. Therefore, a general solution of Eq. (31) is

y.x/ D x�1
1X

nD0

cnx
n

D c0

x

 
1 � x

2

2Š
C x4

4Š
� � � �

!
C c1

x

 
x � x

3

3Š
C x5

5Š
� � � �

!

D c0

x

1X
nD0

.�1/nx2n

.2n/Š
C c1

x

1X
nD0

.�1/nx2nC1

.2nC 1/Š :

Thus

y.x/ D 1

x
.c0 cos x C c1 sin x/:

We have thus found a general solution expressed as a linear combination of the two Frobenius
series solutions

y1.x/ D
cos x
x

and y2.x/ D
sin x
x

: (34)

As indicated in Fig. 8.3.1, one of these Frobenius series solutions is bounded but the other
is unbounded near the regular singular point x D 0—a common occurrence in the case of
exponents differing by an integer.

2π 4π
x

1

y

y1

y2

FIGURE 8.3.1. The solutions

y1.x/ D cos x

x
and y2.x/ D sin x

x
in

Example 6.
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Summary
When confronted with a linear second-order differential equation

A.x/y00 C B.x/y0 C C.x/y D 0

with analytic coefficient functions, in order to investigate the possible existence of
series solutions we first write the equation in the standard form

y00 C P.x/y0 CQ.x/y D 0:

If P.x/ and Q.x/ are both analytic at x D 0, then x D 0 is an ordinary point, and
the equation has two linearly independent power series solutions.

Otherwise, xD 0 is a singular point, and we next write the differential equation
in the form

y00 C p.x/

x
y0 C q.x/

x2
y D 0:

If p.x/ and q.x/ are both analytic at x D 0, then x D 0 is a regular singular point.
In this case we find the two exponents r1 and r2 (assumed real, and with r1 = r2) by
solving the indicial equation

r.r � 1/C p0r C q0 D 0;

where p0 D p.0/ and q0 D q.0/. There always exists a Frobenius series solution
y D xr1

P
anx

n associated with the larger exponent r1, and if r1 � r2 is not an
integer, the existence of a second Frobenius series solution y2 D xr2

P
bnx

n is also
guaranteed.

8.3 Problems
In Problems 1 through 8, determine whether x D 0 is an ordi-
nary point, a regular singular point, or an irregular singular
point. If it is a regular singular point, find the exponents of the
differential equation at x D 0.

1. xy00 C .x � x3/y0 C .sin x/y D 0
2. xy00 C x2y0 C .ex � 1/y D 0
3. x2y00 C .cos x/y0 C xy D 0
4. 3x3y00 C 2x2y0 C .1 � x2/y D 0
5. x.1C x/y00 C 2y0 C 3xy D 0
6. x2.1 � x2/y00 C 2xy0 � 2y D 0
7. x2y00 C .6 sin x/y0 C 6y D 0
8. .6x2 C 2x3/y00 C 21xy0 C 9.x2 � 1/y D 0

If x D a 6D 0 is a singular point of a second-order linear dif-
ferential equation, then the substitution t D x � a transforms
it into a differential equation having t D 0 as a singular point.
We then attribute to the original equation at xD a the behavior
of the new equation at t D 0. Classify (as regular or irregular)
the singular points of the differential equations in Problems 9
through 16.

9. .1 � x/y00 C xy0 C x2y D 0
10. .1 � x/2y00 C .2x � 2/y0 C y D 0

11. .1 � x2/y00 � 2xy0 C 12y D 0
12. .x � 2/3y00 C 3.x � 2/2y0 C x3y D 0
13. .x2 � 4/y00 C .x � 2/y0 C .x C 2/y D 0
14. .x2 � 9/2y00 C .x2 C 9/y0 C .x2 C 4/y D 0
15. .x � 2/2y00 � .x2 � 4/y0 C .x C 2/y D 0
16. x3.1 � x/y00 C .3x C 2/y0 C xy D 0

Find two linearly independent Frobenius series solutions (for
x > 0) of each of the differential equations in Problems 17
through 26.

17. 4xy00 C 2y0 C y D 0
18. 2xy00 C 3y0 � y D 0
19. 2xy00 � y0 � y D 0
20. 3xy00 C 2y0 C 2y D 0
21. 2x2y00 C xy0 � .1C 2x2/y D 0
22. 2x2y00 C xy0 � .3 � 2x2/y D 0
23. 6x2y00 C 7xy0 � .x2 C 2/y D 0
24. 3x2y00 C 2xy0 C x2y D 0
25. 2xy00 C .1C x/y0 C y D 0
26. 2xy00 C .1 � 2x2/y0 � 4xy D 0
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Use the method of Example 6 to find two linearly independent
Frobenius series solutions of the differential equations in Prob-
lems 27 through 31. Then construct a graph showing their
graphs for x > 0.

27. xy00 C 2y0 C 9xy D 0 28. xy00 C 2y0 � 4xy D 0
29. 4xy00 C 8y0 C xy D 0 30. xy00 � y0 C 4x3y D 0
31. 4x2y00 � 4xy0 C .3 � 4x2/y D 0

In Problems 32 through 34, find the first three nonzero terms
of each of two linearly independent Frobenius series solutions.

32. 2x2y00 C x.x C 1/y0 � .2x C 1/y D 0
33. .2x2 C 5x3/y00 C .3x � x2/y0 � .1C x/y D 0
34. 2x2y00 C .sin x/y0 � .cos x/y D 0
35. Note that x D 0 is an irregular point of the equation

x2y00 C .3x � 1/y0 C y D 0:
(a) Show that y D xr

P
cnx

n can satisfy this equation
only if r D 0. (b) Substitute y D P

cnx
n to derive the

“formal” solution y DP nŠxn. What is the radius of con-
vergence of this series?

36. (a) Suppose that A and B are nonzero constants. Show
that the equation x2y00 C Ay0 C By D 0 has at most one
solution of the form y D xr

P
cnx

n. (b) Repeat part
(a) with the equation x3y00 C Axy0 C By D 0. (c) Show
that the equation x3y00 C Ax2y0 C By D 0 has no Frobe-
nius series solution. (Suggestion: In each case substitute
yD xr

P
cnx

n in the given equation to determine the pos-
sible values of r .)

37. (a) Use the method of Frobenius to derive the solution
y1 D x of the equation x3y00 � xy0 C y D 0. (b) Verify
by substitution the second solution y2 D xe�1=x . Does y2

have a Frobenius series representation?
38. Apply the method of Frobenius to Bessel’s equation of

order 1
2 ,

x2y00 C xy0 C
�
x2 � 1

4

�
y D 0;

to derive its general solution for x > 0,

y.x/ D c0
cos xp
x
C c1

sin xp
x
:

Figure 8.3.2 shows the graphs of the two indicated solu-
tions.

2π 4π
x

1

y

y1

y2

FIGURE 8.3.2. The solutions

y1.x/ D cos xp
x

and y2.x/ D sin xp
x

in

Problem 38.

39. (a) Show that Bessel’s equation of order 1,

x2y00 C xy0 C .x2 � 1/y D 0;

has exponents r1 D 1 and r2 D �1 at x D 0, and that the
Frobenius series corresponding to r1 D 1 is

J1.x/ D
x

2

1X
nD0

.�1/nx2n

nŠ .nC 1/Š 22n
:

(b) Show that there is no Frobenius solution correspond-
ing to the smaller exponent r2 D �1; that is, show that it
is impossible to determine the coefficients in

y2.x/ D x�1
1X

nD0

cnx
n:

40. Consider the equation x2y00 C xy0 C .1 � x/y D 0. (a)
Show that its exponents are ˙i , so it has complex-valued
Frobenius series solutions

yC D xi
1X

nD0

pnx
n and y� D x�i

1X
nD0

qnx
n

with p0 D q0 D 1. (b) Show that the recursion formula
is

cn D
cn�1

n2 C 2rn :
Apply this formula with r D i to obtain pn D cn, then with
r D �i to obtain qn D cn. Conclude that pn and qn are
complex conjugates: pn D an C ibn and qn D an � ibn,
where the numbers fang and fbng are real. (c) Deduce
from part (b) that the differential equation given in this
problem has real-valued solutions of the form

y1.x/ D A.x/ cos.ln x/ � B.x/ sin.ln x/;

y2.x/ D A.x/ sin.ln x/C B.x/ cos.ln x/;

where A.x/ DP anx
n and B.x/ DP bnx

n.
41. Consider the differential equation

x.x � 1/.xC 1/2y00C 2x.x � 3/.xC 1/y0 � 2.x � 1/y D 0

that appeared in an advertisement for a symbolic algebra
program in the March 1984 issue of the American Mathe-
matical Monthly. (a) Show that xD 0 is a regular singular
point with exponents r1 D 1 and r2 D 0. (b) It follows
from Theorem 1 that this differential equation has a power
series solution of the form

y1.x/ D x C c2x
2 C c3x3 C � � � :

Substitute this series (with c1 D 1) in the differential equa-
tion to show that c2 D �2, c3 D 3, and

cnC2 D

.n2 � n/cn�1 C .n2 � 5n � 2/cn � .n2 C 7nC 4/cnC1

.nC 1/.nC 2/
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for n = 2. (c) Use the recurrence relation in part (b)
to prove by induction that cn D .�1/nC1n for n = 1 (!).
Hence deduce (using the geometric series) that

y1.x/ D
x

.1C x/2

for 0 < x < 1.
42. This problem is a brief introduction to Gauss’s hypergeo-

metric equation

x.1 � x/y00 C Œ� � .˛ C ˇ C 1/x�y0 � ˛ˇy D 0; (35)

where ˛, ˇ, and � are constants. This famous equation has
wide-ranging applications in mathematics and physics.
(a) Show that x D 0 is a regular singular point of Eq. (35),
with exponents 0 and 1� � . (b) If � is not zero or a neg-
ative integer, it follows (why?) that Eq. (35) has a power
series solution

y.x/ D x0
1X

nD0

cnx
n D

1X
nD0

cnx
n

with c0 6D 0. Show that the recurrence relation for this
series is

cnC1 D
.˛ C n/.ˇ C n/
.� C n/.1C n/ cn

for n = 0. (c) Conclude that with c0 D 1 the series in part
(b) is

y.x/ D 1C
1X

nD0

˛nˇn

nŠ �n
xn (36)

where ˛n D ˛.˛C 1/.˛C 2/ � � � .˛C n� 1/ for n = 1, and
ˇn and �n are defined similarly. (d) The series in (36)
is known as the hypergeometric series and is commonly
denoted by F.˛; ˇ; �; x/. Show that

(i) F.1; 1; 1; x/ D 1

1 � x (the geometric series);

(ii) xF.1; 1; 2;�x/ D ln.1C x/;
(iii) xF

�
1
2 ; 1;

3
2 ;�x2

�
D tan�1 x;

(iv) F.�k; 1; 1;�x/ D .1C x/k (the binomial series).

8.3 Application Automating the Frobenius Series Method
Here we illustrate the use of a computer algebra system such as Maple to apply
the method of Frobenius. More complete versions of this application—illustrating
the use of Maple, Mathematica, and MATLAB—can be found in the applications
manual that accompanies this text. We consider the differential equation

2x2y00 C 3xy0 � .x2 C 1/y D 0 (1)

of Example 4 in this section, where we found the two indicial roots r1 D 1
2

and
r2 D �1.

Beginning with the indicial root r1 D 1
2

, we first write the initial seven terms
of a proposed Frobenius series solution:

a := array(0..6):
y := x^(1/2)�sum( a[n]�x^(n), n = 0..6);

y WD px �a0 C a1x C a2x
2 C a3x

3 C a4x
4 C a5x

5 C a6x
6
	

Then we substitute this series (actually, partial sum) into the left-hand side of Eq. (1).

deq1 := 2�x^2�diff(y,x$2) + 3�x�diff(y,x) -- (x^2 + 1)�y:
Evidently x3=2 will factor out upon simplification, so we multiply by x�3=2 and then
collect coefficients of like powers of x.

deq2 := collect( x^(--3/2)�simplify(deq1), x);

deq2 WD �x7a6 � x6a5 C .90a6 � a4/x
5 C .�a3 C 65a5/x

4

C .�a2 C 44a4/x
3 C .�a1 C 27a3/x

2 C .14a2 � a0/x C 5a1

We see here the equations that the successive coefficients must satisfy. We can
select them automatically by defining an array, then filling the elements of this array
by equating to zero (in turn) each of the coefficients in the series.
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eqs := array(0..5):
for n from 0 to 5 do

eqs[n] := coeff(deq1,x,n) = 0: od:
coeffEqs := convert(eqs, set);

coeffEqs WD ˚5a1 D 0; �a2 C 44a4 D 0; �a3 C 65a5 D 0;
90a6 � a4 D 0; 14a2 � a0 D 0; �a1 C 27a3 D 0

�
We now have a collection of six linear equations relating the seven coefficients

(a0 through a6). Hence we can proceed to solve for the successive coefficients in
terms of a0.

succCoeffs := convert([seq(a[n], n=1..6)], set);
ourCoeffs := solve(coeffEqs, succCoeffs);

ourCoeffs WD
�
a1 D 0; a6 D

1

55440
a0; a4 D

1

616
a0;

a2 D
1

14
a0; a5 D 0; a3 D 0


Thus we get the first particular solution

y1.x/ D a0x
1=2

�
1C x2

14
C x4

616
C x6

55440
C � � �

�
found in Example 4. You can now repeat this process, beginning with the indicial
root r2 D �1, to derive similarly the second particular solution.

In the following problems, use this method to derive Frobenius series solutions
that can be checked against the given known general solutions.

1. xy00 � y0 C 4x3y D 0; y.x/ D A cos x2 C B sin x2

2. xy00 � 2y0 C 9x5y D 0; y.x/ D A cos x3 C B sin x3

3. 4xy00 � 2y0 C y D 0; y.x/ D A cos
p
x C B sin

p
x

4. xy00 C 2y0 C xy D 0; y.x/ D 1

x
.A cos x C B sin x/

5. 4xy00 C 6y0 C y D 0; y.x/ D 1p
x

�
A cos

p
x C B sin

p
x
	

6. x2y00 C xy0 C .4x4 � 1/y D 0; y.x/ D 1

x
.A cos x2 C B sin x2/

7. xy00 C 3y0 C 4x3y D 0; y.x/ D 1

x2
.A cos x2 C B sin x2/

8. x2y00 C x2y0 � 2y D 0; y.x/ D 1

x
ŒA.2 � x/C B.2C x/e�x�

Problems 9 through 11 involve the arctangent series

tan�1 x D x � x
3

3
C x5

5
� x

7

7
C � � � :

9. .x C x3/y00 C .2C 4x2/y0 C 2xy D 0, y.x/ D 1

x
.AC B tan�1 x/

10. .2x C 2x2/y00 C .3C 5x/y0 C y D 0, y.x/ D 1p
x

�
AC B tan�1

p
x
	

11. .x C x5/y00 C .3C 7x4/y0 C 8x3y D 0, y.x/ D 1

x2
.AC B tan�1 x2/
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8.4 Method of Frobenius: The Exceptional Cases
We continue our discussion of the equation

y00 C p.x/

x
y0 C q.x/

x2
y D 0 (1)

where p.x/ and q.x/ are analytic at x D 0 and x D 0 is a regular singular point. If
the roots r1 and r2 of the indicial equation

�.r/ D r.r � 1/C p0r C q0 D 0 (2)

do not differ by an integer, then Theorem 1 of Section 8.3 guarantees that Eq. (1)
has two linearly independent Frobenius series solutions. We consider now the more
complex situation in which r1 � r2 is an integer. If r1 D r2, then there is only one
exponent available, and thus there can be only one Frobenius series solution. But
we saw in Example 6 of Section 8.3 that if r1 D r2 C N , with N a positive integer,
then it is possible that a second Frobenius series solution exists. We will also see
that it is possible that such a solution does not exist. In fact, the second solution
involves ln x when it is not a Frobenius series. As you will see in Examples 3 and 4,
these exceptional cases occur in the solution of Bessel’s equation. For applications,
this is the most important second-order linear differential equation with variable
coefficients.

The Nonlogarithmic Case with r1 D r2 C N
In Section 8.3 we derived the indicial equation by substituting the power series
p.x/ DPpnx

n and q.x/ DP qnx
n and the Frobenius series

y.x/ D xr

1X
nD0

cnx
n D

1X
nD0

cnx
nCr .c0 6D 0/ (3)

in the differential equation in the form

x2y00 C xp.x/y0 C q.x/y D 0: (4)

The result of this substitution, after collection of the coefficients of like powers of
x, is an equation of the form

1X
nD0

Fn.r/x
nCr D 0 (5)

in which the coefficients depend on r . It turns out that the coefficient of xr is

F0.r/ D Œr.r � 1/C p0r C q0�c0 D �.r/c0; (6)

which gives the indicial equation because c0 6D 0 by assumption; also, for n = 1, the
coefficient of xnCr has the form

Fn.r/ D �.r C n/cn C Ln.r I c0; c1; : : : ; cn�1/: (7)

Here Ln is a certain linear combination of c0; c1; : : : ; cn�1. Although the exact for-
mula is not necessary for our purposes, it happens that

Ln D
n�1X
kD0

Œ.r C k/pn�k C qn�k �ck : (8)
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Because all the coefficients in (5) must vanish for the Frobenius series to be a
solution of Eq. (4), it follows that the exponent r and the coefficients c0; c1; : : : ; cn

must satisfy the equation

�.r C n/cn C Ln.r I c0; c1; : : : ; cn�1/ D 0: (9)

This is a recurrence relation for cn in terms of c0; c1; : : : ; cn�1.
Now suppose that r1 D r2 CN with N a positive integer. If we use the larger

exponent r1 in Eq. (9), then the coefficient �.r1 C n/ of cn will be nonzero for
every n = 1 because �.r/ D 0 only when r D r1 and when r D r2 < r1. Once
c0; c1; : : : ; cn�1 have been determined, we therefore can solve Eq. (9) for cn and
continue to compute successive coefficients in the Frobenius series solution corre-
sponding to the exponent r1.

But when we use the smaller exponent r2, there is a potential difficulty in
computing cN . For in this case �.r2 CN/ D 0, so Eq. (9) becomes

0 � cN C LN .r2I c0; c1; : : : ; cN �1/ D 0: (10)

At this stage c0; c1; : : : ; cN �1 have already been determined. If it happens that

LN .r2I c0; c1; : : : ; cN �1/ D 0;

then we can choose cN arbitrarily and continue to determine the remaining coeffi-
cients in a second Frobenius series solution. But if it happens that

LN .r2I c0; c1; : : : ; cN �1/ 6D 0;

then Eq. (10) is not satisfied with any choice of cN ; in this case there cannot exist a
second Frobenius series solution corresponding to the smaller exponent r2. Exam-
ples 1 and 2 illustrate these two possibilities.

Example 1 Consider the equation

x2y00 C .6x C x2/y0 C xy D 0: (11)

Here p0 D 6 and q0 D 0, so the indicial equation is

�.r/ D r.r � 1/C 6r D r2 C 5r D 0 (12)

with roots r1 D 0 and r2 D �5; the roots differ by the integer N D 5. We substitute the
Frobenius series y DP cnx

nCr and get

1X
nD0

.nC r/.nC r � 1/cnxnCr C 6
1X

nD0

.nC r/cnx
nCr

C
1X

nD0

.nC r/cnx
nCrC1 C

1X
nD0

cnx
nCrC1 D 0:

When we combine the first two and also the last two sums, and in the latter shift the index by
�1, the result is

1X
nD0

Œ.nC r/2 C 5.nC r/�cnx
nCr C

1X
nD1

.nC r/cn�1x
nCr D 0:

The terms corresponding to n D 0 give the indicial equation in (12), whereas for n = 1 we
get the equation

Œ.nC r/2 C 5.nC r/�cn C .nC r/cn�1 D 0; (13)
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which in this example corresponds to the general solution in (9). Note that the coefficient of
cn is �.nC r/.

We now follow the recommendation in Section 8.3 for the case r1 D r2CN : We begin
with the smaller root r2 D �5. With r2 D �5, Eq. (13) reduces to

n.n � 5/cn C .n � 5/cn�1 D 0: (14)

If n 6D 5, we can solve this equation for cn to obtain the recurrence relation

cn D �
cn�1

n
for n 6D 5. (15)

This yields

c1 D �c0; c2 D �
c1

2
D c0

2
;

c3 D �
c2

3
D �c0

6
; and c4 D �

c3

4
D c0

24
:

(16)

In the case r1 D r2 C N , it is always the coefficient cN that requires special consideration.
HereN D 5, and for nD 5 Eq. (14) takes the form 0 �c5C0D 0. Hence c5 is a second arbitrary
constant, and we can compute additional coefficients, still using the recursion formula in (15):

c6 D �
c5

6
; c7 D �

c6

7
D c5

6 � 7 ; c8 D �
c7

8
D � c5

6 � 7 � 8 ; (17)

and so on.
When we combine the results in (16) and (17), we get

y D x�5
1X

nD0

cnx
n

D c0x
�5

 
1 � x C x2

2
� x

3

6
C x4

24

!

C c5x�5

 
x5 � x

6

6
C x7

6 � 7 �
x8

6 � 7 � 8 C � � �
!

in terms of the two arbitrary constants c0 and c5. Thus we have found the two Frobenius
series solutions

y1.x/ D x�5

 
1 � x C x2

2
� x

3

6
C x4

24

!
and

y2.x/ D 1C
1X

nD1

.�1/nxn

6 � 7 � � � .nC 5/ D 1C 120
1X

nD1

.�1/nxn

.nC 5/Š

of Eq. (11).

Example 2 Determine whether or not the equation

x2y00 � xy0 C .x2 � 8/y D 0 (18)

has two linearly independent Frobenius series solutions.
Solution Here p0 D �1 and q0 D �8, so the indicial equation is

�.r/ D r.r � 1/ � r � 8 D r2 � 2r � 8 D 0
with roots r1 D 4 and r2 D �2 differing by N D 6. On substitution of y D P

cnx
nCr in

Eq. (18), we get

1X
nD0

.nC r/.nC r � 1/cnx
nCr �

1X
nD0

.nC r/cnx
nCr

C
1X

nD0

cnx
nCrC2 � 8

1X
nD0

cnx
nCr D 0:
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If we shift the index by �2 in the third sum and combine the other three sums, we get

1X
nD0

Œ.nC r/2 � 2.nC r/ � 8�cnx
nCr C

1X
nD2

cn�2x
nCr D 0:

The coefficient of xr gives the indicial equation, and the coefficient of xrC1 givesh
.r C 1/2 � 2.r C 1/ � 8

i
c1 D 0:

Because the coefficient of c1 is nonzero both for r D 4 and for r D �2, it follows that c1 D 0
in each case. For n = 2 we get the equationh

.nC r/2 � 2.nC r/ � 8
i
cn C cn�2 D 0; (19)

which corresponds in this example to the general equation in (9); note that the coefficient of
cn is �.nC r/.

We work first with the smaller root r D r2 D �2. Then Eq. (19) becomes

n.n � 6/cn C cn�2 D 0 (20)

for n = 2. For n 6D 6 we can solve for the recurrence relation

cn D �
cn�2

n.n � 6/ .n = 2; n 6D 6/: (21)

Because c1 D 0, this formula gives

c2 D
c0

8
; c3 D 0;

c4 D
c2

8
D c0

64
; and c5 D 0:

Now Eq. (20) with n D 6 reduces to

0 � c6 C
c0

64
D 0:

But c0 6D 0 by assumption, and hence there is no way to choose c6 so that this equation holds.
Thus there is no Frobenius series solution corresponding to the smaller root r2 D �2.

To find the single Frobenius series solution corresponding to the larger root r1 D 4, we
substitute r D 4 in Eq. (19) to obtain the recurrence relation

cn D �
cn�2

n.nC 6/ .n = 2/: (22)

This gives

c2 D �
c0

2 � 8 ; c4 D �
c2

4 � 10 D
c0

2 � 4 � 8 � 10 :
The general pattern is

c2n D
.�1/nc0

2 � 4 � � � .2n/ � 8 � 10 � � � .2nC 6/ D
.�1/n6c0

22nnŠ .nC 3/Š :

This yields the Frobenius series solution

y1.x/ D x4

 
1C 6

1X
nD1

.�1/nx2n

22nnŠ .nC 3/Š

!

of Eq. (18).
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Reduction of Order
When only a single Frobenius series solution exists, we need an additional tech-
nique. We discuss here the method of reduction of order, which enables us to
use one known solution y1 of a second-order homogeneous linear differential equa-
tion to find a second linearly independent solution y2. Consider the second-order
equation

y00 C P.x/y0 CQ.x/y D 0 (23)

on an open interval I on which P andQ are continuous. Suppose that we know one
solution y1 of Eq. (23). By Theorem 2 of Section 3.1, there exists a second linearly
independent solution y2; our problem is to find y2. Equivalently, we would like to
find the quotient

v.x/ D y2.x/

y1.x/
: (24)

Once we know v.x/, y2 will then be given by

y2.x/ D v.x/y1.x/: (25)

We begin by substituting the expression in (25) in Eq. (23), using the
derivatives

y0
2 D vy0

1 C v0y1 and y00
2 D vy00

1 C 2v0y0
1 C v00y1:

We get 

vy00

1 C 2v0y0
1 C v00y1

�C P 
vy0
1 C v0y1

�CQvy1 D 0;
and rearrangement gives

v


y00

1 C Py0
1 CQy1

�C v00y1 C 2v0y0
1 C Pv0y1 D 0:

But the bracketed expression in this last equation vanishes because y1 is a solution
of Eq. (23). This leaves the equation

v00y1 C .2y0
1 C Py1/v

0 D 0: (26)

The key to the success of this method is that Eq. (26) is linear in v0. Thus the
substitution in (25) has reduced the second-order linear equation in (23) to the first-
order (in v0) linear equation in (26). If we write u D v0 and assume that y1.x/ never
vanishes on I , then Eq. (26) yields

u0 C
�
2
y0

1

y1

C P.x/
�
u D 0: (27)

An integrating factor for Eq. (27) is

� D exp
�Z �

2
y0

1

y1

C P.x/
�
dx

�
D exp

�
2 ln jy1j C

Z
P.x/ dx

�
I

thus

�.x/ D y2
1 exp

�Z
P.x/ dx

�
:
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We now integrate the equation in (27) to obtain

uy2
1 exp

�Z
P.x/ dx

�
D C; so v0 D u D C

y2
1

exp
�
�
Z
P.x/ dx

�
:

Another integration now gives

y2

y1

D v D C
Z

exp
�� R P.x/ dx	

y2
1

dx CK:

With the particular choices C D 1 and K D 0 we get the reduction-of-order for-
mula

y2 D y1

Z
exp

�� R P.x/ dx	
y2

1

dx: (28)

This formula provides a second solution y2.x/ of Eq. (23) on any interval where
y1.x/ is never zero. Note that because an exponential function never vanishes, y2.x/

is a nonconstant multiple of y1.x/, so y1 and y2 are linearly independent solutions.

Example 3 For an elementary application of the reduction-of-order formula consider the differential
equation

x2y00 � 9xy0 C 25y D 0:
In Section 8.3 we mentioned that the equidimensional equation x2y00 C p0xy

0 C q0y D 0

has the power function y.x/ D xr as a solution if and only if r is a root of the quadratic
equation r2 C .p0 � 1/r C q0 D 0. Here p0 D �9 and q0 D 25, so our quadratic equation is
r2 � 10r C 25 D .r � 5/2 D 0 and has the single (repeated) root r D 5. This gives the single
power function solution y1.x/ D x5 of our differential equation.

Before we can apply the reduction-of-order formula to find a second solution, we must
first divide the equation x2y00�9xy0C25yD 0 by its leading coefficient x2 to get the standard
form

y00 � 9
x
y0 C 25

x2
y D 0

in Eq. (23) with leading coefficient 1. Thus we have P.x/ D �9=x and Q.x/ D 25=x2, so the
reduction-of-order formula in (28) yields the second linearly independent solution

y2.x/ D x5

Z
1

.x5/2
exp

�
�
Z
� 9
x
dx

�
dx

D x5

Z
x�10 exp .9 ln x/ dx D x5

Z
x�10x9 dx D x5 ln x

for x > 0. Thus our particular equidimensional equation has the two independent solutions
y1.x/ D x5 and y2.x/ D x5 ln x for x > 0.

Similar applications of the reduction-of-order formula can be found in Prob-
lems 37–44 of Section 3.2—where we introduced the method of reduction of order
in Problem 36 (though without deriving there the reduction-of-order formula itself).

The Logarithmic Cases
We now investigate the general form of the second solution of the equation

y00 C p.x/

x
y0 C q.x/

x2
y D 0; (1)
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under the assumption that its exponents r1 and r2 D r1 � N differ by the integer
N = 0. We assume that we have already found the Frobenius series solution

y1.x/ D xr1

1X
nD0

anx
n .a0 6D 0/ (29)

for x > 0 corresponding to the larger exponent r1. Let us write P.x/ for p.x/=x and
Q.x/ for q.x/=x2. Thus we can rewrite Eq. (1) in the form y00 C Py0 CQy D 0 of
Eq. (23).

Because the indicial equation has roots r1 and r2 D r1 �N , it can be factored
easily:

r2 C .p0 � 1/r C q0 D .r � r1/.r � r1 CN/
D r2 C .N � 2r1/r C .r2

1 � r1N/ D 0;

so we see that
p0 � 1 D N � 2r1I

that is,

�p0 � 2r1 D �1 �N: (30)

In preparation for use of the reduction of order formula in (28), we write

P.x/ D p0 C p1x C p2x
2 C � � �

x
D p0

x
C p1 C p2x C � � � :

Then

exp
�
�
Z
P.x/ dx

�
D exp

�
�
Z hp0

x
C p1 C p2x C � � �

i
dx

�
D exp

��p0 ln x � p1x � 1
2
p2x

2 � � � � 	
D x�p0 exp

��p1x � 1
2
p2x

2 � � � � 	 ;
so that

exp
�
�
Z
P.x/ dx

�
D x�p0

�
1C A1x C A2x

2 C � � � 	 : (31)

In the last step we have used the fact that a composition of analytic functions is
analytic and therefore has a power series representation; the initial coefficient of
that series in (31) is 1 because e0 D 1.

We now substitute (29) and (31) in (28); with the choice a0 D 1 in (29), this
yields

y2 D y1

Z
x�p0

�
1C A1x C A2x

2 C � � � 	
x2r1 .1C a1x C a2x2 C � � � /2

dx:

We expand the denominator and simplify:

y2 D y1

Z
x�p0�2r1

�
1C A1x C A2x

2 C � � � 	
1C B1x C B2x2 C � � � dx

D y1

Z
x�1�N

�
1C C1x C C2x

2 C � � � 	 dx (32)
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(Here we have substituted (30) and indicated the result of carrying out long division
of series as illustrated in Fig. 8.1.1, noting in particular that the constant term of the
quotient series is 1.) We now consider separately the cases N D 0 and N > 0. We
want to ascertain the general form of y2 without keeping track of specific coeffi-
cients.

CASE 1: EQUAL EXPONENTS (r1 D r2). With N D 0, Eq. (32) gives

y2 D y1

Z �
1

x
C C1 C C2x

2 C � � �
�
dx

D y1 ln x C y1

�
C1x C 1

2
C2x

2 C � � � 	
D y1 ln x C xr1 .1C a1x C � � � /

�
C1x C 1

2
C2x

2 C � � � 	
D y1 ln x C xr1

�
b0x C b1x

2 C b2x
3 C � � � 	 :

Consequently, in the case of equal exponents, the general form of y2 is

y2.x/ D y1.x/ ln x C x1Cr1

1X
nD0

bnx
n: (33)

Note the logarithmic term; it is always present when r1 D r2.

CASE 2: POSITIVE INTEGRAL DIFFERENCE (r1 D r2 C N ). With N > 0,
Eq. (32) gives

y2 D y1

Z
x�1�N

�
1C C1x C C2x

2 C � � � C CNx
N C � � � 	 dx

D y1

Z �
CN

x
C 1

xN C1
C C1

xN
C � � �

�
dx

D CNy1 ln x C y1

�
x�N

�N C
C1x

�N C1

�N C 1 C � � �
�

D CNy1 ln x C xr2CN

 1X
nD0

anx
n

!
x�N

�
� 1
N
C C1x

�N C 1 C � � �
�
;

so that

y2.x/ D CNy1.x/ ln x C xr2

1X
nD0

bnx
n; (34)

where b0 D �a0=N 6D 0. This gives the general form of y2 in the case of exponents
differing by a positive integer. Note the coefficient CN that appears in (34) but not
in (33). If it happens that CN D 0, then there is no logarithmic term; if so, Eq. (1)
has a second Frobenius series solution (as in Example 1).

In our derivation of Eqs. (33) and (34)—which exhibit the general form of the
second solution in the cases r1 D r2 and r1 � r2 D N > 0, respectively—we have
said nothing about the radii of convergence of the various power series that appear.
Theorem 1 (next) is a summation of the preceding discussion and also tells where
the series in (33) and (34) converge. As in Theorem 1 of Section 8.3, we restrict our
attention to solutions for x > 0.
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THEOREM 1 The Exceptional Cases

Suppose that x D 0 is a regular singular point of the equation

x2y00 C xp.x/y0 C q.x/y D 0: (4)

Let � > 0 denote the minimum of the radii of convergence of the power series

p.x/ D
1X

nD0

pnx
n and q.x/ D

1X
nD0

qnx
n:

Let r1 and r2 be the roots, with r1 = r2, of the indicial equation

r.r � 1/C p0r C q0 D 0:

(a) If r1 D r2, then Eq. (4) has two solutions y1 and y2 of the forms

y1.x/ D xr1

1X
nD0

anx
n .a0 6D 0/ (35a)

and

y2.x/ D y1.x/ ln x C xr1C1

1X
nD0

bnx
n: (35b)

(b) If r1 � r2 D N , a positive integer, then Eq. (4) has two solutions y1 and y2

of the forms

y1.x/ D xr1

1X
nD0

anx
n .a0 6D 0/ (36a)

and

y2.x/ D Cy1.x/ ln x C xr2

1X
nD0

bnx
n: (36b)

In Eq. (36b), b0 6D 0 but C may be either zero or nonzero, so the logarithmic
term may or may not actually be present in this case. The radii of convergence of
the power series of this theorem are all at least �. The coefficients in these series
(and the constant C in Eq. (36b)) may be determined by direct substitution of the
series in the differential equation in (4).

Example 4 We will illustrate the case r1 D r2 by deriving the second solution of Bessel’s equation of
order zero,

x2y00 C xy0 C x2y D 0; (37)

for which r1 D r2 D 0. In Example 5 of Section 8.3 we found the first solution

y1.x/ D J0.x/ D
1X

nD0

.�1/nx2n

22n.nŠ/2
: (38)
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According to Eq. (35b), the second solution will have the form

y2 D y1 ln x C
1X

nD1

bnx
n: (39)

The first two derivatives of y2 are

y0
2 D y0

1 ln x C y1

x
C

1X
nD1

nbnx
n�1

and

y00
2 D y00

1 ln x C 2y0
1

x
� y1

x2
C

1X
nD2

n.n � 1/bnx
n�2:

We substitute these in Eq. (37) and use the fact that J0.x/ also satisfies this equation to obtain

0 D x2y00
2 C xy0

2 C x2y2

D
�
x2y00

1 C xy0
1 C x2y1

�
ln x C 2xy0

1

C
1X

nD2

n.n � 1/bnx
n C

1X
nD1

nbnx
n C

1X
nD1

bnx
nC2;

and it follows that

0 D 2
1X

nD1

.�1/n2nx2n

22n.nŠ/2
C b1x C 22b2x

2 C
1X

nD3

.n2bn C bn�2/x
n: (40)

The only term involving x in Eq. (40) is b1x, so b1 D 0. But n2bn C bn�2 D 0 if n is odd,
and it follows that all the coefficients of odd subscript in y2 vanish.

Now we examine the coefficients with even subscripts in Eq. (40). First we see that

b2 D �2 �
.�1/.2/

22 � 22 � .1Š/2 D
1

4
: (41)

For n = 2, we read the recurrence relation

.2n/2b2n C b2n�2 D �
.2/.�1/n.2n/
22n.nŠ/2

(42)

from (40). Note the “nonhomogeneous” term (not involving the unknown coefficients) on
the right-hand side in (42). Such nonhomogeneous recurrence relations are typical of the
exceptional cases of the method of Frobenius, and their solution often requires a bit of inge-
nuity. The usual strategy depends on detecting the most conspicuous dependence of b2n on
n. We note the presence of 22n.nŠ/2 on the right-hand side in (42); in conjunction with the
coefficient .2n/2 on the left-hand side, we are induced to think of b2n as something divided
by 22n.nŠ/2. Noting also the alternation of sign, we make the substitution

b2n D
.�1/nC1c2n

22n.nŠ/2
; (43)

in the expectation that the recurrence relation for c2n will be simpler than the one for b2n.
We chose .�1/nC1 rather than .�1/n because b2 D 1

4 > 0; with nD 1 in (43), we get c2 D 1.
Substitution of (43) in (42) gives

.2n/2
.�1/nC1c2n

22n.nŠ/2
C .�1/nc2n�2

22n�2Œ.n � 1/Š�2 D
.�2/.�2/n.2n/
22n.nŠ/2

;

which boils down to the extremely simple recurrence relation

c2n D c2n�2 C
1

n
:
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Thus

c4 D c2 C
1

2
D 1C 1

2
;

c6 D c4 C
1

3
D 1C 1

2
C 1

3
;

c8 D c6 C
1

4
D 1C 1

2
C 1

3
C 1

4
;

and so on. Evidently,

c2n D 1C
1

2
C 1

3
C � � � C 1

n
D Hn; (44)

where we denote by Hn the nth partial sum of the harmonic series
P
.1=n/.

Finally, keeping in mind that the coefficients of odd subscript are all zero, we substitute
(43) and (44) in (39) to obtain the second solution

y2.x/ D J0.x/ ln x C
1X

nD1

.�1/nC1Hnx
2n

22n.nŠ/2

D J0.x/ ln x C x2

4
� 3x

4

128
C 11x6

13824
� � � � (45)

of Bessel’s equation of order zero. The power series in (45) converges for all x. The most
commonly used linearly independent [of J0.x/] second solution is

Y0.x/ D
2

�
.� � ln 2/y1 C

2

�
y2I

that is,

Y0.x/ D
2

�

"�
� C ln

x

2

�
J0.x/C

1X
nD1

.�1/nC1Hnx
2n

22n.nŠ/2

#
; (46)

where � denotes Euler’s constant:

� D lim
n!1.Hn � lnn/ � 0:57722: (47)

This particular combination Y0.x/ is chosen because of its nice behavior as x ! C1; it is
called the Bessel function of order zero of the second kind.

Example 5 As an alternative to the method of substitution, we illustrate the case r1 � r2 D N by em-
ploying the technique of reduction of order to derive a second solution of Bessel’s equation
of order 1,

x2y00 C xy0 C .x2 � 1/y D 0I (48)

the associated indicial equation has roots r1 D 1 and r2 D �1. According to Problem 39 of
Section 8.3, one solution of Eq. (48) is

y1.x/ D J1.x/ D
x

2

1X
nD0

.�1/nx2n

22nnŠ .nC 1/Š D
x

2
� x

3

16
C x5

384
� x7

18432
C � � � : (49)
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With P.x/ D 1=x from (48), the reduction of order formula in (28) yields

y2 D y1

Z
1

xy2
1

dx

D y1

Z
1

x.x=2 � x3=16C x5=384 � x7=18432C � � � /2 dx

D y1

Z
4

x3.1 � x2=8C x4=192 � x6=9216C � � � /2 dx

D 4y1

Z
1

x3.1 � x2=4C 5x4=192 � 7x6=4608C � � � / dx

D 4y1

Z
1

x3

 
1C x2

4
C 7x4

192
C 19x6

4608
C � � �

!
dx

�
by long
division

�

D 4y1

Z  
1

4x
C 1

x3
C 7x

192
C 19x3

4608
C � � �

!
dx

D y1 ln x C 4y1

 
� 1

2x2
C 7x2

384
C 19x4

18432
C � � �

!
:

Thus

y2.x/ D y1.x/ ln x � 1
x
C x

8
C x3

32
� 11x

5

4608
C � � � : (50)

Note that the technique of reduction of order readily yields the first several terms of the series,
but does not provide a recurrence relation that can be used to determine the general term of
the series.

With a computation similar to that shown in Example 4 (but more complicated —see
Problem 21), the method of substitution can be used to derive the solution

y3.x/ D y1.x/ ln x � 1
x
C

1X
nD1

.�1/n.Hn CHn�1/x
2n�1

22nnŠ .n � 1/Š ; (51)

where Hn is defined in (44) for n = 1; H0 D 0. The reader can verify that the terms shown in
Eq. (50) agree with

y2.x/ D
3

4
J1.x/C y3.x/: (52)

The most commonly used linearly independent [of J1] solution of Bessel’s equation of order
1 is the combination

Y1.x/ D
2

�
.� � ln 2/y1.x/C

2

�
y3.x/

D 2

�

"�
� C ln

x

2

�
J1.x/ �

1

x
C

1X
nD1

.�1/n.Hn CHn�1/x
2n�1

22nnŠ .n � 1/Š

#
: (53)

Examples 4 and 5 illustrate two methods of finding the solution in the logarith-
mic cases—direct substitution and reduction of order. A third alternative is outlined
in Problem 19.
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8.4 Problems
In Problems 1 through 8, either apply the method of Example
1 to find two linearly independent Frobenius series solutions,
or find one such solution and show (as in Example 2) that a
second such solution does not exist.

1. xy00 C .3 � x/y0 � y D 0
2. xy00 C .5 � x/y0 � y D 0
3. xy00 C .5C 3x/y0 C 3y D 0
4. 5xy00 C .30C 3x/y0 C 3y D 0
5. xy00 � .4C x/y0 C 3y D 0
6. 2xy00 � .6C 2x/y0 C y D 0
7. x2y00 C .2x C 3x2/y0 � 2y D 0
8. x.1 � x/y00 � 3y0 C 2y D 0

In Problems 9 through 14, first find the first four nonzero terms
in a Frobenius series solution of the given differential equa-
tion. Then use the reduction of order technique (as in Example
4) to find the logarithmic term and the first three nonzero terms
in a second linearly independent solution.

9. xy00 C y0 � xy D 0
10. x2y00 � xy0 C .x2 C 1/y D 0
11. x2y00 C .x2 � 3x/y0 C 4y D 0
12. x2y00 C x2y0 � 2y D 0
13. x2y00 C .2x2 � 3x/y0 C 3y D 0
14. x2y00 C x.1C x/y0 � 4y D 0
15. Begin with

J0.x/ D 1 �
x2

4
C x4

64
� x6

2304
C � � � :

Using the method of reduction of order, derive the second
linearly independent solution

y2.x/ D J0.x/ ln x C x2

4
� 3x

4

128
C 11x6

13284
� � � �

of Bessel’s equation of order zero.
16. Find two linearly independent Frobenius series solutions

of Bessel’s equation of order 3
2 ,

x2y00 C xy0 C
�
x2 � 9

4

�
y D 0:

17. (a) Verify that y1.x/ D xex is one solution of

x2y00 � x.1C x/y0 C y D 0:

(b) Note that r1 D r2 D 1. Substitute

y2 D y1 ln x C
1X

nD1

bnx
nC1

in the differential equation to deduce that b1 D�1 and that

nbn � bn�1 D �
1

nŠ
for n = 2.

(c) Substitute bn D cn=nŠ in this recurrence relation and
conclude from the result that cn D �Hn. Thus the second
solution is

y2.x/ D xex ln x �
1X

nD1

Hnx
nC1

nŠ
:

18. Consider the equation xy00 � y D 0, which has exponents
r1 D 1 and r2 D 0 at x D 0. (a) Derive the Frobenius
series solution

y1.x/ D
1X

nD1

xn

nŠ .n � 1/Š :

(b) Substitute

y2 D Cy1 ln x C
1X

nD0

bnx
n

in the equation xy00 � y D 0 to derive the recurrence
relation

n.nC 1/bnC1 � bn D �
2nC 1

.nC 1/Š nŠC:

Conclude from this result that a second solution is

y2.x/ D y1.x/ ln x C 1 �
1X

nD1

Hn CHn�1

nŠ .n � 1/Š x
n:

19. Suppose that the differential equation

LŒy� D x2y00 C xp.x/y0 C q.x/y D 0 (54)

has equal exponents r1 D r2 at the regular singular point
x D 0, so that its indicial equation is

�.r/ D .r � r1/2 D 0:

Let c0 D 1 and define cn.r/ for n = 1 by using Eq. (9);
that is,

cn.r/ D �
Ln.r I c0; c1; : : : ; cn�1/

�.r C n/ : (55)

Then define the function y.x; r/ of x and r to be

y.x; r/ D
1X

nD0

cn.r/x
nCr : (56)

(a) Deduce from the discussion preceding Eq. (9) that

LŒy.x; r/� D xr .r � r1/2: (57)

Hence deduce that

y1 D y.x; r1/ D
1X

nD0

cn.r1/x
nCr1 (58)
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is one solution of Eq. (54). (b) Differentiate Eq. (57)
with respect to r to show that

LŒyr .x; r1/� D
@

@r

h
xr .r � r1/2

iˇ̌̌̌
rDr1

D 0:

Deduce that y2 D yr .x; r1/ is a second solution of
Eq. (54). (c) Differentiate Eq. (58) with respect to r to
show that

y2 D y1 ln x C xr1

1X
nD1

c0
n.r1/x

n: (59)

20. Use the method of Problem 19 to derive both the solu-
tions in (38) and (45) of Bessel’s equation of order zero.
The following steps outline this computation. (a) Take
c0 D 1; show that Eq. (55) reduces in this case to

.r C 1/2c1.r/ D 0 and

cn.r/ D �
cn�2.r/

.nC r/2 for n = 2.
(60)

(b) Next show that c1.0/ D c0
1.0/ D 0, and then deduce

from (60) that cn.0/ D c0
n.0/ D 0 for n odd. Hence you

need to compute cn.0/ and c0
n.0/ only for n even. (c) De-

duce from (60) that

c2n.r/ D
.�1/n

.r C 2/2.r C 4/2 � � � .r C 2n/2 : (61)

With r D r1 D 0 in (58), this gives J0.x/. (d) Differenti-
ate (61) to show that

c0
2n.0/ D

.�1/nC1Hn

22n.nŠ/2
:

Substitution of this result in (59) gives the second solution
in (45).

21. Derive the logarithmic solution in (51) of Bessel’s equa-
tion of order 1 by the method of substitution. The follow-
ing steps outline this computation. (a) Substitute

y2 D CJ1.x/ ln x C x�1

 
1C

1X
nD1

bnx
n

!

in Bessel’s equation to obtain

�b1 C x C
1X

nD2

Œ.n2 � 1/bnC1 C bn�1�x
n

C C
"
x C

1X
nD1

.�1/n.2nC 1/x2nC1

22n.nC 1/Š nŠ

#
D 0: (62)

(b) Deduce from Eq. (62) that C D �1 and that bn D 0

for n odd. (c) Next deduce the recurrence relationh
.2nC 1/2 � 1

i
b2nC2 C b2n D

.�1/n.2nC 1/
22n.nC 1/Š nŠ (63)

for n = 1. Note that if b2 is chosen arbitrarily, then b2n is
determined for all n > 1. (d) Take b2 D 1

4 and substitute

b2n D
.�1/nc2n

22n.n � 1/ŠnŠ

in Eq. (63) to obtain

c2nC2 � c2n D
1

nC 1 C
1

n
:

(e) Note that c2 D 1 D H1 CH0 and deduce that

c2n D Hn CHn�1:

8.4 Application The Exceptional Case by Reduction of Order
Here we illustrate the use of a computer algebra system such as Mathematica to
implement the reduction of order formula in Eq. (28) of this section. More complete
versions of this application—using Maple, Mathematica, and MATLAB—can be
found in the computing applications manual that accompanies this text. To illustrate
the method, we will derive a second solution of Bessel’s equation of order zero,
beginning with the known power series solution

J0.x/ D
1X

nD0

.�1/n x2n

22n.nŠ/2
;

which we enter in the form

y1 = Sum[((--x^2/4)^n) / (n!)^2, {n, 0, 5}] + O[x]^12

Then with

P = 1/x;
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we need only substitute in the integral in Eq. (28):

integral = Integrate[ Exp[ --Integrate[P,x]]/y1^2, x ]

log.x/C x2

4
C 5x4

128
C 23x6

3456
C 677x8

589824
C 7313x10

36864000
CO.x12/

Then—multiplying J0 = y1 times the logarithm and the series terms separately—
the computation

y2 = J0�Log[x] + y1�(integral -- Log[x])

yields the second solution

J0.x/ log.x/C x2

4
� 3x

4

128
C 11x6

13824
� 25x8

1769472
C 137x10

884736000
CO.x12/

of Bessel’s equation of order zero (as we see it in Eq. (45) of the text).
After verifying (with your computer algebra system) the computations we

present here, you can begin with the power series for J1.x/ in Eq. (49) of this sec-
tion and derive similarly the second solution in (50) of Bessel’s equation of order 1.
Problems 9 through 14 can also be partially automated in this way.

8.5 Bessel’s Equation
We have already seen several cases of Bessel’s equation of order p = 0,

x2y00 C xy0 C .x2 � p2/y D 0: (1)

Its solutions are now called Bessel functions of order p. Such functions first ap-
peared in the 1730s in the work of Daniel Bernoulli and Euler on the oscillations
of a vertically suspended chain. The equation itself appears in a 1764 article by
Euler on the vibrations of a circular drumhead, and Fourier used Bessel functions in
his classical treatise on heat (1822). But their general properties were first studied
systematically in an 1824 memoir by the German astronomer and mathematician
Friedrich W. Bessel (1784–1846), who was investigating the motion of planets. The
standard source of information on Bessel functions is G. N. Watson’s A Treatise on
the Theory of Bessel Functions, 2nd ed. (Cambridge: Cambridge University Press,
1944). Its 36 pages of references, which cover only the period up to 1922, give
some idea of the vast literature of this subject.

Bessel’s equation in (1) has indicial equation r2 � p2 D 0, with roots r D˙p.
If we substitute y DP cmx

mCr in Eq. (1), we find in the usual manner that c1 D 0
and that 


.mC r/2 � p2
�
cm C cm�2 D 0 (2)

for m = 2. The verification of Eq. (2) is left to the reader (Problem 6).

The Case r D p > 0
If we use r Dp and write am in place of cm, then Eq. (2) yields the recursion formula

am D �
am�2

m.2p Cm/: (3)
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Because a1 D 0, it follows that am D 0 for all odd values of m. The first few even
coefficients are

a2 D �
a0

2.2p C 2/ D �
a0

22.p C 1/ ;

a4 D �
a2

4.2p C 4/ D
a0

24 � 2.p C 1/.p C 2/ ;

a6 D �
a4

6.2p C 6/ D �
a0

26 � 2 � 3.p C 1/.p C 2/.p C 3/ :

The general pattern is

a2m D
.�1/ma0

22mmŠ .p C 1/.p C 2/ � � � .p Cm/;

so with the larger root r D p we get the solution

y1.x/ D a0

1X
mD0

.�1/mx2mCp

22mmŠ .p C 1/.p C 2/ � � � .p Cm/: (4)

If p D 0 this is the only Frobenius series solution; with a0 D 1 as well, it is the
function J0.x/ we have seen before.

The Case r D �p < 0
If we use r D �p and write bm in place of cm, Eq. (2) takes the form

m.m � 2p/bm C bm�2 D 0 (5)

form= 2, whereas b1D 0. We see that there is a potential difficulty if it happens that
2p is a positive integer—that is, if p is either a positive integer or an odd positive
integral multiple of 1

2
. For then when m D 2p, Eq. (5) is simply 0 � bm C bm�2 D 0.

Thus if bm�2 6D 0, then no value of bm can satisfy this equation.
But if p is an odd positive integral multiple of 1

2
, we can circumvent this

difficulty. For suppose that p D k=2 where k is an odd positive integer. Then we
need only choose bm D 0 for all odd values of m. The crucial step is the kth step,

k.k � k/bk C bk�2 D 0I
and this equation will hold because bk D bk�2 D 0.

Hence if p is not a positive integer, we take bm D 0 for m odd and define the
coefficients of even subscript in terms of b0 by means of the recursion formula

bm D �
bm�2

m.m � 2p/ ; m = 2: (6)

In comparing (6) with (3), we see that (6) will lead to the same result as that in (4),
except with p replaced with �p. Thus in this case we obtain the second solution

y2.x/ D b0

1X
mD0

.�1/mx2m�p

22mmŠ .�p C 1/.�p C 2/ � � � .�p Cm/: (7)

The series in (4) and (7) converge for all x > 0 because x D 0 is the only singular
point of Bessel’s equation. If p > 0, then the leading term in y1 is a0x

p, whereas
the leading term in y2 is b0x

�p. Hence y1.0/ D 0, but y2.x/! ˙1 as x ! 0, so
it is clear that y1 and y2 are linearly independent solutions of Bessel’s equation of
order p > 0.



8.5 Bessel’s Equation 549

The Gamma Function
The formulas in (4) and (7) can be simplified by use of the gamma function �.x/,
which (as in Section 7.1) is defined for x > 0 by

�.x/ D
Z 1

0

e�t tx�1 dt: (8)

It is not difficult to show that this improper integral converges for each x > 0. The
gamma function is a generalization for x > 0 of the factorial function nŠ, which
is defined only if n is a nonnegative integer. To see the way in which �.x/ is a
generalization of nŠ, we note first that

�.1/ D
Z 1

0

e�t dt D lim
b!1

h
�e�t

ib

0
D 1: (9)

Then we integrate by parts with u D tx and dv D e�t dt :

�.x C 1/ D lim
b!1

Z b

0

e�t tx dt D lim
b!1

 h
�e�t tx

ib

0
C
Z b

0

xe�t tx�1 dt

!

D x
 

lim
b!1

Z b

0

e�t tx�1 dt

!
I

that is,

�.x C 1/ D x�.x/: (10)

This is the most important property of the gamma function.
If we combine Eqs. (9) and (10), we see that

�.2/ D 1 � �.1/ D 1Š; �.3/ D 2 � �.2/ D 2Š; �.4/ D 3 � �.3/ D 3Š;

and in general that

�.nC 1/ D nŠ for n = 0 an integer. (11)

An important special value of the gamma function is

�
�

1
2

	 D Z 1

0

e�t t�1=2 dt D 2
Z 1

0

e�u2

du D p�; (12)

where we have substituted u2 for t in the first integral; the fact thatZ 1

0

e�u2

du D
p
�

2

is known, but is far from obvious. [See, for instance, Example 5 in Section 13.4 of
Edwards and Penney, Calculus: Early Transcendentals, 7th edition (Upper Saddle
River, NJ: Prentice Hall, 2008).]

Although �.x/ is defined in (8) only for x > 0, we can use the recursion
formula in (10) to define �.x/ whenever x is neither zero nor a negative integer. If
�1 < x < 0, then

�.x/ D �.x C 1/
x

I
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the right-hand side is defined because 0 < x C 1 < 1. The same formula may then
be used to extend the definition of �.x/ to the open interval .�2;�1/, then to the
open interval .�3;�2/, and so on. The graph of the gamma function thus extended
is shown in Fig. 8.5.1. The student who would like to pursue this fascinating topic
further should consult Artin’s The Gamma Function (New York: Holt, Rinehart and
Winston, 1964). In only 39 pages, this is one of the finest expositions in the entire

10

5

x

y

4321–3 –1

FIGURE 8.5.1. The graph of the
extended gamma function.

literature of mathematics.

Bessel Functions of the First Kind
If we choose a0 D 1=Œ2p�.p C 1/� in (4), where p > 0, and note that

�.p CmC 1/ D .p Cm/.p Cm � 1/ � � � .p C 2/.p C 1/�.p C 1/

by repeated application of Eq. (10), we can write the Bessel function of the first
kind of order p very concisely with the aid of the gamma function:

Jp.x/ D
1X

mD0

.�1/m
mŠ�.p CmC 1/

�x
2

�2mCp

: (13)

Similarly, if p > 0 is not an integer, we choose b0 D 1=Œ2�p�.�p C 1/� in (7) to
obtain the linearly independent second solution

J�p.x/ D
1X

mD0

.�1/m
mŠ�.�p CmC 1/

�x
2

�2m�p

(14)

of Bessel’s equation of order p. If p is not an integer, we have the general solution

y.x/ D c1Jp.x/C c2J�p.x/ (15)

for x > 0; xp must be replaced with jxjp in Eqs. (13) through (15) to get the correct
solutions for x < 0.

If p D n, a nonnegative integer, then Eq. (13) gives

Jn.x/ D
1X

mD0

.�1/m
mŠ .mC n/Š

�x
2

�2mCn

(16)

for the Bessel functions of the first kind of integral order. Thus

J0.x/ D
1X

mD0

.�1/mx2m

22m.mŠ/2
D 1 � x

2

22
C x4

22 � 42
� x6

22 � 42 � 62
C � � � (17)

and

J1.x/ D
1X

mD0

.�1/m22mC1

22mC1mŠ .mC 1/Š D
x

2
� 1

2Š

�x
2

�3

C 1

2Š � 3Š
�x
2

�5

� � � � : (18)

The graphs of J0.x/ and J1.x/ are shown in Fig. 8.5.2. In a general way they re-
semble damped cosine and sine oscillations, respectively (see Problem 27). Indeed,
if you examine the series in (17), you can see part of the reason why J0.x/ and
cos x might be similar—only minor changes in the denominators in (17) are needed
to produce the Taylor series for cos x. As suggested by Fig. 8.5.2, the zeros of the
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functions J0.x/ and J1.x/ are interlaced—between any two consecutive zeros of
J0.x/ there is precisely one zero of J1.x/ (Problem 26) and vice versa. The first
four zeros of J0.x/ are approximately 2:4048, 5:5201, 8:6537, and 11:7915. For
n large, the nth zero of J0.x/ is approximately

�
n � 1

4

	
�; the nth zero of J1.x/

is approximately
�
nC 1

4

	
� . Thus the interval between consecutive zeros of either

J0.x/ or J1.x/ is approximately �—another similarity with cos x and sin x. You
can see the way the accuracy of these approximations increases with increasing n
by rounding the entries in the table in Fig. 8.5.3 to two decimal places.

x

1

y

10 20

J0(x)
J1(x)

–20 –10

FIGURE 8.5.2. The graphs of the Bessel functions
J0.x/ and J1.x/.

nth Zero �
n �

1

4

�
�

nth Zero �
n C

1

4

�
�

n of J0.x/ of J1.x/

1

2

3

4

5

2.4048

5.5201

8.6537

11.7915

14.9309

2.3562

5.4978

8.6394

11.7810

14.9226

3.8317

7.0156

10.1735

13.3237

16.4706

3.9270

7.0686

10.2102

13.3518

16.4934

FIGURE 8.5.3. Zeros of J0.x/ and J1.x/.

It turns out that Jp.x/ is an elementary function if the order p is half an odd
integer. For instance, on substitution of p D 1

2
and p D �1

2
in Eqs. (13) and (14),

respectively, the results can be recognized (Problem 2) as

J1=2.x/ D
r

2

�x
sin x and J�1=2.x/ D

r
2

�x
cos x: (19)

Bessel Functions of the Second Kind
The methods of Section 8.4 must be used to find linearly independent second so-
lutions of integral order. A very complicated generalization of Example 3 in that
section gives the formula

Yn.x/ D
2

�

�
� C ln

x

2

�
Jn.x/ �

1

�

n�1X
mD0

2n�2m.n �m � 1/Š
mŠ xn�2m

� 1

�

1X
mD0

.�1/m.Hm CHmCn/

mŠ .mC n/Š
�x
2

�nC2m

; (20)

with the notation used there. If n D 0 then the first sum in (20) is taken to be zero.
Here, Yn.x/ is called the Bessel function of the second kind of integral order
n = 0.

The general solution of Bessel’s equation of integral order n is

y.x/ D c1Jn.x/C c2Yn.x/: (21)

It is important to note that Yn.x/ ! �1 as x ! 0 (Fig. 8.5.4). Hence c2 D 0 in
Eq. (21) if y.x/ is continuous at x D 0. Thus if y.x/ is a continuous solution of
Bessel’s equation of order n, it follows that

y.x/ D cJn.x/
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for some constant c. Because J0.0/ D 1, we see in addition that if n D 0, then
c D y.0/. In Section 10.4 we will see that this single fact regarding Bessel functions
has numerous physical applications.

Figure 8.5.5 illustrates the fact that for n > 1 the graphs of Jn.x/ and Yn.x/

look generally like those of J1.x/ and Y1.x/. In particular, Jn.0/D 0while Yn.x/!
�1 as x ! 0C, and both functions undergo damped oscillation as x !C1.

x

–0.5

0.5

y

10 20 30

Y0(x) Y1(x)

FIGURE 8.5.4. The graphs of the Bessel functions
Y0.x/ and Y1.x/.

30
x

–0.5

0.5

y

10 20

Y2(x)J2(x)

FIGURE 8.5.5. The graphs of the Bessel functions
J2.x/ and Y2.x/.

Bessel Function Identities
Bessel functions are analogous to trigonometric functions in that they satisfy a large
number of standard identities of frequent utility, especially in the evaluation of inte-
grals involving Bessel functions. Differentiation of

Jp.x/ D
1X

mD0

.�1/m
mŠ�.p CmC 1/

�x
2

�2mCp

(13)

in the case that p is a nonnegative integer gives

d

dx



xpJp.x/

� D d

dx

1X
mD0

.�1/mx2mC2p

22mCpmŠ .p Cm/Š

D
1X

mD0

.�1/mx2mC2p�1

22mCp�1mŠ .p Cm � 1/Š

D xp

1X
mD0

.�1/mx2mCp�1

22mCp�1mŠ .p Cm � 1/Š ;

and thus we have shown that

d

dx



xpJp.x/

� D xpJp�1.x/: (22)

Similarly,

d

dx



x�pJp.x/

� D �x�pJpC1.x/: (23)

If we carry out the differentiations in Eqs. (22) and (23) and then divide the resulting
identities by xp and x�p, respectively, we obtain (Problem 8) the identities

J 0
p.x/ D Jp�1.x/ �

p

x
Jp.x/ (24)
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and

J 0
p.x/ D

p

x
Jp.x/ � JpC1.x/: (25)

Thus we may express the derivatives of Bessel functions in terms of Bessel functions
themselves. Subtraction of Eq. (25) from Eq. (24) gives the recursion formula

JpC1.x/ D
2p

x
Jp.x/ � Jp�1.x/; (26)

which can be used to express Bessel functions of high order in terms of Bessel
functions of lower orders. In the form

Jp�1.x/ D
2p

x
Jp.x/ � JpC1.x/; (27)

it can be used to express Bessel functions of large negative order in terms of Bessel
functions of numerically smaller negative orders.

The identities in Eqs. (22) through (27) hold wherever they are meaningful—
that is, whenever no Bessel functions of negative integral order appear. In particular,
they hold for all nonintegral values of p.

Example 1 With p D 0, Eq. (22) gives Z
xJ0.x/ dx D xJ1.x/C C:

Similarly, with p D 0, Eq. (23) givesZ
J1.x/ dx D �J0.x/C C:

Example 2 Using first p D 2 and then p D 1 in Eq. (26), we get

J3.x/ D
4

x
J2.x/ � J1.x/ D

4

x

�
2

x
J1.x/ � J0.x/

�
� J1.x/;

so that

J3.x/ D �
4

x
J0.x/C

�
8

x2
� 1

�
J1.x/:

With similar manipulations every Bessel function of positive integral order can be expressed
in terms of J0.x/ and J1.x/.

Example 3 To antidifferentiate xJ2.x/, we first note thatZ
x�1J2.x/ dx D �x�1J1.x/C C

by Eq. (23) with p D 1. We therefore writeZ
xJ2.x/ dx D

Z
x2
h
x�1J2.x/

i
dx

and integrate by parts with

u D x2; dv D x�1J2.x/ dx;

du D 2x dx; and v D �x�1J1.x/:

This gives Z
xJ2.x/ dx D �xJ1.x/C 2

Z
J1.x/ dx D �xJ1.x/ � 2J0.x/C C;

with the aid of the second result of Example 1.
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The Parametric Bessel Equation
The parametric Bessel equation of order n is

x2y00 C xy0 C .˛2x2 � n2/y D 0; (28)

where ˛ is a positive parameter. As we will see in Chapter 10, this equation appears
in the solution of Laplace’s equation in polar coordinates. It is easy to see (Prob-
lem 9) that the substitution t D ˛x transforms Eq. (28) into the (standard) Bessel
equation

t2
d2y

dt2
C t dy

dt
C .t2 � n2/y D 0 (29)

with general solution y.t/ D c1Jn.t/ C c2Yn.t/. Hence the general solution of
Eq. (28) is

y.x/ D c1Jn.˛x/C c2Yn.˛x/: (30)

Now consider the eigenvalue problem

x2y00 C xy0 C .�x2 � n2/ D 0;
y.L/ D 0 (31)

on the interval Œ0; L�. We seek the positive values of � for which there exists a
nontrivial solution of (31) that is continuous on Œ0; L�. If we write � D ˛2, then the
differential equation in (31) is that in Eq. (28), so its general solution is given in
Eq. (30). Because Yn.x/! �1 as x ! 0 but Jn.0/ is finite, the continuity of y.x/
requires that c2 D 0. Thus y.x/D c1Jn.˛x/. The endpoint condition y.L/ D 0 now
implies that ´ D ˛L must be a (positive) root of the equation

Jn.´/ D 0: (32)

For n > 1, Jn.x/ oscillates rather like J1.x/ in Fig. 8.5.2 and hence has an infinite
sequence of positive zeros �n1, �n2, �n3, : : : (see Fig 8.5.6). It follows that the kth
positive eigenvalue of the problem in (31) is

�k D .˛k/
2 D .�nk/

2

L2
(33)

and that its associated eigenfunction is

yk.x/ D Jn

��nk

L
x
�
: (34)

The roots �nk of Eq. (32) for n 5 8 and k 5 20 are tabulated in Table 9.5 of
M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions (New York:
Dover, 1965).

x

y

y = Yn(x)

γn1 γn2 γn4

γn3 γn5

FIGURE 8.5.6. The positive zeros �n1, �n2, �n3, : : : of the Bessel
function Jn.x/.
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8.5 Problems
1. Differentiate termwise the series for J0.x/ to show di-

rectly that J 0
0.x/ D �J1.x/ (another analogy with the co-

sine and sine functions).
2. (a) Deduce from Eqs. (10) and (12) that

�
�
nC 1

2

�
D 1 � 3 � 5 � .2n � 1/

2n

p
�:

(b) Use the result of part (a) to verify the formulas in
Eq. (19) for J1=2.x/ and J�1=2.x/, and construct a figure
showing the graphs of these functions.

3. (a) Suppose that m is a positive integer. Show that

�
�
mC 2

3

�
D 2 � 5 � 8 � � � .3m � 1/

3m
�
�

2
3

�
:

(b) Conclude from part (a) and Eq. (13) that

J�1=3.x/ D
.x=2/�1=3

�
�

2
3

�  
1C

1X
mD1

.�1/m3mx2m

22mmŠ � 2 � 5 � � � .3m � 1/

!
:

4. Apply Eqs. (19), (26), and (27) to show that

J3=2.x/ D
r

2

�x3
.sin x � x cos x/

and

J�3=2.x/ D �
r

2

�x3
.cos x C x sin x/:

Construct a figure showing the graphs of these two func-
tions.

5. Express J4.x/ in terms of J0.x/ and J1.x/.
6. Derive the recursion formula in Eq. (2) for Bessel’s

equation.
7. Verify the identity in (23) by termwise differentiation.
8. Deduce the identities in Eqs. (24) and (25) from those in

Eqs. (22) and (23).
9. Verify that the substitution t D ˛x transforms the paramet-

ric Bessel equation in (28) into the equation in (29).
10. Show that

4J 00
p .x/ D Jp�2.x/ � 2Jp.x/C JpC2.x/:

11. Use the relation �.x C 1/ D x�.x/ to deduce from
Eqs. (13) and (14) that if p is not a negative integer, then

Jp.x/ D
.x=2/p

�.p C 1/

"
1C

1X
mD1

.�1/m.x=2/2m

mŠ .p C 1/.p C 2/ � � � .p Cm/

#
:

This form is more convenient for the computation of
Jp.x/ because only the single value �.p C 1/ of the
gamma function is required.

12. Use the series of Problem 11 to find y.0/ D lim
x!0

y.x/ if

y.x/ D x2

"
J5=2.x/C J�5=2.x/

J1=2.x/C J�1=2.x/

#
:

Use a computer algebra system to graph y.x/ for x near 0.
Does the graph corroborate your value of y.0/?

Any integral of the form
R
xmJn.x/ dx can be evaluated

in terms of Bessel functions and the indefinite integralR
J0.x/ dx. The latter integral cannot be simplified further,

but the function
R x

0 J0.t/ dt is tabulated in Table 11.1 of
Abramowitz and Stegun. Use the identities in Eqs. (22) and
(23) to evaluate the integrals in Problems 13 through 21.

13.
Z
x2J0.x/ dx 14.

Z
x3J0.x/ dx

15.
Z
x4J0.x/ dx 16.

Z
xJ1.x/ dx

17.
Z
x2J1.x/ dx 18.

Z
x3J1.x/ dx

19.
Z
x4J1.x/ dx 20.

Z
J2.x/ dx

21.
Z
J3.x/ dx

22. Prove that

J0.x/ D
1

�

Z �

0
cos.x sin �/ d�

by showing that the right-hand side satisfies Bessel’s equa-
tion of order zero and has the value J0.0/ when x D 0.
Explain why this constitutes a proof.

23. Prove that

J1.x/ D
1

�

Z �

0
cos.� � x sin �/ d�

by showing that the right-hand side satisfies Bessel’s equa-
tion of order 1 and that its derivative has the value J 0

1.0/

when x D 0. Explain why this constitutes a proof.
24. It can be shown that

Jn.x/ D
1

�

Z �

0
cos.n� � x sin �/ d�:

With n= 2, show that the right-hand side satisfies Bessel’s
equation of order n and also agrees with the values Jn.0/

and J 0
n.0/. Explain why this does not suffice to prove the

preceding assertion.
25. Deduce from Problem 22 that

J0.x/ D
1

2�

Z 2�

0
eix sin � d�:

(Suggestion: Show first thatZ 2�

0
eix sin � d� D

Z �

0

�
eix sin � C e�ix sin �

�
d� I

then use Euler’s formula.)
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26. Use Eqs. (22) and (23) and Rolle’s theorem to prove that
between any two consecutive zeros of Jn.x/ there is pre-
cisely one zero of JnC1.x/. Use a computer algebra sys-
tem to construct a figure illustrating this fact with n D 10
(for instance).

27. (a) Show that the substitution y D x�1=2´ in Bessel’s
equation of order p,

x2y00 C xy0 C .x2 � p2/y D 0;

yields

´00 C
 
1 � p

2 � 1
4

x2

!
´ D 0:

(b) If x is so large that
�
p2 � 1

4

�
=x2 is negligible, then

the latter equation reduces to ´00 C ´ � 0. Explain why
this suggests (without proving it) that if y.x/ is a solution
of Bessel’s equation, then

y.x/ � x�1=2.A cos x C B sin x/

D Cx�1=2 cos.x � ˛/ (35)

with C and ˛ constants, for x large.

Asymptotic Approximations It is known that the choices
C D

p
2=� and ˛ D .2nC 1/�=4 in (35) yield the best approx-

imation to Jn.x/ for x large:

Jn.x/ �
r

2

�x
cos

h
x � 1

4 .2nC 1/�
i
: (36)

Similarly,

Yn.x/ �
r

2

�x
sin

h
x � 1

4 .2nC 1/�
i
: (37)

In particular,

J0.x/ �
r

2

�x
cos

�
x � 1

4�
�

and

Y0.x/ �
r

2

�x
sin

�
x � 1

4�
�

if x is large. These are asymptotic approximations in that the
ratio of the two sides in each approximation approaches unity
as x !C1.

8.6 Applications of Bessel Functions
The importance of Bessel functions stems not only from the frequent appearance of
Bessel’s equation in applications, but also from the fact that the solutions of many
other second-order linear differential equations can be expressed in terms of Bessel
functions. To see how this comes about, we begin with Bessel’s equation of order p
in the form

´2 d
2w

d´2
C ´dw

d´
C .´2 � p2/w D 0; (1)

and substitute

w D x�˛y; ´ D kxˇ : (2)

Then a routine but somewhat tedious transformation (Problem 14) of Eq. (1) yields

x2y00 C .1 � 2˛/xy0 C .˛2 � ˇ2p2 C ˇ2k2x2ˇ /y D 0I
that is,

x2y00 C Axy0 C .B C Cxq/y D 0; (3)

where the constants A, B , C , and q are given by

A D 1 � 2˛; B D ˛2 � ˇ2p2; C D ˇ2k2; and q D 2ˇ: (4)

It is a simple matter to solve the equations in (4) for

˛ D 1 � A
2

; ˇ D q

2
;

k D 2
p
C

q
; and p D

p
.1 � A/2 � 4B

q
:

(5)
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Under the assumption that the square roots in (5) are real, it follows that the general
solution of Eq. (3) is

y.x/ D x˛w.´/ D x˛w.kxˇ /;

where
w.´/ D c1Jp.´/C c2Y�p.´/

(assuming that p is not an integer) is the general solution of the Bessel equation in
(1). This establishes the following result.

THEOREM 1 Solutions in Bessel Functions

If C > 0, q 6D 0, and .1 � A/2 = 4B , then the general solution (for x > 0) of
Eq. (3) is

y.x/ D x˛
h
c1Jp.kx

ˇ /C c2J�p.kx
ˇ /
i
; (6)

where ˛, ˇ, k, and p are given by the equations in (5). If p is an integer, then
J�p is to be replaced with Yp.

Example 1 Solve the equation

4x2y00 C 8xy0 C .x4 � 3/y D 0: (7)

Solution To compare Eq. (7) with Eq. (3), we rewrite the former as

x2y00 C 2xy0 C
�
�3

4 C 1
4x

4
�
y D 0

and see that A D 2, B D �3
4 , C D 1

4 , and q D 4. Then the equations in (5) give ˛ D �1
2 ,

ˇ D 2, k D 1
4 , and p D 1

2 . Thus the general solution in (6) of Eq. (7) is

y.x/ D x�1=2
h
c1J1=2

�
1
4x

2
�
C c2J�1=2

�
1
4x

2
�i
:

If we recall from Eq. (19) of Section 8.5 that

J1=2.´/ D
r

2

�´
sin ´ and J�1=2.´/ D

r
2

�´
cos ´;

we see that a general solution of Eq. (7) can be written in the elementary form

y.x/ D x�3=2

 
A cos

x2

4
C B sin

x2

4

!
:

Example 2 Solve the Airy equation

y00 C 9xy D 0: (8)

Solution First we rewrite the given equation in the form

x2y00 C 9x3y D 0:

This is the special case of Eq. (3) with A D B D 0, C D 9, and q D 3. It follows from the
equations in (5) that ˛ D 1

2 , ˇ D 3
2 , k D 2, and p D 1

3 . Thus the general solution of Eq. (8) is

y.x/ D x1=2
h
c1J1=3.2x

3=2/C c2J�1=3.2x
3=2/

i
:
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Buckling of a Vertical Column
For a practical application, we now consider the problem of determining when a

Ground
x = L

x = 0

x

θ

FIGURE 8.6.1. The buckling
column.

uniform vertical column will buckle under its own weight (after, perhaps, being
nudged laterally just a bit by a passing breeze). We take x D 0 at the free top end
of the column and x D L > 0 at its bottom; we assume that the bottom is rigidly
imbedded in the ground, perhaps in concrete; see Fig. 8.6.1. Denote the angular
deflection of the column at the point x by �.x/. From the theory of elasticity it
follows that

EI
d2�

dx2
C g�x� D 0; (9)

where E is the Young’s modulus of the material of the column, I is its cross-
sectional moment of inertia, � is the linear density of the column, and g is gravita-
tional acceleration. For physical reasons—no bending at the free top of the column
and no deflection at its imbedded bottom—the boundary conditions are

� 0.0/ D 0; �.L/ D 0: (10)

We will accept (9) and (10) as an appropriate statement of the problem and attempt
to solve it in this form. With

� D �2 D g�

EI
; (11)

we have the eigenvalue problem

� 00 C �2x� D 0I � 0.0/ D 0; �.L/ D 0: (12)

The column can buckle only if there is a nontrivial solution of (12); otherwise the
column will remain in its undeflected vertical position.

The differential equation in (12) is an Airy equation similar to the one in Ex-
ample 2. It has the form of Eq. (3) with A D B D 0, C D �2, and q D 3. The
equations in (5) give ˛ D 1

2
, ˇ D 3

2
, k D 2

3
� , and p D 1

3
. So the general solution is

�.x/ D x1=2
h
c1J1=3

�
2
3
�x3=2

�
C c2J�1=3

�
2
3
�x3=2

�i
: (13)

In order to apply the initial conditions, we substitute p D ˙1
3

in

Jp.x/ D
1X

mD0

.�1/m
mŠ�.p CmC 1/

�x
2

�2mCp

and find after some simplifications that

�.x/ D c1�
1=3

31=3�
�

4
3

	 �x � �2x4

12
C �4x7

504
� � � �

�

C c23
1=3

�1=3�
�

2
3

	 �1 � �2x3

6
C �4x6

180
� � � �

�
:

From this it is clear that the endpoint condition � 0.0/ D 0 implies that c1 D 0, so

�.x/ D c2x
1=2J�1=3

�
2
3
�x3=2

�
: (14)
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The endpoint condition �.L/ D 0 now gives

J�1=3

�
2
3
�L3=2

�
D 0: (15)

Thus the column will buckle only if ´ D 2
3
�L3=2 is a root of the equation

J�1=3.´/ D 0. The graph of

J�1=3.´/ D
.´=2/�1=3

�
�

2
3

	  
1C

1X
mD1

.�1/m3m´2m

22mmŠ � 2 � 5 � .3m � 1/

!
(16)

(see Problem 3 of Section 8.5) is shown in Fig. 8.6.2, where we see that the smallest
positive zero ´1 is a bit less than 2. Most technical computing systems can find roots
like this one. For instance, each of the computer system commands

151050
z

y

–1

2

1

0

y = J–1/3(z)

z1 z3z2 z5z4

FIGURE 8.6.2. The graph of
J�1=3.´/.

fsolve(BesselJ(--1/3,x)=0, x, 1..2) (Maple)
FindRoot[BesselJ[--1/3,x]==0, {x,2}] (Mathematica)
fzero( besselj(--1/3,x), 2) (MATLAB)

yield the value ´1 D 1:86635 (rounded accurate to five decimal places).
The shortest length L1 for which the column will buckle under its own weight

is

L1 D
�
3´1

2�

�2=3

D
"
3´1

2

�
EI

�g

�1=2
#2=3

:

If we substitute ´1 � 1:86635 and � D ıA, where ı is the volumetric density of the
material of the column and A is its cross-sectional area, we finally get

L1 � .1:986/
�
EI

gıA

�1=3

(17)

for the critical buckling length. For example, with a steel column or rod for which
E D 2:8 � 107 lb=in.2 and gı D 0:28 lb=in.3, the formula in (17) gives the results
shown in the table in Fig. 8.6.3.

Cross Section of Rod Shortest Buckling Length L1

Circular with r D 0:5 in.

Circular with r D 1:5 in.

Annular with rinner D 1:25 in. and router D 1:5 in.

30 ft 6 in.

63 ft 5 in.

75 ft 7 in.

FIGURE 8.6.3.

We have used the familiar formulas AD �r2 and I D 1
4
�r4 for a circular disk.

The data in the table show why flagpoles are hollow.

8.6 Problems
In Problems 1 through 12, express the general solution of the
given differential equation in terms of Bessel functions.

1. x2y00 � xy0 C .1C x2/y D 0

2. xy00 C 3y0 C xy D 0

3. xy00 � y0 C 36x3y D 0
4. x2y00 � 5xy0 C .8C x/y D 0
5. 36x2y00 C 60xy0 C .9x3 � 5/y D 0
6. 16x2y00 C 24xy0 C .1C 144x3/y D 0
7. x2y00 C 3xy0 C .1C x2/y D 0
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8. 4x2y00 � 12xy0 C .15C 16x/y D 0
9. 16x2y00 � .5 � 144x3/y D 0

10. 2x2y00 � 3xy0 � 2.14 � x5/y D 0
11. y00 C x4y D 0
12. y00 C 4x3y D 0
13. Apply Theorem 1 to show that the general solution of

xy00 C 2y0 C xy D 0

is y.x/ D x�1.A cos x C B sin x/.

14. Verify that the substitutions in (2) in Bessel’s equation
(Eq. (1)) yield Eq. (3).

15. (a) Show that the substitution

y D � 1
u

du

dx

transforms the Riccati equation dy=dx D x2 C y2 into
u00 C x2u D 0. (b) Show that the general solution of
dy=dx D x2 C y2 is

y.x/ D x
J3=4

�
1
2x

2
�
� cJ�3=4

�
1
2x

2
�

cJ1=4

�
1
2x

2
�
C J�1=4

�
1
2x

2
� :

(Suggestion: Apply the identities in Eqs. (22) and (23) of
Section 8.5.)

16. (a) Substitute the series of Problem 11 of Section 8.5 in
the result of Problem 15 here to show that the solution of
the initial value problem

dy

dx
D x2 C y2; y.0/ D 0

is

y.x/ D x
J3=4

�
1
2x

2
�

J�1=4

�
1
2x

2
� :

(b) Deduce similarly that the solution of the initial value
problem

dy

dx
D x2 C y2; y.0/ D 1

is

y.x/ D x
2�
�

3
4

�
J3=4

�
1
2x

2
�
C �

�
1
4

�
J�3=4

�
1
2x

2
�

2�
�

3
4

�
J�1=4

�
1
2x

2
�
� �

�
1
4

�
J1=4

�
1
2x

2
� :

Some solution curves of the equation dy=dxD x2Cy2 are
shown in Fig. 8.6.4. The location of the asymptotes where
y.x/ ! C1 can be found by using Newton’s method to
find the zeros of the denominators in the formulas for the
solutions as listed here.

0 1 2 3
x

y

–3 –2 –1
–3

–2

–1

3

0

1

2

FIGURE 8.6.4. Solution curves of
dy

dx
D x2 C y2.

17. Figure 8.6.5 shows a linearly tapered rod with circular
cross section, subject to an axial force P of compression.
As in Section 3.8, its deflection curve y D y.x/ satisfies
the endpoint value problem

EIy00 C Py D 0I y.a/ D y.b/ D 0: (18)

y = kx

x = a x = b

x

y

P P

FIGURE 8.6.5. The tapered rod of Problem 17.

Here, however, the moment of inertia I D I.x/ of the cross
section at x is given by

I.x/ D 1

4
�.kx/4 D I0 �

�x
b

�4
;

where I0 D I.b/, the value of I at x D b. Substitution of
I.x/ in the differential equation in (18) yields the eigen-
value problem

x4y00 C �y D 0; y.a/ D y.b/ D 0;

where �D 2 D Pb4=EI0. (a) Apply the theorem of this
section to show that the general solution of x4y00C2y D
0 is

y.x/ D x
�
A cos



x
C B sin



x

�
:

(b) Conclude that the nth eigenvalue is given by n D
n�ab=L, where L D b � a is the length of the rod, and
hence that the nth buckling force is

Pn D
n2�2

L2

�a
b

�2
EI0:

Note that if aD b, this result reduces to Eq. (28) of Section
3.8.
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18. Consider a variable-length pendulum as indicated in
Fig. 8.6.6. Assume that its length is increasing linearly
with time, L.t/ D a C bt . It can be shown that the oscil-
lations of this pendulum satisfy the differential equation

L� 00 C 2L0� 0 C g� D 0
under the usual condition that � is so small that sin �
is very well approximated by � : � � sin � . Substitute
L D aC bt to derive the general solution

�.t/ D 1p
L

�
AJ1

�
2

b

p
gL

�
C BY1

�
2

b

p
gL

��
:

For the application of this solution to a discussion of the
steadily descending pendulum (“its nether extremity was
formed of a crescent of glittering steel, about a foot in
length from horn to horn; the horns upward, and the under
edge as keen as that of a razor : : : and the whole hissed
as it swung through the air : : : down and still down it

came”) of Edgar Allan Poe’s macabre classic “The Pit and
the Pendulum,” see the article by Borrelli, Coleman, and
Hobson in the March 1985 issue of Mathematics Maga-
zine (Vol. 58, pp. 78–83).

θ

m

Cord …

Pulley

L

FIGURE 8.6.6. A variable-length pendulum.

8.6 Application Riccati Equations and Modified Bessel Functions
A Riccati equation is one of the form

dy

dx
D A.x/y2 C B.x/y C C.x/:

Many Riccati equations like the ones listed next can be solved explicitly in terms of
Bessel functions.

dy

dx
D x2 C y2I (1)

dy

dx
D x2 � y2I (2)

dy

dx
D y2 � x2I (3)

dy

dx
D x C y2I (4)

dy

dx
D x � y2I (5)

dy

dx
D y2 � x: (6)

For example, Problem 15 in this section says that the general solution of Eq. (1) is
given by

y.x/ D x J3=4

�
1
2
x2
	 � cJ�3=4

�
1
2
x2
	

cJ1=4

�
1
2
x2
	C J�1=4

�
1
2
x2
	 : (7)

See whether the symbolic DE solver command in your computer algebra sys-
tem, such as the Maple command
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dsolve(diff(y(x),x) = x^2 + y(x)^2, y(x))

or the Mathematica command

DSolve[ y'[x] == x^2 + y[x]^2, y[x], x ]

agrees with Eq. (7). If Bessel functions other than those appearing in Eq. (7) are
involved, you may need to apply the identities in (26) and (27) of Section 8.5 to
transform the computer’s “answer” to (7). Then see whether your system can take
the limit as x! 0 in (7) to show that the arbitrary constant c is given in terms of the
initial value y.0/ by

c D �y.0/�
�

1
4

	
2�
�

3
4

	 : (8)

Now you should be able to use built-in Bessel functions to plot typical solution
curves like those shown in Fig. 8.6.4.

Next, investigate similarly one of the other equations in (2) through (6). Each
has a general solution of the same general form in (7)—a quotient of linear com-
binations of Bessel functions. In addition to Jp.x/ and Yp.x/, these solutions may
involve the modified Bessel functions

Ip.x/ D i�pJp.ix/

and
Kp.x/ D

�

2
i�p



Jp.ix/C Yp.ix/

�
that satisfy the modified Bessel equation

x2y00 C xy0 � .x2 C p2/y D 0

of order p. For instance, the general solution of Eq. (5) is given for x > 0 by

y.x/ D x1=2
I2=3

�
2
3
x3=2

	 � cI�2=3

�
2
3
x3=2

	
I�1=3

�
2
3
x3=2

	 � cI1=3

�
2
3
x3=2

	 ; (9)

where

c D �y.0/�
�

1
3

	
31=3�

�
2
3

	 : (10)

Figure 8.6.7 shows some typical solution curves, together with the parabola y2 D x
that appears to bear an interesting relation to Eq. (6)—we see a funnel near y D
Cpx and a spout near y D �px.

y

2

0

–2

–4

4

5–5 100
x

FIGURE 8.6.7. Solution curves of
dy

dx
D x � y2.

The Bessel functions with imaginary argument that appear in the definitions
of Ip.x/ and Kp.x/ may look exotic, but the power series of the modified function
In.x/ is simply that of the unmodified function Jn.x/ except without the alternating
minus signs. For instance,

I0.x/ D 1C
x2

4
C x4

64
C x6

2304
C � � �

and

I1.x/ D
x

2
C x3

16
C x5

384
C x7

18432
C � � � :
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Check these power series expansions using your computer algebra system—look at
BesselI in either Maple or Mathematica—and compare them with Eqs. (17) and
(18) in Section 8.5.

The second-order differential equations of the form y00 D f .x; y/ with the
same right-hand sides as in Eqs. (1) through (6) have interesting solutions which,
however, cannot be expressed in terms of elementary functions and=or “known”
special functions such as Bessel functions. Nevertheless, they can be investigated
using an ODE plotter. For instance, the interesting pattern in Fig. 8.6.8 shows solu-
tion curves of the second-order equation

y00 D y2 � x (11)

with the same initial value y.0/ D 0 but different slopes y0.0/ D �3:3, �3:1, : : : ;
0:7. Equation (11) is a form of the first Painlevé transcendant, an equation that arose
historically in the classification of nonlinear second-order differential equations in
terms of their critical points (see Chapter 14 of E. L. Ince, Ordinary Differential
Equations, New York: Dover Publications, 1956). Figure 8.6.8 was suggested by
an article by Anne Noonburg containing a similar figure in the Spring 1993 issue of
the C 
ODE 
E Newsletter.

y2 = x

–4

–2

102 40 6 8 12
x

y

0

2

FIGURE 8.6.8. The first Painlevé transcendant y00 D y2 � x, y.0/ D 0,
y0.0/ D �3:3, �3:1, : : : ; 0:7.

Finally, here’s a related example that was inspired by a Maple demonstration
package. The Maple dsolve command yields the general solution

y.x/ D x�1 .c1J10.x/C c2Y10.x//

C x�11.1857945600C 51609600x2 C 806400x4 C 9600x6 C 100x8 C x10/ (12)

of the nonhomogeneous second-order equation

x2y00 C 3xy0 C .x2 � 99/y D x: (13)

Show that Theorem 1 in this section explains the “Bessel part” of the alleged solu-
tion in Eq. (12). Can you explain where the rational function part comes from, or
at least verify it? For further examples of this sort, you can replace the coefficient
99 in Eq. (13) with r2 � 1, where r is an even integer, and/or replace the x on the
right-hand side with xs , where s is an odd integer. (With parities other than these,
more exotic special functions are involved.)



99 Fourier Series Methods
and Partial Differential
Equations

9.1 Periodic Functions and Trigonometric Series

As motivation for the subject of Fourier series, we consider the differential
equation

d2x

dt2
C !2

0x D f .t/; (1)

which models the behavior of a mass-and-spring system with natural (circular) fre-
quency !0, moving under the influence of an external force of magnitude f .t/ per
unit mass. As we saw in Section 3.6, a particular solution of Eq. (1) can easily
be found by the method of undetermined coefficients if f .t/ is a simple harmonic
function—a sine or cosine function. For instance, the equation

d2x

dt2
C !2

0x D A cos!t (2)

with !2 ¤ !2
0 has the particular solution

xp.t/ D
A

!2
0 � !2

cos!t; (3)

which is readily found by beginning with the trial solution xp.t/ D a cos!t .
Now suppose, more generally, that the force function f .t/ in Eq. (1) is a lin-

ear combination of simple harmonic functions. Then, on the basis of Eq. (3) and
the analogous formula with sine in place of cosine, we can apply the principle of
superposition to construct a particular solution of Eq. (1). For example, consider the
equation

d2x

dt2
C !2

0x D
NX

nD1

An cos!nt; (4)

564
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in which !2
0 is equal to none of the !2

n. Equation (4) has the particular solution

xp.t/ D
NX

nD1

An

!2
0 � !2

n

cos!nt; (5)

obtained by adding the solutions given in Eq. (3) corresponding to the N terms on
the right-hand side in Eq. (4).

Mechanical (and electrical) systems often involve periodic forcing functions
that are not (simply) finite linear combinations of sines and cosines. Nevertheless,
as we will soon see, any reasonably nice periodic function f .t/ has a representation
as an infinite series of trigonometric terms. This fact opens the way toward solving
Eq. (1) by superposition of trigonometric “building blocks,” with the finite sum in
Eq. (5) replaced with an infinite series.

DEFINITION Periodic Function

The function f .t/ defined for all t is said to be periodic provided that there exists
a positive number p such that

f .t C p/ D f .t/ (6)

for all t . The number p is then called a period of the function f .

Note that the period of a periodic function is not unique; for example, if p is
a period of f .t/, then so are the numbers 2p, 3p, and so on. Indeed, every positive
number is a period of any constant function.

If there exists a smallest positive number P such that f .t/ is periodic with
period P , then we call P the period of f . For instance, the period of the functions
g.t/ D cosnt and h.t/ D sinnt (where n is a positive integer) is 2�=n because

cos n
�
t C 2�

n

�
D cos.nt C 2�/ D cos nt

and (7)

sinn
�
t C 2�

n

�
D sin.nt C 2�/ D sinnt:

Moreover, 2� itself is a period of the functions g.t/ and h.t/. Ordinarily we will
have no need to refer to the smallest period of a function f .t/ and will simply say
that f .t/ has period p if p is any period of f .t/.

In Section 7.5 we saw several examples of piecewise continuous periodic func-
tions. For instance, the square-wave function having the graph shown in Fig. 9.1.1

x

y

π π2 π3

1

……

FIGURE 9.1.1. A square-wave
function.

has period 2� .
Because g.t/ D cos nt and h.t/ D sinnt each have period 2� , any linear

combination of sines and cosines of integral multiples of t , such as

f .t/ D 3C cos t � sin t C 5 cos 2t C 17 sin 3t;

has period 2� . But every such linear combination is continuous, so the square-
wave function cannot be expressed in such a manner. In his celebrated treatise
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The Analytic Theory of Heat (1822), the French scientist Joseph Fourier (1768–
1830) made the remarkable assertion that every function f .t/ with period 2� can be
represented by an infinite trigonometric series of the form

a0

2
C

1X
nD1

.an cosnt C bn sinnt/: (8)

(The reason for writing 1
2
a0 rather than a0 here will appear shortly—when we see

that a single formula for an thereby includes the case n D 0 as well as n > 0.) We
will see in Section 9.2 that under rather mild restrictions on the function f .t/, this
is so! An infinite series of the form in (8) is called a Fourier series, and the repre-
sentation of functions by Fourier series is one of the most widely used techniques
in applied mathematics, especially for the solution of partial differential equations
(see Sections 9.5 through 9.7).

Fourier Series of Period 2� Functions
In this section we will confine our attention to functions of period 2� . We want to
determine what the coefficients in the Fourier series in (8) must be if it is to converge
to a given function f .t/ of period 2� . For this purpose we need the following
integrals, in which m and n denote positive integers (Problems 27 through 29):

Z �

��

cosmt cosnt dt D
(
0 if m ¤ n,
� if m D n.

(9)

Z �

��

sinmt sinnt dt D
(
0 if m ¤ n,
� if m D n.

(10)

Z �

��

cosmt sinnt dt D 0 for all m and n. (11)

These formulas imply that the functions cosnt and sinnt for n D 1, 2, 3, : : : consti-
tute a mutually orthogonal set of functions on the interval Œ��; ��. Two real-valued
functions u.t/ and v.t/ are said to be orthogonal on the interval Œa; b� provided that

Z b

a

u.t/v.t/ dt D 0: (12)

(The reason for the word “orthogonal” here is a certain interpretation of functions
as vectors with infinitely many values or “components,” in which the integral of
the product of two functions plays the same role as the dot product of two ordinary
vectors; recall that u � v D 0 if and only if the two vectors are orthogonal.)

Suppose now that the piecewise continuous function f .t/ of period 2� has a
Fourier series representation

f .t/ D a0

2
C

1X
mD1

.am cosmt C bm sinmt/; (13)

in the sense that the infinite series on the right converges to the value f .t/ for every
t . We assume in addition that, when the infinite series in Eq. (13) is multiplied by
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any continuous function, the resulting series can be integrated term by term. Then
the result of termwise integration of Eq. (13) itself from t D �� to t D � isZ �

��

f .t/ dt D a0

2

Z �

��

1 dt

C
1X

mD1

�
am

Z �

��

cosmt dt
�
C

1X
mD1

�
bm

Z �

��

sinmt dt
�
D �a0

because all the trigonometric integrals vanish. Hence

a0 D
1

�

Z �

��

f .t/ dt: (14)

If we first multiply each side in Eq. (13) by cos nt and then integrate termwise, the
result isZ �

��

f .t/ cosnt dt D a0

2

Z �

��

cosnt dt

C
1X

mD1

�
am

Z �

��

cosmt cosnt dt
�
C

1X
mD1

�
bm

Z �

��

sinmt cosnt dt
�
I

it then follows from Eq. (11) that

Z �

��

f .t/ cosnt dt D
1X

mD1

am

�Z �

��

cosmt cos nt dt
�
: (15)

But Eq. (9) says that—of all the integrals (formD 1; 2; 3; : : : ) on the right-hand side
in (15)—only the one for which m D n is nonzero. It follows thatZ �

��

f .t/ cosnt dt D an

Z �

��

cos2 nt dt D �an;

so the value of the coefficient an is

an D
1

�

Z �

��

f .t/ cosnt dt: (16)

Note that with n D 0, the formula in (16) reduces to Eq. (14); this explains why we
denote the constant term in the original Fourier series by 1

2
a0 (rather than simply

a0). If we multiply each side in Eq. (13) by sinnt and then integrate termwise, we
find in a similar way that

bn D
1

�

Z �

��

f .t/ sinnt dt (17)

(Problem 31). In short, we have found that if the series in (13) converges to f .t/
and if the termwise integrations carried out here are valid, then the coefficients in
the series must have the values given in Eqs. (16) and (17). This motivates us to
define the Fourier series of a periodic function by means of these formulas, whether
or not the resulting series converges to the function (or even converges at all).
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DEFINITION Fourier Series and Fourier Coefficients

Let f .t/ be a piecewise continuous function of period 2� that is defined for all t .
Then the Fourier series of f .t/ is the series

a0

2
C

1X
nD1

.an cosnt C bn sinnt/; (18)

where the Fourier coefficients an and bn are defined by means of the formulas

an D
1

�

Z �

��

f .t/ cosnt dt (16)

for n D 0, 1, 2, 3, : : : and

bn D
1

�

Z �

��

f .t/ sinnt dt (17)

for n D 1; 2; 3; : : : :

You may recall that the Taylor series of a function sometimes fails to converge
everywhere to the function from whence it came. It is still more common that the
Fourier series of a given function sometimes fails to converge to its actual values at
certain points in the domain of the function. We will therefore write

f .t/ � a0

2
C

1X
nD1

.an cosnt C bn sinnt/; (19)

not using an equals sign between the function and its Fourier series until we have
discussed convergence of Fourier series in Section 9.2.

Suppose that the piecewise continuous function f .t/ as given initially is de-
fined only on the interval Œ��; ��, and assume that f .��/ D f .�/. Then we can
extend f so that its domain includes all real numbers by means of the periodicity
condition f .t C 2�/ D f .t/ for all t . We continue to denote this extension of the
original function by f , and note that it automatically has period 2� . Its graph looks
the same on every interval of the form

.2n � 1/� 5 t 5 .2nC 1/�

where n is an integer (Fig. 9.1.2). For instance, the square-wave function of
Fig. 9.1.1 can be described as the period 2� function such that

x

y

ππ– π3 π5π–3

FIGURE 9.1.2. Extending a function
to produce a periodic function.

f .t/ D

8̂<̂
:
�1 if �� < t < 0;
C1 if 0 < t < �;
0 if t D �� , 0, or � .

(20)

Thus the square-wave function is the period 2� function defined on one full period
by means of Eq. (20).

We need to consider Fourier series of piecewise continuous functions because
many functions that appear in applications are only piecewise continuous, not con-
tinuous. Note that the integrals in Eqs. (16) and (17) exist if f .t/ is piecewise
continuous, so every piecewise continuous function has a Fourier series.



9.1 Periodic Functions and Trigonometric Series 569

Example 1 Find the Fourier series of the square-wave function defined in Eq. (20).
Solution It is always a good idea to calculate a0 separately, using Eq. (14). Thus

a0 D
1

�

Z �

��
f .t/ dt D 1

�

Z 0

��
.�1/ dt C 1

�

Z �

0
.C1/ dt

D 1

�
.��/C 1

�
.�/ D 0:

We split the first integral into two integrals because f .t/ is defined by different formulas on
the intervals .��; 0/ and .0; �/; the values of f .t/ at the endpoints of these intervals do not
affect the values of the integrals.

Equation (16) yields (for n > 0)

an D
1

�

Z �

��
f .t/ cosnt dt D 1

�

Z 0

��
.� cosnt/ dt C 1

�

Z �

0
cosnt dt

D 1

�

�
� 1
n

sinnt
�0

��

C 1

�

�
1

n
sinnt

��

0

D 0:

And Eq. (17) yields

bn D
1

�

Z �

��
f .t/ sinnt dt D 1

�

Z 0

��
.� sinnt/ dt C 1

�

Z �

0
sinnt dt

D 1

�

�
1

n
cos nt

�0

��

C 1

�

�
� 1
n

cosnt
��

0

D 2

n�
.1 � cosn�/ D 2

n�
Œ1 � .�1/n�:

Thus an D 0 for all n = 0, and

bn D
8<:
4

n�
for n odd;

0 for n even.

The last result follows because cos.�n�/ D cos.n�/ D .�1/n. With these values of the
Fourier coefficients, we obtain the Fourier series

f .t/ � 4

�

X
n odd

sinnt
n
D 4

�

�
sin t C 1

3
sin 3t C 1

5
sin 5t C � � �

�
: (21)

Here we have introduced the useful abbreviationX
n odd

for
1X

nD1
n odd

—for example, X
n odd

1

n
D 1C 1

3
C 1

5
C � � � :

Figure 9.1.3 shows the graphs of several of the partial sums

SN .t/ D
4

�

NX
nD1

sin.2n � 1/t
2n � 1

of the Fourier series in (21). Note that as t approaches a discontinuity of f .t/ from either
side, the value of Sn.t/ tends to overshoot the limiting value of f .t/—either C1 or �1 in this
case. This behavior of a Fourier series near a point of discontinuity of its function is typical
and is known as Gibbs’s phenomenon.



570 Chapter 9 Fourier Series Methods and Partial Differential Equations

t

1

–1

π 2π–π–2π

With 3 terms

t

1

–1

π 2π–π–2π

With 6 terms

t

1

–1

π 2π–π–2π

With 12 terms

t

1

–1

π 2π–π–2π

With 24 terms

FIGURE 9.1.3. Graphs of partial sums of the Fourier series of the square-wave function
(Example 1) with N D 3, 6, 12, and 24 terms.

The following integral formulas, easily derived by integration by parts, are
useful in computing Fourier series of polynomial functions:

Z
u cosudu D cosuC u sinuC C I (22)

Z
u sinudu D sinu � u cosuC C I (23)

Z
un cosudu D un sinu � n

Z
un�1 sinuduI (24)

Z
un sinudu D �un cosuC n

Z
un�1 cosudu: (25)

Example 2 Find the Fourier series of the period 2� function that is defined in one period to be

f .t/ D

8̂̂̂̂
<̂
ˆ̂̂:
0 if �� < t 5 0;

t if 0 5 t < �;

�

2
if t D ˙� .

(26)

The graph of f is shown in Fig. 9.1.4.

π

π–
π2 π4 π6π–2

FIGURE 9.1.4. The periodic
function of Example 2.

Solution The values of f .˙�/ are irrelevant because they have no effect on the values of the integrals
that yield the Fourier coefficients. Because f .t/ � 0 on the interval .��; 0/, each integral
from t D �� to t D � may be replaced with an integral from t D 0 to t D � . Equations (14),
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(16), and (17) therefore give

a0 D
1

�

Z �

0
t dt D 1

�

�
1

2
t2
��

0

D �

2
I

an D
1

�

Z �

0
t cos nt dt D 1

n2�

Z n�

0
u cosudu

�
u D nt; t D u

n

�

D 1

n2�

h
cosuC u sinu

in�

0
(by Eq. (22))

D 1

n2�
Œ.�1/n � 1�:

Consequently, an D 0 if n is even and n = 2;

an D �
2

n2�
if n is odd.

Next,

bn D
1

�

Z �

0
t sinnt dt D 1

n2�

Z n�

0
u sinudu

D 1

n2�

h
sinu � u cosu

in�

0
(by Eq. (20))

D � 1
n

cosn�:

Thus

bn D
.�1/nC1

n
for all n = 1.

Therefore, the Fourier series of f .t/ is

f .t/ � �

4
� 2

�

X
n odd

cos nt
n2

C
1X

nD1

.�1/nC1 sinnt
n

: (27)

If f .t/ is a function of period 2� , it is readily verified (Problem 30) that

Z �

��

f .t/ dt D
Z aC2�

a

f .t/ dt (28)

for all a. That is, the integral of f .t/ over one interval of length 2� is equal to its
integral over any other such interval. In case f .t/ is given explicitly on the interval
Œ0; 2�� rather than on Œ��; ��, it may be more convenient to compute its Fourier
coefficients as

an D
1

�

Z 2�

0

f .t/ cosnt dt (29a)

and

bn D
1

�

Z 2�

0

f .t/ sinnt dt: (29b)
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9.1 Problems
In Problems 1 through 10, sketch the graph of the function f
defined for all t by the given formula, and determine whether
it is periodic. If so, find its smallest period.

1. f .t/ D sin 3t 2. f .t/ D cos 2�t

3. f .t/ D cos
3t

2
4. f .t/ D sin

�t

3
5. f .t/ D tan t 6. f .t/ D cot 2�t
7. f .t/ D cosh 3t 8. f .t/ D sinh�t
9. f .t/ D j sin t j 10. f .t/ D cos2 3t

In Problems 11 through 26, the values of a period 2� function
f .t/ in one full period are given. Sketch several periods of its
graph and find its Fourier series.

11. f .t/ � 1 , �� 5 t 5 �

12. f .t/ D
(
C3; �� < t 5 0I
�3; 0 < t 5 �

13. f .t/ D
(
0; �� < t 5 0I
1; 0 < t 5 �

14. f .t/ D
(
3; �� < t 5 0I
�2; 0 < t 5 �

15. f .t/ D t , �� < t 5 �

16. f .t/ D t , 0 < t < 2�
17. f .t/ D jt j, �� 5 t 5 �

18. f .t/ D
(
� C t; �� < t 5 0I
� � t; 0 < t 5 �

19. f .t/ D
(
� C t; �� 5 t < 0I
0; 0 5 t 5 �

20. f .t/ D

8̂<̂
:
0; �� 5 t < ��=2I
1; ��=2 5 t 5 �=2I
0; �=2 < t 5 �

21. f .t/ D t2 , �� 5 t 5 �

22. f .t/ D t2 , 0 5 t < 2�

23. f .t/ D
(
0; �� 5 t 5 0I
t2; 0 5 t < �

24. f .t/ D j sin t j , �� 5 t 5 �

25. f .t/ D cos2 2t , �� 5 t 5 �

26. f .t/ D
(
0; �� 5 t 5 0I
sin t; 0 5 t 5 �

27. Verify Eq. (9). (Suggestion: Use the trigonometric iden-
tity

cosA cosB D 1
2 Œcos.AC B/C cos.A � B/� :/

28. Verify Eq. (10).
29. Verify Eq. (11).
30. Let f .t/ be a piecewise continuous function with period

P . (a) Suppose that 0 5 a < P . Substitute u D t � P to
show that Z aCP

P
f .t/ dt D

Z a

0
f .t/ dt:

Conclude thatZ aCP

a
f .t/ dt D

Z P

0
f .t/ dt:

(b) GivenA, choose n so thatAD nP Ca with 05 a <P .
Then substitute v D t � nP to show thatZ ACP

A
f .t/ dt D

Z aCP

a
f .t/ dt D

Z P

0
f .t/ dt:

31. Multiply each side in Eq. (13) by sinnt and then integrate
term by term to derive Eq. (17).

9.2 General Fourier Series and Convergence
In Section 9.1 we defined the Fourier series of a periodic function of period 2� .
Now let f .t/ be a function that is piecewise continuous for all t and has arbitrary
period P > 0. We write

P D 2L; (1)

so L is the half-period of the function f . Let us define the function g as follows:

g.u/ D f
�
Lu

�

�
(2)

for all u. Then

g.uC 2�/ D f
�
Lu

�
C 2L

�
D f

�
Lu

�

�
D g.u/;
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and hence g.u/ is also periodic and has period 2� . Consequently, g has the Fourier
series

g.u/ � a0

2
C

1X
nD1

.an cosnuC bn sinnu/ (3)

with Fourier coefficients

an D
1

�

Z �

��

g.u/ cosnudu (4a)

and

bn D
1

�

Z �

��

g.u/ sinnudu: (4b)

If we now write

t D Lu

�
; u D �t

L
; f .t/ D g.u/; (5)

then

f .t/ D g
�
�t

L

�
� a0

2
C

1X
nD1

�
an cos

n�t

L
C bn

n�t

L

�
; (6)

and then substitution of (5) in (4) yields

an D
1

�

Z �

��

g.u/ cosnudu
�
u D �t

L
; du D �

L
dt

�

D 1

L

Z L

�L

g

�
�t

L

�
cos

n�t

L
dt:

Therefore,

an D
1

L

Z L

�L

f .t/ cos
n�t

L
dt I (7)

similarly,

bn D
1

L

Z L

�L

f .t/ sin
n�t

L
dt: (8)

This computation motivates the following definition of the Fourier series of a peri-
odic function of period 2L.
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DEFINITION Fourier Series and Fourier Coefficients

Let f .t/ be a piecewise continuous function of period 2L that is defined for all t .
Then the Fourier series of f .t/ is the series

f .t/ � a0

2
C

1X
nD1

�
an cos

n�t

L
C bn sin

n�t

L

�
; (6)

where the Fourier coefficients fang10 and fbng11 are defined to be

an D
1

L

Z L

�L

f .t/ cos
n�t

L
dt (7)

and

bn D
1

L

Z L

�L

f .t/ sin
n�t

L
dt: (8)

With n D 0, Eq. (7) takes the simple form

a0 D
1

L

Z L

�L

f .t/ dt; (9)

which demonstrates that the constant term 1
2
a0 in the Fourier series of f is simply

the average value of f .t/ on the interval Œ�L;L�.
As a consequence of Problem 30 of Section 9.1, we may evaluate the integrals

in (7) and (8) over any other interval of length 2L. For instance, if f .t/ is given by
a single formula for 0 < t < 2L, it may be more convenient to compute the integrals

an D
1

L

Z 2L

0

f .t/ cos
n�t

L
dt (10a)

and

bn D
1

L

Z 2L

0

f .t/ sin
n�t

L
dt: (10b)

Example 1 Figure 9.2.1 shows the graph of a square-wave function with period 4. Find its Fourier series.

Solution Here, L D 2; also, f .t/ D �1 if �2 < t < 0, while f .t/ D 1 if 0 < t < 2. Hence Eqs. (7), (8),
and (9) yield

a0 D
1

2

Z 2

�2
f .t/ dt D 1

2

Z 0

�2
.�1/ dt C 1

2

Z 2

0
.C1/ dt D 0;

an D
1

2

Z 0

�2
.�1/ cos

n�t

2
dt C 1

2

Z 2

0
.C1/ cos

n�t

2
dt

D 1

2

�
� 2

n�
sin

n�t

2

�0

�2

C 1

2

�
2

n�
sin

n�t

2

�2

0

D 0;

and

42 6–2

1

…

…

FIGURE 9.2.1. The square-wave of
Example 1.
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bn D
1

2

Z 0

�2
.�1/ sin

n�t

2
dt C 1

2

Z 2

0
.C1/ sin

n�t

2
dt

C 1

2

�
2

n�
cos

n�t

2

�0

�2

C 1

2

�
� 2

n�
cos

n�t

2

�2

0

D 2

n�



1 � .�1/n� D

8̂<̂
:
4

n�
if n is odd;

0 if n is even:

Thus the Fourier series is

f .t/ � 4

�

X
n odd

1

n
sin

n�t

2
(11a)

D 4

�

�
sin

�t

2
C 1

3
sin

3�t

2
C 1

5
sin

5�t

2
C � � �

�
: (11b)

The Convergence Theorem
We want to impose conditions on the periodic function f that are enough to guar-
antee that its Fourier series actually converges to f .t/ at least at those values of t at
which f is continuous. Recall that the function f is said to be piecewise continuous
on the interval Œa; b� provided that there is a finite partition of Œa; b� with endpoints

a D t0 < t1 < t2 < � � � < tn�1 < tn D b

such that

1. f is continuous on each open interval ti�1 < t < ti ; and
2. At each endpoint ti of such a subinterval the limit of f .t/, as t approaches ti

from within the subinterval, exists and is finite.

The function f is called piecewise continuous for all t if it is piecewise con-
tinuous on every bounded interval. It follows that a piecewise continuous function
is continuous except possibly at isolated points, and that at each such point of dis-
continuity, the one-sided limits

f .tC/ D lim
u!tC

f .u/ and f .t�/ D lim
u!t�

f .u/ (12)

both exist and are finite. Thus a piecewise continuous function has only isolated
“finite jump” discontinuities like the one shown in Fig. 9.2.2.

t

f ( t–)

f ( t+)

FIGURE 9.2.2. A finite jump
discontinuity.

The square-wave and sawtooth functions that we saw in Chapter 7 are typical
examples of periodic piecewise continuous functions. The function f .t/ D tan t
is a periodic function (of period �) that is not piecewise continuous because it has
infinite discontinuities. The function g.t/D sin.1=t/ is not piecewise continuous on
Œ�1; 1� because its one-sided limits at t D 0 do not exist. The function

h.t/ D
8<:t if t D 1

n
(n an integer);

0 otherwise
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on Œ�1; 1� has one-sided limits everywhere, but is not piecewise continuous because
its discontinuities are not isolated—it has the infinite sequence f1=ng11 of disconti-
nuities; a piecewise continuous function can have only finitely many discontinuities
in any bounded interval.

Note that a piecewise continuous function need not be defined at its isolated
points of discontinuity. Alternatively, it can be defined arbitrarily at such points.
For instance, the square wave function f of Fig. 9.2.1 is piecewise continuous no
matter what its values might be at the points : : : , �4, �2, 0, 2, 4, 6, : : : at which it is
discontinuous. Its derivative f 0 is also piecewise continuous; f 0.t/ D 0 unless t is
an even integer, in which case f 0.t/ is undefined.

The piecewise continuous function f is said to be piecewise smooth provided
that its derivative f 0 is piecewise continuous. Theorem 1 (next) tells us that the
Fourier series of a piecewise smooth function converges everywhere. More general
Fourier convergence theorems—with weaker hypotheses on the periodic function
f—are known. But the hypothesis that f is piecewise smooth is easy to check and
is satisfied by most functions encountered in practical applications. A proof of the
following theorem may be found in G. P. Tolstov, Fourier Series (New York: Dover,
1976).

THEOREM 1 Convergence of Fourier Series

Suppose that the periodic function f is piecewise smooth. Then its Fourier series
in (6) converges

(a) to the value f .t/ at each point where f is continuous, and

(b) to the value 1
2
Œf .tC/C f .t�/� at each point where f is discontinuous.

Note that 1
2
Œf .tC/ C f .t�/� is the average of the right-hand and left-hand

limits of f at the point t . If f is continuous at t , then f .t/ D f .tC/ D f .t�/, so

f .t/ D f .tC/C f .t�/
2

: (13)

Hence Theorem 1 could be rephrased as follows: The Fourier series of a piecewise
smooth function f converges for every t to the average value in (13). For this reason
it is customary to write

f .t/ D a0

2
C

1X
nD1

�
an cos

n�t

L
C bn sin

n�t

L

�
; (14)

with the understanding that the piecewise smooth function f has been redefined (if
necessary) at each of its points of discontinuity in order to satisfy the average value
condition in (13).

Continued

Example 1 Figure 9.2.1 shows us at a glance that if t0 is an even integer, then

lim
t!t

C

0

f .t/ D C1 and lim
t!t�

0

f .t/ D �1:

Hence
f .t0C/C f .t0�/

2
D 0:

Note that, in accord with Theorem 1, the Fourier series of f .t/ in (11) clearly converges to
zero if n is an even integer (because sinn� D 0).
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Example 2 Let f .t/ be a function of period 2 with f .t/ D t2 if 0 < t < 2. We define f .t/ for t an even
integer by the average value condition in (13); consequently, f .t/ D 2 if t is an even integer.
The graph of the function f appears in Fig. 9.2.3. Find its Fourier series.

Solution Here L D 1, and it is most convenient to integrate from t D 0 to t D 2. Then

a0 D
1

1

Z 2

0
t2 dt D

�
1

3
t3
�2

0

D 8

3
:

With the aid of the integral formulas in Eqs. (22) through (25) of Section 9.1, we obtain

8 104–4

4

–2 62 t

FIGURE 9.2.3. The period 2
function of Example 2.

an D
Z 2

0
t2 cosn�t dt

D 1

n3�3

Z 2n�

0
u2 cosudu

�
u D n�t; t D u

n�

�

D 1

n3�3

h
u2 sinu � 2 sinuC 2u cosu

i2n�

0
D 4

n2�2
I

bn D
Z 2

0
t2 sinn�t dt D 1

n3�3

Z 2n�

0
u2 sinudu

D 1

n3�3

h
�u2 cosuC 2 cosuC 2u sinu

i2n�

0
D � 4

n�
:

Hence the Fourier series of f is

f .t/ D 4

3
C 4

�2

1X
nD1

cosn�t
n2

� 4

�

1X
nD1

sinn�t
n

; (15)

and Theorem 1 assures us that this series converges to f .t/ for all t .

We can draw some interesting consequences from the Fourier series in (15).
If we substitute t D 0 on each side, we find that

f .0/ D 2 D 4

3
C 4

�2

1X
nD1

1

n2
:

On solving for the series, we obtain the lovely summation

1X
nD1

1

n2
D 1C 1

22
C 1

32
C 1

42
C � � � D �2

6
(16)

that was discovered by Euler. If we substitute t D 1 in Eq. (15), we get

f .1/ D 1 D 4

3
C 4

�2

1X
nD1

.�1/n
n2

;

which yields

1X
nD1

.�1/nC1

n2
D 1 � 1

22
C 1

32
� 1

42
C � � � D �2

12
: (17)

If we add the series in Eqs. (16) and (17) and then divide by 2, the “even” terms
cancel and the result isX

n odd

1

n2
D 1C 1

32
C 1

52
C 1

72
C � � � D �2

8
: (18)
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9.2 Problems
In Problems 1 through 14, the values of a periodic function
f .t/ in one full period are given; at each discontinuity the
value of f .t/ is that given by the average value condition in
(13). Sketch the graph of f and find its Fourier series.

1. f .t/ D
(
�2; �3 < t < 0I
2; 0 < t < 3

2. f .t/ D
(
0; �5 < t < 0I
1; 0 < t < 5

3. f .t/ D
(
2; �2� < t < 0I
�1; 0 < t < 2�

4. f .t/ D t , �2 < t < 2
5. f .t/ D t , �2� < t < 2�
6. f .t/ D t , 0 < t < 3
7. f .t/ D jt j, �1 < t < 1

8. f .t/ D

8̂<̂
:
0; 0 < t < 1I
1; 1 < t < 2I
0; 2 < t < 3

9. f .t/ D t2, �1 < t < 1

10. f .t/ D
(
0; �2 < t < 0I
t2; 0 < t < 2

11. f .t/ D cos
�t

2
, �1 < t < 1

12. f .t/ D sin�t , 0 < t < 1

13. f .t/ D
(
0; �1 < t < 0I
sin�t; 0 < t < 1

14. f .t/ D
(
0; �2� < t < 0I
sin t; 0 < t < 2�

15. (a) Suppose that f is a function of period 2� with f .t/ D
t2 for 0 < t < 2� . Show that

f .t/ D 4�2

3
C 4

1X
nD1

cosnt
n2

� 4�
1X

nD1

sinnt
n

and sketch the graph of f , indicating the value at each dis-
continuity. (b) Deduce the series summations in Eqs. (16)
and (17) from the Fourier series in part (a).

16. (a) Suppose that f is a function of period 2 such that
f .t/ D 0 if �1 < t < 0 and f .t/ D t if 0 < t < 1. Show
that

f .t/ D 1

4
� 2

�2

X
n odd

cosn�t
n2

C 1

�

1X
nD1

.�1/nC1 sinn�t
n

;

and sketch the graph of f , indicating the value at each dis-
continuity. (b) Deduce the series summation in Eq. (18)
from the Fourier series in part (a).

17. (a) Suppose that f is a function of period 2 with f .t/ D t
for 0 < t < 2. Show that

f .t/ D 1 � 2

�

1X
nD1

sinn�t
n

;

and sketch the graph of f , indicating the value at each
discontinuity. (b) Substitute an appropriate value of t to
deduce Leibniz’s series

1 � 1
3
C 1

5
� 1
7
C � � � D �

4
:

Derive the Fourier series listed in Problems 18 through 21, and
graph the period 2� function to which each series converges.

18.
1X

nD1

sinnt
n
D � � t

2
.0 < t < 2�/

19.
1X

nD1

.�1/nC1 sinnt
n

D t

2
.�� < t < �/

20.
1X

nD1

cosnt
n2

D 3t2 � 6�t C 2�2

12
.0 < t < 2�/

21.
1X

nD1

.�1/nC1 cosnt
n2

D �2 � 3t2
12

.�� < t < �/

22. Suppose that p.t/ is a polynomial of degree n. Show by
repeated integration by parts thatZ

p.t/g.t/ dt D p.t/G1.t/ � p0.t/G2.t/

C p00.t/G3.t/ � � � � C .�1/np.n/.t/GnC1.t/

where Gk.t/ denotes the kth iterated antiderivative
Gk.t/D .D�1/kg.t/. This formula is useful in computing
Fourier coefficients of polynomials.

23. Apply the integral formula of Problem 22 to show thatZ
t4 cos t dt D t4 sin t C 4t3 cos t

� 12t2 sin t � 24t cos t C 24 sin t C C
and thatZ

t4 sin t dt D �t4 cos t C 4t3 sin t

C 12t2 cos t � 24t sin t � 24 cos t C C:
24. (a) Show that for 0 < t < 2� ,

t4 D 16�4

5
C 16

1X
nD1

 
2�2

n2
� 3

n4

!
cosnt

C 16�
1X

nD1

 
3

n3
� �

2

n

!
sinnt;
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and sketch the graph of f , indicating the value at each dis-
continuity. (b) From the Fourier series in part (a), deduce
the summations

1X
nD1

1

n4
D �4

90
;

1X
nD1

.�1/nC1

n4
D 7�4

720

and X
n odd

1

n4
D �4

96
:

25. (a) Find the Fourier series of the period 2� function f
with f .t/ D t3 if �� < t < � . (b) Use the series of part
(a) to derive the summation

1 � 1

33
C 1

53
� 1

73
C � � � D �3

32
;

and sketch the graph of f , indicating the value at each
discontinuity. (c) Attempt to evaluate the series

1X
nD1

1

n3
D 1C 1

23
C 1

33
C 1

43
C � � �

by substituting an appropriate value of t in the Fourier
series of part (a). Is your attempt successful? Explain.
Remark: If you succeed in expressing the sum of this
inverse-cube series in terms of familiar numbers—for in-
stance, as a rational multiple of �3 similar to Euler’s sum
in part (a)—you will win great fame for yourself, for many
have tried without success over the past two centuries
since Euler. Indeed, it was not until 1979 that the sum
of the inverse-cube series was proved to be an irrational
number (as long suspected).

9.2 Application Computer Algebra Calculation of Fourier Coefficients
A computer algebra system can greatly ease the burden of calculation of the Fourier
coefficients of a given function f .t/. In the case of a function that is defined “piece-
wise,” we must take care to “split” the integral according to the different intervals
of definition of the function. We illustrate the method by deriving the Fourier series
of the period 2� square-wave function defined on .��; �/ by

f .t/ D
(
�1 if �� < t < 0,
C1 if 0 < t < � .

(1)

In this case the function is defined by different formulas on two different intervals,
so each Fourier coefficient integral from �� to � must be calculated as the sum of
two integrals:

an D
1

�

Z 0

��

.�1/ cos nt dt C 1

�

Z �

0

.C1/ cosnt dt;

bn D
1

�

Z 0

��

.�1/ sinnt dt C 1

�

Z �

0

.C1/ sinnt dt:

(2)

We can define the coefficients in (2) as functions of n by the Maple commands

a := n ��> (1/Pi)�(int(--cos(n�t), t=--Pi..0) +
int(+cos(n�t), t=0..Pi)):

b := n ��> (1/Pi)�(int(--sin(n�t), t=--Pi..0) +
int(+sin(n�t), t=0..Pi)):

or by the Mathematica commands

a[n ] := (1/Pi)�(Integrate[--Cos[n�t], {t, --Pi, 0}] +
Integrate[+Cos[n�t], {t, 0, Pi}])

b[n ] := (1/Pi)�(Integrate[--Sin[n�t], {t, --Pi, 0}] +
Integrate[+Sin[n�t], {t, 0, Pi}])

Because the function f .t/ in Eq. (1) is odd, we naturally find that an � 0. Hence
the Maple commands
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fourierSum := sum(b(n)�sin(n�t), n=1..9);
plot(fourierSum, t=--2�Pi..4�Pi);

or the Mathematica commands

fourierSum = Sum[b[n]�Sin[n�t], {n,1,9}]
Plot[fourierSum, {t, --2�Pi, 4�Pi}]

yield the partial sum

9X
nD1

bn sinnt D 4

�

�
sin t C sin 3t

3
C sin 5t

5
C sin 7t

7
C sin 9t

9

�

and generate a graph like one of those in Fig. 9.1.3. The corresponding MATLAB

commands are entirely analogous and can be found in the applications manual that
accompanies this text.

To practice the symbolic derivation of Fourier series in this manner, you can
begin by verifying the Fourier series calculated manually in Examples 1 and 2 of
this section. Then Problems 1 through 21 are fair game. Finally, the period 2�
triangular wave and trapezoidal wave functions illustrated in Figs. 9.2.4 and 9.2.5
have especially interesting Fourier series that we invite you to discover for yourself.

t

y

y = t y = π – t

y = –π – t

π

2

π

2
–

π–π

FIGURE 9.2.4. The triangular wave.

t

y

y – t
y = π – t

y = –π – t

π

3

π

3
–

π–π

FIGURE 9.2.5. The trapezoidal wave.

9.3 Fourier Sine and Cosine Series
Certain properties of functions are reflected prominently in their Fourier series. The
function f defined for all t is said to be even if

f .�t / D f .t/ (1)

for all t ; f is odd if

f .�t / D �f .t/ (2)

for all t . The first condition implies that the graph of y D f .t/ is symmetric with
respect to the y-axis, whereas the condition in (2) implies that the graph of an odd
function is symmetric with respect to the origin (see Fig. 9.3.1). The functions
f .t/ D t2n (with n an integer) and g.t/ D cos t are even functions, whereas the
functions f .t/ D t2nC1 and g.t/ D sin t are odd. We will see that the Fourier series
of an even periodic function has only cosine terms and that the Fourier series of an
odd periodic function has only sine terms.
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(a) (b)

y

t

(t, f (t ))(– t, f (t ))

Even

y

t

(t, f (t ))

(–t, – f (t ))
Odd

FIGURE 9.3.1. (a) An even function; (b) an odd function.

(a) (b)

f Even

–a a

++

f Odd

–a
a

+

–

FIGURE 9.3.2. Area under the graph of (a) an even function and (b) an odd.

Addition and cancellation of areas as indicated in Fig. 9.3.2 reminds us of
the following basic facts about integrals of even and odd functions over an interval
Œ�a; a� that is symmetric around the origin.

If f is even:
Z a

�a

f .t/ dt D 2
Z a

0

f .t/ dt: (3)

If f is odd:
Z a

�a

f .t/ dt D 0: (4)

These facts are easy to verify analytically (Problem 17).
It follows immediately from Eqs. (1) and (2) that the product of two even

functions is even, as is the product of two odd functions; the product of an even
function and an odd function is odd. In particular, if f .t/ is an even periodic function
of period 2L, then f .t/ cos.n�t=L/ is even, whereas f .t/ sin.n�t=L/ is odd, because
the cosine function is even and the sine function is odd. When we compute the
Fourier coefficients of f , we therefore get

an D
1

L

Z L

�L

f .t/ cos
n�t

L
dt D 2

L

Z L

0

f .t/ cos
n�t

L
dt (5a)

and

bn D
1

L

Z L

�L

f .t/ sin
n�t

L
dt D 0 (5b)
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because of (3) and (4). Hence the Fourier series of the even function f of period 2L
has only cosine terms:

f .t/ D a0

2
C

1X
nD1

an cos
n�t

L
(f even) (6)

with the values of an given by Eq. (5a). If f .t/ is odd, then f .t/ cos.n�t=L/ is odd,
whereas f .t/ sin.n�t=L/ is even, so

an D
1

L

Z L

�L

f .t/ cos
n�t

L
dt D 0 (7a)

and

bn D
1

L

Z L

�L

f .t/ sin
n�t

L
dt D 2

L

Z L

0

f .t/ sin
n�t

L
dt: (7b)

Hence the Fourier series of the odd function f of period 2L has only sine terms:

f .t/ D
1X

nD1

bn sin
n�t

L
(f odd) (8)

with the coefficients bn given in Eq. (7b).

Even and Odd Extensions
In all our earlier discussion and examples, we began with a periodic function de-
fined for all t ; the Fourier series of such a function is uniquely determined by the
Fourier coefficient formulas. In many practical situations, however, we begin with
a function f defined only on an interval of the form 0 < t < L, and we want to
represent its values on this interval by a Fourier series of period 2L. The first step
is the necessary extension of f to the interval �L < t < 0. Granted this, we may
extend f to the entire real line by the periodicity condition f .t C 2L/ D f .t/ (and
use the average value property should any discontinuities arise). But how we define
f for �L < t < 0 is our choice, and the Fourier series representation for f .t/ on
.0; L/ that we obtain will depend on that choice. Specifically, different choices of
the extension of f to the interval .�L; 0/ will yield different Fourier series that con-
verge to the same function f .t/ in the original interval 0 < t < L, but converge to
the different extensions of f on the interval �L < t < 0.

In practice, given f .t/ defined for 0 < t < L, we generally make one of two
natural choices—we extend f in such a way as to obtain either an even function or
an odd function on the whole real line. The even period 2L extension of f is the
function fE defined as

fE.t/ D
(
f .t/ if 0 < t < L,
f .�t / if �L < t < 0 (9)

and by fE.t C 2L/ D fE.t/ for all t . The odd period 2L extension of f is the
function fO defined as

fO.t/ D
(
f .t/ if 0 < t < L,
�f .�t / if �L < t < 0 (10)
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and by fO.t C 2L/D fO.t/ for all t . The values of fE or fO for t an integral multiple
of L can be defined in any convenient way we wish, because these isolated values
cannot affect the Fourier series of the extensions we get. As suggested by Fig. 9.3.1,
it frequently suffices simply to visualize the graph of fE on .�L; 0/ as the reflection
in the vertical axis of the original graph of f on .0; L/, and the graph of fO on
.�L; 0/ as the reflection in the origin of the original graph.

For instance, if f .t/ D 2t � t2 on the interval 0 < t < 2 (so L D 2), then (9)
and (10) yield

fE.t/ D 2.�t / � .�t /2 D �2t � t2

and

fO.t/ D �


2.�t / � .�t /2� D 2t C t2

for the values of these two extensions on the interval �2 < t < 0. The graphs of the
corresponding two periodic extensions of f are shown in Fig. 9.3.3.

t–8 –6 –4 –2 2 4 6 8

1

–1

(b)

t–8 –6 –4 –2 2 4 6 8

1

–1

(a)

FIGURE 9.3.3. (a) The period 4
even extension of f .t/ D 2t � t2 for
0 < t < 2. (b) Graph of the period 4
odd extension of f .t/ D 2t � t2 for
0 < t < 2.

The Fourier series of the even extension fE of the function f , given by Eqs. (5)
and (6), will contain only cosine terms and is called the Fourier cosine series of the
original function f . The Fourier series of the odd extension fO, given by Eqs. (7)
and (8), will contain only sine terms and is called the Fourier sine series of f .

DEFINITION Fourier Cosine and Sine Series

Suppose that the function f .t/ is piecewise continuous on the interval Œ0; L�.
Then the Fourier cosine series of f is the series

f .t/ D a0

2
C

1X
nD1

an cos
n�t

L
(11)

with

an D
2

L

Z L

0

f .t/ cos
n�t

L
dt: (12)

The Fourier sine series of f is the series

f .t/ D
1X

nD1

bn sin
n�t

L
(13)

with

bn D
2

L

Z L

0

f .t/ sin
n�t

L
dt: (14)

Assuming that f is piecewise smooth and satisfies the average value condition
f .t/ D 1

2
Œf .tC/C f .t�/� at each of its isolated discontinuities, Theorem 1 of Sec-

tion 9.2 implies that each of the two series in (11) and (13) converges to f .t/ for all
t in the interval 0 < t < L. Outside this interval, the cosine series in (11) converges
to the even period 2L extension of f , whereas the sine series in (13) converges to
the odd period 2L extension of f . In many cases of interest we have no concern
with the values of f outside the original interval .0; L/, and therefore the choice
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between (11) and (12) or (13) and (14) is determined by whether we prefer to rep-
resent f .t/ in the interval .0; L/ by a cosine series or a sine series. (See Example 2
for a situation that dictates our choice between a Fourier cosine series and a Fourier
sine series to represent a given function.)

Example 1 Suppose that f .t/ D t for 0 < t < L. Find both the Fourier cosine series and the Fourier sine
series for f .

Solution Equation (12) gives

a0 D
2

L

Z L

0
t dt D 2

L

�
1

2
t2
�L

0

D L

and

an D
2

L

Z L

0
t cos

n�t

L
dt D 2L

n2�2

Z n�

0
u cosudu

D 2L

n2�2

h
u sinuC cosu

in�

0
D
8<:�

4L

n2�2
for n odd;

0 for n even.

Thus the Fourier cosine series of f is

4L3L2LL–L–2L

FIGURE 9.3.4. The even period 2L
extension of f .

t D L

2
� 4L
�2

�
cos

�t

L
C 1

32
cos

3�t

L
C 1

52
cos

5�t

L
C � � �

�
(15)

for 0 < t < L. Next, Eq. (14) gives

bn D
2

L

Z L

0
t sin

n�t

L
dt D 2L

n2�2

Z n�

0
u sinudu

D 2L

n2�2

h
�u cosuC sinu

in�

0
D 2L

n�
.�1/nC1:

Thus the Fourier sine series of f is

t D 2L

�

�
sin

�t

L
� 1
2

sin
2�t

L
C 1

3
sin

3�t

L
� � � �

�
(16)

for 0 < t < L. The series in Eq. (15) converges to the even period 2L extension of f shown in
Fig. 9.3.4; the series in Eq. (16) converges to the odd period 2L extension shown in Fig. 9.3.5.

4L3L2LL–L

FIGURE 9.3.5. The odd period 2L
extension of f .

Termwise Differentiation of Fourier Series

In this and in subsequent sections, we want to consider Fourier series as possible
solutions of differential equations. In order to substitute a Fourier series for the
unknown dependent variable in a differential equation to check whether it is a so-
lution, we first need to differentiate the series in order to compute the derivatives
that appear in the equation. Care is required here; term-by-term differentiation of
an infinite series of variable terms is not always valid. Theorem 1 gives sufficient
conditions for the validity of termwise differentiation of a Fourier series.
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THEOREM 1 Termwise Differentiation of Fourier Series

Suppose that the function f is continuous for all t , periodic with period 2L, and
that its derivative f 0 is piecewise smooth for all t . Then the Fourier series of f 0
is the series

f 0.t/ D
1X

nD1

�
�n�
L
an sin

n�t

L
C n�

L
bn cos

n�t

L

�
(17)

obtained by termwise differentiation of the Fourier series

f .t/ D a0

2
C

1X
nD1

�
an cos

n�t

L
C bn sin

n�t

L

�
: (18)

Proof: The point of the theorem is that the differentiated series in Eq. (17)
actually converges to f 0.t/ (with the usual proviso about average values). But be-
cause f 0 is periodic and piecewise smooth, we know from Theorem 1 of Section
9.2 that the Fourier series of f 0 converges to f 0.t/:

f 0.t/ D ˛0

2
C

1X
nD1

�
˛n cos

n�t

L
C ˇn sin

n�t

L

�
: (19)

In order to prove Theorem 1, it therefore suffices to show that the series in Eqs. (17)
and (19) are identical. We will do so under the additional hypothesis that f 0 is
continuous everywhere. Then

˛0 D
1

L

Z L

�L

f 0.t/ dt D 1

L

h
f .t/

iL

�L
D 0

because f .L/ D f .�L/ by periodicity, and

˛n D
1

L

Z L

�L

f 0.t/ cos
n�t

L
dt

D 1

L

�
f .t/ cos

n�t

L

�L

�L

C n�

L
� 1
L

Z L

�L

f .t/ sin
n�t

L
dt

—integration by parts. It follows that

˛n D
n�

L
bn:

Similarly, we find that

ˇn D �
n�

L
an;

and therefore the series in Eqs. (17) and (19) are, indeed, identical.
Whereas the assumption that the derivative f 0 is continuous is merely a con-

venience—the proof of Theorem 1 can be strengthened to allow isolated discontinu-
ities in f 0—it is important to note that the conclusion of Theorem 1 generally fails
when f itself is discontinuous. For example, consider the Fourier series

t D 2L

�

�
sin

�t

L
� 1
2

sin
2�t

L
C 1

3
sin

3�t

L
� � � �

�
; (16)
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�L < t < L, of the discontinuous sawtooth function having the graph shown in
Fig. 9.3.5. All the hypotheses of Theorem 1 are satisfied apart from the continuity
of f , and f has only isolated jump discontinuities. But the series

2

�
cos

�t

L
� cos

2�t

L
C cos

3�t

L
� � � �

�
(20)

obtained by differentiating the series in Eq. (16) term by term diverges (for instance,
when t D 0 and when t D L), and therefore termwise differentiation of the series in
Eq. (16) is not valid.

By contrast, consider the (continuous) triangular wave function f .t/ having
the graph shown in Fig. 9.3.4, with f .t/ D jt j for �L < t < L. This function
satisfies all the hypotheses of Theorem 1, so its Fourier series

f .t/ D L

2
� 4L
�2

�
cos

�t

L
C 1

32
cos

3�t

L
C 1

52
cos

5�t

L
C � � �

�
(15)

can be differentiated termwise. The result is

f 0.t/ D 4

�

�
sin

�t

L
C 1

3
sin

3�t

L
C 1

5
sin

5�t

L
C � � �

�
; (21)

which is the Fourier series of the period 2L square wave function that takes the value
�1 for �L < t < 0 and C1 for 0 < t < L.

Fourier Series Solutions of Differential Equations
In the remainder of this chapter and in Chapter 10, we will frequently need to solve
endpoint value problems of the general form

ax00 C bx0 C cx D f .t/ .0 < t < L/I (22)

x.0/ D x.L/ D 0; (23)

where the function f .t/ is given. Of course, we might consider applying the tech-
niques of Chapter 3, solving the problem by

1. First finding the general solution xc D c1x1C c2x2 of the associated homoge-
neous differential equation;

2. Then finding a single particular solution xp of the nonhomogeneous equation
in (22); and

3. Finally, determining the constants c1 and c2 so that x D xc C xp satisfies the
endpoint conditions in (23).

In many problems, however, the following Fourier series method is more con-
venient and more useful. We first extend the definition of the function f .t/ to the
interval �L < t < 0 in an appropriate way, and then to the entire real line by the
periodicity conditions f .t C 2L/D f .t/. Then the function f , if piecewise smooth,
has a Fourier series

f .t/ D A0

2
C

1X
nD1

�
An cos

n�t

L
C Bn sin

n�t

L

�
; (24)
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which has coefficients fAng and fBng that we can and do compute. We then assume
that the differential equation in (22) has a solution x.t/ with a Fourier series

x.t/ D a0

2
C

1X
nD1

�
an cos

n�t

L
C bn sin

n�t

L

�
(25)

that may validly be differentiated twice termwise. We attempt to determine the
coefficients in Eq. (25) by first substituting the series in Eqs. (24) and (25) into the
differential equation in (22) and then equating coefficients of like terms—much as
in the ordinary method of undetermined coefficients (Section 3.5), except that now
we have infinitely many coefficients to determine. If this procedure is carried out in
such a way that the resulting series in Eq. (25) also satisfies the endpoint conditions
in (23), then we have a “formal Fourier series solution” of the original endpoint
value problem; that is, a solution subject to verification of the assumed termwise
differentiability. Example 2 illustrates this process.

Example 2 Find a formal Fourier series solution of the endpoint value problem

x00 C 4x D 4t; (26)

x.0/ D x.1/ D 0: (27)

Solution Here f .t/ D 4t for 0 < t < 1. A crucial first step—which we did not make explicit in the
preceding outline—is to choose a periodic extension f .t/ so that each term in its Fourier
series satisfies the endpoint conditions in (27). For this purpose we choose the odd period
2 extension, because each term of the form sinn�t satisfies (27). Then from the series in
Eq. (16) with L D 1, we get the Fourier series

4t D 8

�

1X
nD1

.�1/nC1

n
sinn�t (28)

for 0 < t < 1. We therefore anticipate a sine series solution

x.t/ D
1X

nD1

bn sinn�t; (29)

noting that any such series will satisfy the endpoint conditions in (27). When we substitute
the series in (28) and (29) in Eq. (26), the result is

1X
nD1

.�n2�2 C 4/bn sinn�t D 8

�

1X
nD1

.�1/nC1

n
sinn�t: (30)

We next equate coefficients of like terms in Eq. (30). This yields

bn D
8 � .�1/nC1

n�.4 � n2�2/
;

so our formal Fourier series solution is

x.t/ D 8

�

1X
nD1

.�1/nC1 sinn�t
n.4 � n2�2/

: (31)

In Problem 16 we ask you to derive the exact solution

x.t/ D t � sin 2t
sin 2

.0 5 t 5 1/ (32)

and to verify that (31) is the Fourier series of the odd period 2 extension of this solution.
The dashed curve in Fig. 9.3.6 was plotted by summing 10 terms of the Fourier series

in (31). The solid curve for 0 5 t 5 2 is the graph of the exact solution in (32).

2.01.00.0
t

x

–0.4

–0.2

0.0

0.2

0.4

–1.0

x = t – sin 2 t
sin 2

FIGURE 9.3.6. Graph of the
solution in Example 2.
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Termwise Integration of Fourier Series
Theorem 2 guarantees that the Fourier series of a piecewise continuous periodic
function can always be integrated term by term, whether or not it converges! A
proof is outlined in Problem 25.

THEOREM 2 Termwise Integration of Fourier Series

Suppose that f is a piecewise continuous periodic function with period 2L and
Fourier series

f .t/ � a0

2
C

1X
nD1

�
an cos

n�t

L
C bn sin

n�t

L

�
; (33)

which may not converge. Then

Z t

0

f .s/ ds D a0t

2
C

1X
nD1

L

n�

�
an sin

n�t

L
� bn

�
cos

n�t

L
� 1

��
; (34)

with the series on the right-hand side convergent for all t . Note that the series
in Eq. (34) is the result of term-by-term integration of the series in (33), but if
a0 6D 0 it is not a Fourier series because of its linear initial term 1

2
a0t .

Example 3 Let us attempt to verify the conclusion of Theorem 2 in the case that f .t/ is the period 2�
function such that

f .t/ D
(
�1; �� < t < 0I
C1; 0 < t < �:

(35)

By Example 1 of Section 9.1, the Fourier series of f is

f .t/ D 4

�

�
sin t C 1

3
sin 3t C 1

5
sin 5t C � � �

�
: (36)

Theorem 2 then implies that

F.t/ D
Z t

0
f .s/ ds

D
Z t

0

4

�

�
sin s C 1

3
sin 3s C 1

5
sin 5s C � � �

�
ds

D 4

�

�
.1 � cos t /C 1

32
.1 � cos 3t/C 1

52
.1 � cos 5t/C � � �

�
:

Thus

F.t/ D 4

�

�
1C 1

32
C 1

52
C � � �

�

� 4

�

�
cos t C 1

32
cos 3t C 1

52
cos 5t C � � �

�
: (37)

On the other hand, direct integration of (35) yields

F.t/ D
Z t

0
f .s/ ds D jt j D

(
�t; �� < t < 0;
t; 0 < t < �:
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We know from Example 1 in this section (with L D �) that

jt j D �

2
� 4

�

�
cos t C 1

32
cos 3t C 1

52
cos 5t C � � �

�
: (38)

We also know from Eq. (18) of Section 9.2 that

1C 1

32
C 1

52
C 1

72
C � � � D �2

8
;

so it follows that the two series in Eqs. (37) and (38) are indeed identical.

9.3 Problems
In Problems 1 through 10, a function f .t/ defined on an inter-
val 0 < t < L is given. Find the Fourier cosine and sine series
of f and sketch the graphs of the two extensions of f to which
these two series converge.

1. f .t/ D 1, 0 < t < �
2. f .t/ D 1 � t , 0 < t < 1
3. f .t/ D 1 � t , 0 < t < 2

4. f .t/ D
(
t; 0 < t 5 1I
2 � t; 1 5 t < 2

5. f .t/ D

8̂<̂
:
0; 0 < t < 1I
1; 1 < t < 2I
0; 2 < t < 3

6. f .t/ D t2, 0 < t < �
7. f .t/ D t .� � t /, 0 < t < �
8. f .t/ D t � t2, 0 < t < 1
9. f .t/ D sin t , 0 < t < �

10. f .t/ D
(

sin t; 0 < t 5 �

0; � 5 t < 2�

Find formal Fourier series solutions of the endpoint value
problems in Problems 11 through 14.

11. x00 C 2x D 1, x.0/ D x.�/ D 0
12. x00 � 4x D 1, x.0/ D x.�/ D 0
13. x00 C x D t , x.0/ D x.1/ D 0
14. x00 C 2x D t , x.0/ D x.2/ D 0
15. Find a formal Fourier series solution of the endpoint value

problem

x00 C 2x D t; x0.0/ D x0.�/ D 0:

(Suggestion: Use a Fourier cosine series in which each
term satisfies the endpoint conditions.)

16. (a) Derive the solution x.t/ D t � .sin 2t/=.sin 2/ of the
endpoint value problem

x00 C 4x D 4t; x.0/ D x.1/ D 0:

(b) Show that the series in Eq. (31) is the Fourier sine
series of the solution in part (a).

17. (a) Suppose that f is an even function. Show thatZ 0

�a
f .t/ dt D

Z a

0
f .t/ dt:

(b) Suppose that f is an odd function. Show thatZ 0

�a
f .t/ dt D �

Z a

0
f .t/ dt:

18. By Example 2 of Section 9.2, the Fourier series of the pe-
riod 2 function f with f .t/ D t2 for 0 < t < 2 is

f .t/ D 4

3
C 4

�2

1X
nD1

cos n�t
n2

� 4

�

1X
nD1

sinn�t
n

:

Show that the termwise derivative of this series does not
converge to f 0.t/.

19. Begin with the Fourier series

t D 2
1X

nD1

.�1/nC1

n
sinnt; �� < t < �;

and integrate termwise three times in succession to obtain
the series

1

24
t4 D �2t2

12
� 2

1X
nD1

.�1/n
n4

cosnt C 2
1X

nD1

.�1/n
n4

:

20. Substitute t D �=2 and t D � in the series of Problem 19
to obtain the summations

1X
nD1

1

n4
D �4

90
;

1X
nD1

.�1/nC1

n4
D 7�4

720
;

and

1C 1

34
C 1

54
C 1

74
C � � � D �4

96
:

21. (Odd half-multiple sine series) Let f .t/ be given for
0 < t < L, and define F.t/ for 0 < t < 2L as follows:

F.t/ D
(
f .t/; 0 < t < LI
f .2L � t /; L < t < 2L:

Thus the graph of F.t/ is symmetric around the line t D L
(Fig. 9.3.7). Then the period 4L Fourier sine series of F
is

F.t/ D
1X

nD1

bn sin
n�t

2L
;
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where

bn D
1

L

Z L

0
f .t/ sin

n�t

2L
dt

C 1

L

Z 2L

L
f .2L � t / sin

n�t

2L
dt:

Substitute s D 2L � t in the second integral to derive the
series (for 0 < t < L)

f .t/ D
X

n odd

bn sin
n�t

2L
;

where

bn D
2

L

Z L

0
f .t/ sin

n�t

2L
dt (n odd):

tt L 2L

y

2L – t

FIGURE 9.3.7. Construction of F from f in
Problem 21.

22. (Odd half-multiple cosine series) Let f .t/ be given for
0 < t < L, and define G.t/ for 0 < t < 2L as follows:

G.t/ D
(
f .t/; 0 < t < LI
�f .2L � t /; L < t < 2L:

Use the period 4L Fourier cosine series of G.t/ to derive
the series (for 0 < t < L)

f .t/ D
X

n odd

an cos
n�t

2L
;

where

an D
2

L

Z L

0
f .t/ cos

n�t

2L
dt (n odd):

23. Given: f .t/ D t , 0 < t < � . Derive the odd half-multiple
sine series (Problem 21)

f .t/ D 8

�

X
n odd

.�1/.n�1/=2

n2
sin

nt

2
:

24. Given the endpoint value problem

x00 � x D t; x.0/ D 0; x0.�/ D 0;

note that any constant multiple of sin.nt=2/ with n odd
satisfies the endpoint conditions. Hence use the odd half-
multiple sine series of Problem 23 to derive the formal
Fourier series solution

x.t/ D 32

�

X
n odd

.�1/.nC1/=2

n2.n2 C 4/ sin
nt

2
:

25. In this problem we outline the proof of Theorem 2. Sup-
pose that f .t/ is a piecewise continuous period 2L func-
tion. Define

F.t/ D
Z t

0

h
f .s/ � 1

2a0

i
ds;

where fang and fbng denote the Fourier coefficients of
f .t/. (a) Show directly that F.t C 2L/ D F.t/, so that
F is a continuous period 2L function and therefore has a
convergent Fourier series

F.t/ D A0

2
C

1X
nD1

�
An cos

n�t

L
C Bn sin

n�t

L

�
:

(b) Suppose that n = 1. Show by direct computation that

An D �
L

n�
bn and Bn D

L

n�
an:

(c) Thus

Z t

0
f .s/ ds D t

2
a0 C

1

2
A0

C
1X

nD1

L

n�

�
an sin

n�t

L
� bn cos

n�t

L

�
:

Finally, substitute t D 0 to see that

1

2
A0 D

1X
nD1

L

n�
bn:

9.3 Application Fourier Series of Piecewise Smooth Functions
Most computer algebra systems permit the use of unit step functions for the efficient
derivation of Fourier series of “piecewise-defined” functions. Here we illustrate the
use of Maple for this purpose. Mathematica and MATLAB versions can be found in
the applications manual that accompanies this text.

Let the “unit function” unit.t; a; b/ have the value 1 on the interval a 5 t < b

and the value 0 otherwise. Then we can define a given piecewise smooth function
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f .t/ as a “linear combination” of different unit functions corresponding to the sepa-
rate intervals on which the function is smooth, with the unit function for each inter-
val multiplied by the formula defining f .t/ on that interval. For example, consider
the even period 2� function whose graph is shown in Fig. 9.3.8. This “trapezoidal
wave function” is defined for 0 < t < � by

f .t/ D �

3
unit

�
t; 0;

�

6

�
C
��
2
� t
�

unit
�
t;
�

6
;
5�

6

�
C
�
��
3

�
unit

�
t;
5�

6
; �

�
: (1)

t
π 2π–π

π

6
π

3
,( (

7π

6
π

3
,( (–5π

6
π

3
,( (–

FIGURE 9.3.8. Even period 2� trapezoidal-wave function.

The unit step function (with values 0 for t < 0 and 1 for t > 0) is available in Maple
as the “Heaviside function.” For instance, Heaviside.�2/D 0 and Heaviside.3/D 1.
The unit function on the interval Œa; b� can be defined by

unit := (t,a,b) ��> Heaviside(t--a) -- Heaviside(t--b):

Then the trapezoidal--wave function in Eq. (1) is defined for 0 5 t 5 � by

f := t ��> (Pi/3)�unit(t, 0, Pi/6) +
(Pi/2 -- t)�unit(t, Pi/6, 5�Pi/6) +
(--Pi/3)�unit(t, 5�Pi/6, Pi):

We can now calculate the Fourier coefficients in the cosine series f .t/ D 1
2
a0 CP

an cosnt :

a := n ��> (2/Pi)�int(f(t)�cos(n�t), t=0..Pi);

We then find that a typical partial sum of the series is given by

fourierSum := a(0)/2 + sum(a(n)�cos(n�t), n=1..25);

fourierSum W D 2
p
3 cos.t/
�

� 2

25

p
3 cos.5t/
�

� 2

49

p
3 cos.7t/
�

C 2

121

p
3 cos.11t/
�

C 2

169

p
3 cos.13t/
�

� 2

289

p
3 cos.17t/
�

� 2

361

p
3 cos.19t/
�

C 2

529

p
3 cos.23t/
�

C 2

625

p
3 cos.25t/
�



592 Chapter 9 Fourier Series Methods and Partial Differential Equations

Thus we discover the lovely Fourier series

f .t/ D 2
p
3

�

X .˙/ cosnt
n2

(2)

with a C��CC��CC pattern of signs, and where the summation is taken over
all odd positive integers n that are not multiples of 3. You can enter the command

plot(fourierSum, t=--2�Pi..3�Pi);
to verify that this Fourier series is consistent with Fig. 9.3.8.

You can then apply this method to find the Fourier series of the following
period 2� functions:

1. The even square-wave function whose graph is shown in Fig. 9.3.9.
2. The even and odd triangular-wave functions whose graphs are shown in

Figs. 9.2.4 and 9.3.10.
3. The odd trapezoidal-wave function whose graph is shown in Fig. 9.2.5.

Then find similarly the Fourier series of some piecewise smooth functions of your
own choice, perhaps ones that have periods other than 2� and are neither even nor
odd.

t

–1

π 2π–π

π

2
,( (1

π

2
,( (–1 π

2
,( (–13

1

FIGURE 9.3.9. Even period 2� square-wave function.

t

–

π 2π–π

π

2

π

2 ,( (– π

2π

,( (π

22π

FIGURE 9.3.10. Even period 2� triangular-wave function.

9.4 Applications of Fourier Series
We consider first the undamped motion of a mass m on a spring with Hooke’s
constant k under the influence of a periodic external force F.t/, as indicated in
Fig. 9.4.1. Its displacement x.t/ from equilibrium satisfies the familiar equation

mx00 C kx D F.t/: (1)

The general solution of Eq. (1) is of the form

x (t)

Equilibrium
position

m
F(t )

k

FIGURE 9.4.1. A mass-and-spring
system with external force.

x.t/ D c1 cos!0t C c2 sin!0t C xp.t/; (2)

where !0 D
p
k=m is the natural frequency of the system and xp.t/ is a particular

solution of Eq. (1). The values c1 and c2 would be determined by the initial con-
ditions. Here we want to use Fourier series to find a periodic particular solution of
Eq. (1). We will denote it by xsp.t/ and call it a steady periodic solution.
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We assume for simplicity that F.t/ is an odd function with period 2L, so its
Fourier series has the form

F.t/ D
1X

nD1

Bn sin
n�t

L
: (3)

If n�=L is not equal to !0 for any positive integer n, we can determine a steady
periodic solution of the form

xsp.t/ D
1X

nD1

bn sin
n�t

L
(4)

by substituting the series in Eqs. (3) and (4) in Eq. (1) to find the coefficients in
Eq. (4). Example 1 illustrates this procedure.

Example 1 Suppose that m D 2 kg, k D 32 N=m, and that F.t/ is an odd periodic force with a period of
2 s given in one period by

F.t/ D
(
C10N if 0 < t < 1;

�10N if 1 < t < 2.
(5)

Find the steady periodic motion xsp.t/.
Solution The graph of the periodic forcing function F.t/ is shown in Fig. 9.4.2. By essentially the

same computation as in Example 1 of Section 9.1, the Fourier series of F.t/ is

4 52

10

–1 31 t (s)

F(t )

FIGURE 9.4.2. The graph of the
forcing function of Example 1.

F.t/ D 40

�

X
n odd

sinn�t
n
I (6)

note that it contains only terms corresponding to n odd. When we substitute this series and

xsp.t/ D
X

n odd

bn sinn�t; (7)

a trial solution likewise containing only odd terms, into Eq. (1) with m D 2 and k D 32, we
get X

n odd

bn.�2n2�2 C 32/ sinn�t D 40

�

X
n odd

sinn�t
n

:

We equate coefficients of like terms; the result is that

bn D
20

n�.16 � n2�2/
for n odd:

Hence

xsp.t/ D
20

�

X
n odd

sinn�t
n.16 � n2�2/

: (8)

The fact that each term in Eq. (8) is symmetric around t D 1
2 suggests that xsp.t/ is maximal

when t D 1
2 , as does the graph in Fig. 9.4.3. Assuming this, we find the amplitude of the

x

xsp(t)

t

1

–1

2 311
2

FIGURE 9.4.3. The graph of the
steady periodic solution xsp.t/.

steady periodic motion to be

xsp

�
1
2

�
D 20

�

X
n odd

1

n.16 � n2�2/
sin

n�

2
:

The first 100 terms yield the correct four-place value x
�

1
2

�
� 1:0634 m.
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The periodic solution xsp.t/ is a single particular solution of the nonhomo-
geneous differential equation 2x00 C 32x D F.t/ that has associated homogeneous
equation x00 C 16x D 0. Hence the general solution is of the form

x.t/ D A cos 4t C B sin 4t C xsp.t/

and thus is a sum of periodic functions with periods 2 and 2�=4 D �=2 unless A D
B D 0. Because numerical calculation gives xsp.0/ D 0 and x0

sp.0/ � 2:7314, the
two period �=2 terms both drop out—leaving the period 2 solution xsp.t/—only with
these particular initial values of x.0/ and x0.0/. With any other initial conditions,
either A or B (or both) is nonzero, and the corresponding solution is a superposition
of two oscillations whose periods have an irrational ratio (see Problems 19 and 20).
For instance, Fig. 9.4.4 shows the graphs of the periodic solution xsp.t/ and the
solution x.t/ that satisfies the initial conditions x.0/ D 2 and x0.0/ D 0 and appears

x
xsp(t) x (t)

t

1

3
2

–1
–2
–3

4 8 12

FIGURE 9.4.4. The steady periodic
solution xsp.t/ and the nonperiodic
solution x.t/.

to be nonperiodic.

Pure Resonance
If there is a nonzero term BN sin.N�t=L/ in the Fourier series solution of the force
function F.t/ in Eq. (1) for which N�=L D !0, then this term causes pure reso-
nance. The reason is that the equation

mx00 C kx D BN sin!0t

has the resonance solution

x.t/ D � BN

2m!0

t cos!0t

if !0 D
p
k=m. The solution corresponding to Eq. (4) in this case is then

x.t/ D � BN

2m!0

t cos!0t C
X
n¤N

BN

m.!2
0 � n2�2=L2/

sin
n�t

L
: (9)

Example 2 Suppose that mD 2 kg and k D 32 N=m as in Example 1. Determine whether pure resonance
will occur if F.t/ is the odd periodic function defined in one period to be

(a) F.t/ D
(
C10; 0 < t < �I
�10; � < t < 2�:

(b) F.t/ D 10t , �� < t < � .

Solution (a) The natural frequency is !0 D 4, and the Fourier series of F.t/ is

F.t/ D 40

�

�
sin t C 1

3
sin 3t C 1

5
sin 5t C � � �

�
:

Because this series contains no sin 4t term, no resonance occurs.

(b) In this case the Fourier series is

F.t/ D 20
1X

nD1

.�1/nC1

n
sinnt:

Pure resonance occurs because of the presence of the term containing the factor sin 4t .

Example 3 illustrates the near resonance that can occur when a single term in
the solution is magnified because its frequency is close to the natural frequency !0.
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Example 3 Find a steady periodic solution of

x00 C 10x D F.t/; (10)

where F.t/ is the period 4 function with F.t/ D 5t for �2 < t < 2 and Fourier series

F.t/ D 20

�

1X
nD1

.�1/nC1

n
sin

n�t

2
: (11)

Solution When we substitute Eq. (11) and

xsp.t/ D
1X

nD1

bn sin
n�t

2

in (10), we obtain

1X
nD1

bn

 
�n

2�2

4
C 10

!
sin

n�t

2
D 20

�

1X
nD1

.�1/nC1

n
sin

n�t

2
:

We equate coefficients of like terms and then solve for bn to get the steady periodic solution

xsp.t/ D
80

�

1X
nD1

.�1/nC1

n.40 � n2�2/
sin

n�t

2

� .0:8452/ sin
�t

2
� .24:4111/ sin

2�t

2
� .0:1738/ sin

3�t

2
C � � � :

The very large magnitude of the second term results from the fact that !0 D
p
10 � � D

2�=2. Thus the dominant motion of a spring with the differential equation in (10) would
be an oscillation with frequency � radians per second, period 2 s, and amplitude about 24,
consistent with the graph of xsp.t/ shown in Fig. 9.4.5.

2 4 t1 3

x

10

20

–10

–20

FIGURE 9.4.5. The graph of xsp.t/.

Damped Forced Oscillations
Now we consider the motion of a mass m attached both to a spring with Hooke’s
constant k and to a dashpot with damping constant c, under the influence of a pe-
riodic external force F.t/ (Fig. 9.4.6). The displacement x.t/ of the mass from
equilibrium satisfies the equation

mx00 C cx0 C kx D F.t/: (12)

We recall from Problem 25 of Section 3.6 that the steady periodic solution of
Eq. (12) with F.t/ D F0 sin!t is

x.t/ D F0p
.k �m!2/2 C .c!/2

sin.!t � ˛/; (13)

where

˛ D tan�1 c!

k �m!2
; 0 5 ˛ 5 �: (14)

If F.t/ is an odd period 2L function with Fourier series

x (t)

Equilibrium
position F(t )

m
k c

FIGURE 9.4.6. A damped mass–
and–spring system with external force.

F.t/ D
1X

nD1

Bn sin
n�t

L
; (15)
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then the preceding formulas yield, by superposition, the steady periodic solution

xsp.t/ D
1X

nD1

Bn sin.!nt � ˛n/p
.k �m!2

n/
2 C .c!n/2

; (16)

where !n D n�=L and ˛n is the angle determined by Eq. (14) with this value of !.
Example 4 illustrates the interesting fact that the dominant frequency of the steady
periodic solution can be an integral multiple of the frequency of the force F.t/.

Example 4 Suppose thatmD 3 kg, c D 0:02 N=m=s, k D 27 N=m, and F.t/ is the odd period 2� function
with F.t/ D �t � t2 if 0 < t < � . Find the steady periodic motion xsp.t/.

Solution We find that the Fourier series of F.t/ is

F.t/ D 8

�

�
sin t C 1

33
sin 3t C 1

53
sin 5t C � � �

�
: (17)

Thus Bn D 0 for n even, Bn D 8=.�n3/ for n odd, and !n D n. Equation (16) gives

xsp.t/ D
8

�

X
n odd

sin.nt � ˛n/

n3
p
.27 � 3n2/2 C .0:02n/2

(18)

with

˛n D tan�1 .0:02/n

27 � 3n2
; 0 5 ˛n 5 �: (19)

With the aid of a programmable calculator, we find that

xsp.t/ � .0:1061/ sin.t � 0:0008/C .1:5719/ sin
�
3t � 1

2�
�

C .0:0004/ sin.5t � 3:1437/C .0:0001/ sin.7t � 3:1428/C � � � : (20)

Because the coefficient corresponding to nD 3 is much larger than the others, the response of
this system is approximately a sinusoidal motion with frequency three times that of the input
force. Figure 9.4.7 shows xsp.t/ in comparison with the scaled force 10F.t/=k that has the
appropriate dimension of distance.

10F (t )
k

xsp(t )

t

2

3

1

–1

–2

–3

π π3 π4π2

FIGURE 9.4.7. The imposed force
and the resulting steady periodic
motion in Example 4.

What is happening here is this: The mass m D 3 on a spring with k D 27 has (if we
ignore the small effect of the dashpot) a natural frequency !0 D

p
k=m D 3 rad=s. The im-

posed external force F.t/ has a (smallest) period of 2� s and hence a fundamental frequency
of 1 rad=s. Consequently, the term corresponding to n D 3 in the Fourier series of F.t/ (in
Eq. (17)) has the same frequency as the natural frequency of the system. Thus near resonance
vibrations occur, with the mass completing essentially three oscillations for every single os-
cillation of the external force. This is the physical effect of the dominant n D 3 term on the
right-hand side in Eq. (20). For instance, you can push a friend in a swing quite high even
if you push the swing only every third time it returns to you. This also explains why some
transformers “hum” at a frequency much higher than 60 Hz.

This is a general phenomenon that must be taken into account in the design of mechan-
ical systems. To avoid the occurrence of abnormally large and potentially destructive near
resonance vibrations, the system must be so designed that it is not subject to any external
periodic force, some integral multiple of whose fundamental frequency is close to a natural
frequency of vibration.

x

x (t)

1

2

–1

t4 8 12

xsp(t)

FIGURE 9.4.8. The steady periodic
solution xsp.t/ and the damped
solution x.t/.

Continued

Example 1 Finally, let us add to the mass–spring system of Example 1 a dashpot with damping constant
c D 3 N/m/s. Then, since m D 2 and k D 32, the differential equation satisfied by the mass’s
displacement function x.t/ is now

2x00 C 3x0 C 32x D F.t/; (21)

where F.t/ is the periodic force function defined in Eq. (5). Figure 9.4.8 shows graphs of
both the steady periodic solution xsp.t/ for the original undamped system of Example 1 and
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a numerically calculated solution of Eq. (21) with initial conditions x.0/ D 2 and x0.0/ D
1. As an initial transient solution determined by the initial conditions dies out, it appears
that the damped solution x.t/ converges to a steady periodic solution of (21). However, we
observe two evident effects of the damping—the amplitude of the steady periodic oscillation
is decreased, and the damped steady oscillations lag behind the undamped steady oscillations.

9.4 Problems
Find the steady periodic solution xsp.t/ of each of the differen-
tial equations in 1 through 6. Use a computer algebra system
to plot enough terms of the series to determine the visual ap-
pearance of the graph of xsp.t/.

1. x00 C 5x D F.t/, where F.t/ is the function of period 2�
such that F.t/ D 3 if 0 < t < � , F.t/ D �3 if � < t < 2� .

2. x00C10xDF.t/, where F.t/ is the even function of period
4 such that F.t/ D 3 if 0 < t < 1, F.t/ D �3 if 1 < t < 2.

3. x00 C 3x D F.t/, where F.t/ is the odd function of period
2� such that F.t/ D 2t if 0 < t < � .

4. x00C 4x D F.t/, where F.t/ is the even function of period
4 such that F.t/ D 2t if 0 < t < 2.

5. x00C 10x D F.t/, where F.t/ is the odd function of period
2 such that F.t/ D t � t2 if 0 < t < 1.

6. x00C 2x D F.t/, where F.t/ is the even function of period
2� such that F.t/ D sin t if 0 < t < � .

In each of Problems 7 through 12, the mass m and Hooke’s
constant k for a mass-and-spring system are given. Determine
whether or not pure resonance will occur under the influence
of the given external periodic force F.t/.

7. m D 1, k D 9; F.t/ is the odd function of period 2� with
F.t/ D 1 for 0 < t < � .

8. m D 2, k D 10; F.t/ is the odd function of period 2 with
F.t/ D 1 for 0 < t < 1.

9. m D 3, k D 12; F.t/ is the odd function of period 2� with
F.t/ D 3 for 0 < t < � .

10. m D 1, k D 4�2; F.t/ is the odd function of period 2 with
F.t/ D 2t for 0 < t < 1.

11. mD 3, k D 48; F.t/ is the even function of period 2� with
F.t/ D t for 0 < t < � .

12. m D 2, k D 50; F.t/ is the odd function of period 2� with
F.t/ D �t � t2 for 0 < t < � .

In each of Problems 13 through 16, the values of m, c, and
k for a damped mass-and-spring system are given. Find the
steady periodic motion—in the form of Eq. (16)—of the mass
under the influence of the given external force F.t/. Compute
the coefficients and phase angles for the first three nonzero
terms in the series for xsp.t/.

13. m D 1, c D 0:1, k D 4; F.t/ is the force of Problem 1.
14. m D 2, c D 0:1, k D 18; F.t/ is the force of Problem 3.
15. m D 3, c D 1, k D 30; F.t/ is the force of Problem 5.
16. m D 1, c D 0:01, k D 4; F.t/ is the force of Problem 4.
17. Consider a forced damped mass-and-spring system with

m D 1
4 slug, c D 0:6 lb=ft=s, k D 36 lb=ft. The force F.t/

is the period 2 (s) function with F.t/ D 15 if 0 < t < 1,
F.t/ D �15 if 1 < t < 2. (a) Find the steady periodic
solution in the form

xsp.t/ D
1X

nD1

bn sin.n�t � ˛n/:

(b) Find the location—to the nearest tenth of an inch—of
the mass when t D 5 s.

18. Consider a forced damped mass-and-spring system with
m D 1, c D 0:01, and k D 25. The force F.t/ is the
odd function of period 2� with F.t/ D t if 0 < t < �=2,
F.t/ D � � t if �=2 < t < � . Find the steady periodic
motion; compute enough terms of its series to see that the
dominant frequency of the motion is five times that of the
external force.

19. Suppose the functions f .t/ and g.t/ are periodic with pe-
riods P and Q, respectively. If the ratio P=Q of their pe-
riods is a rational number, show that the sum f .t/C g.t/
is a periodic function.

20. If p=q is irrational, prove that the function f .t/D cosptC
cos qt is not a periodic function. Suggestion: Show that
the assumption f .t CL/D f .t/ would (upon substituting
t D 0) imply that p=q is rational.

9.5 Heat Conduction and Separation of Variables

The most important applications of Fourier series are to the solution of partial differ-
ential equations by means of the method of separation of variables that we introduce
in this section. Recall that a partial differential equation is one containing one or
more partial derivatives of a dependent variable that is a function of at least two
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independent variables. An example is the one-dimensional heat equation

@u

@t
D k

@2u

@x2
; (1)

in which the dependent variable u is an unknown function of x and t , and k is a
given positive constant.

The Heated Rod
Equation (1) models the variation of temperature u with position x and time t in a
heated rod that extends along the x-axis. We assume that the rod has uniform cross
section with area A perpendicular to the axis and that it is made of a homogeneous
material. We assume further that the cross section of the rod is so small that u is
constant on each cross section, and that the lateral surface of the rod is insulated so
that no heat can pass through it. Then u will, indeed, be a function of x and t , and
heat will flow along the rod in only the x-direction. In general, we envision heat as
flowing like a fluid from the warmer to the cooler parts of a body.

The heat flux �.x; t/ in the rod is the rate of flow of heat (in the positive x-
direction) at time t across a unit area of the rod’s cross section at x. Typical units for
� are calories (of heat) per second per square centimeter (of area). The derivation
of Eq. (1) is based on the empirical principle that

� D �K@u
@x
; (2)

where the positive proportionality constant K is called the thermal conductivity
of the material of the rod. Note that if ux > 0, then � < 0, meaning that heat is
flowing in the negative x-direction, while if ux < 0, then � > 0, so heat is flowing in
the positive x-direction. Thus the rate of heat flow is proportional to juxj, and the
direction of heat flow is in the direction along the rod in which the temperature u is
decreasing. In short, heat flows from a warm place to a cool place, not vice versa.

Now consider a small segment of the rod corresponding to the interval Œx; xC
�x�, as shown in Fig. 9.5.1. The rate of flow R (in calories per second) of heat into

x x + x

A (x + x, t )φA (x, t )φ Δ

FIGURE 9.5.1. Net flow of heat into
a short segment of the rod.

this segment through its two ends is

R D A�.x; t/ � A�.x C�x; t/ D KAŒux.x C�x; t/ � ux.x; t/�: (3)

The resulting time rate of change ut of the temperature in the segment depends
on its density ı (grams per cubic centimeter) and specific heat c (both assumed
constant). The specific heat c is the amount of heat (in calories) required to raise by
1ı (Celsius) the temperature of 1 g of material. Consequently cıu calories of heat
are required to raise 1 cm3 of the material from temperature zero to temperature u.
A short slice of the rod of length dx has volume Adx, so cıuAdx calories of heat
are required to raise the temperature of this slice from 0 to u. The heat content

Q.t/ D
Z xC�x

x

cıAu.x; t/ dx (4)

of the segment Œx; x C�x� of the rod is the amount of heat needed to raise it from
zero temperature to the given temperature u.x; t/. Because heat enters and leaves
the segment only through its ends, we see from Eq. (3) that

Q0.t/ D KAŒux.x C�x; t/ � ux.x; t/�; (5)
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becauseRD dQ=dt . Thus by differentiating Eq. (4) within the integral and applying
the mean value theorem for integrals, we see that

Q0.t/ D
Z xC�x

x

cıAut .x; t/ dx D cıAut .x; t/�x (6)

for some x in .x; x C�x/. Upon equating the values in Eqs. (5) and (6), we get

cıAut .x; t/�x D KAŒux.x C�x; t/ � ux.x; t/�; (7)

so

ut .x; t/ D k
ux.x C�x; t/ � ux.x; t/

�x
; (8)

where

k D K

cı
(9)

is the thermal diffusivity of the material. We now take the limit as �x ! 0, so
x ! x (because x lies in the interval Œx; x C�x� with fixed left endpoint x). Then
the two sides of the equation in (8) approach the two sides of the one-dimensional
heat equation

@u

@t
D k @

2u

@x2
: (1)

Thus the temperature u.x; t/ in the thin rod with insulated sides must satisfy this
partial differential equation.

Boundary Conditions
Now suppose that the rod has finite length L, extending from x D 0 to x D L.
Its temperature function u.x; t/ will be determined among all possible solutions
of Eq. (1) by appropriate subsidiary conditions. In fact, whereas a solution of an
ordinary differential equation involves arbitrary constants, a solution of a partial
differential equation generally involves arbitrary functions. In the case of the heated
rod, we can specify its temperature function f .x/ at time t D 0. This gives the initial
condition

u.x; 0/ D f .x/: (10)

We may also specify fixed temperatures at the two ends of the rod. For instance, if
each end were clamped against a large block of ice at temperature zero, we would
have the endpoint conditions

u.0; t/ D u.L; t/ D 0 (for all t > 0): (11)

Combining all this, we get the boundary value problem

@u

@t
D k @

2u

@x2
.0 < x < L, t > 0); (12a)

u.0; t/ D u.L; t/ D 0; .t > 0/; (12b)

u.x; 0/ D f .x/ .0 < x < L/: (12c)
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Figure 9.5.2 gives a geometric interpretation of the boundary value problem

u = 0 u = 0

u = f(x) L x

t

FIGURE 9.5.2. A geometric
interpretation of the boundary value
problem in Eqs. (12a)–(12c).

in (12): We are to find a function u.x; t/ that is continuous on the unbounded strip
(including its boundary) shaded in the xt-plane. This function must satisfy the
differential equation in (12a) at each interior point of the strip, and on the boundary
of the strip must have the values prescribed by the boundary conditions in (12b) and
(12c). Physical intuition suggests that if f .x/ is a reasonable function, then there
will exist one and only one such function u.x; t/.

Instead of having fixed temperatures, the two ends of the rod might be insu-
lated. In this case no heat would flow through either end, so we see from Eq. (2)
that the conditions in (12b) would be replaced in the boundary value problem by the
endpoint conditions

ux.0; t/ D ux.L; t/ D 0 (13)

(for all t). Alternatively, the rod could be insulated at one end and have a fixed
temperature at the other. This and other endpoint possibilities are discussed in the
Problems.

Superposition of Solutions
Note that the heat equation in (12a) is linear. That is, any linear combination
u D c1u1 C c2u2 of two solutions of (12a) is also a solution of (12a); this fol-
lows immediately from the linearity of partial differentiation. It is also true that if
u1 and u2 each satisfy the conditions in (12b), then so does any linear combina-
tion u D c1u1 C c2u2. The conditions in (12b) are therefore called homogeneous
boundary conditions (though a more descriptive term might be linear boundary con-
ditions). By contrast, the final boundary condition in (12c) is not homogeneous; it
is a nonhomogeneous boundary condition.

Our overall strategy for solving the boundary value problem in (12) will be
to find functions u1, u2, u3, : : : that satisfy both the partial differential equation in
(12a) and the homogeneous boundary conditions in (12b), and then attempt to com-
bine these functions by superposition, as if they were building blocks, in the hope
of obtaining a solution u D c1u1 C c2u2 C � � � that satisfies the nonhomogeneous
condition in (12c) as well. Example 1 illustrates this approach.

Example 1 It is easy to verify by direct substitution that each of the functions

u1.x; t/ D e�t sin x; u2.x; t/ D e�4t sin 2x; and u3.x; t/ D e�9t sin 3x

satisfies the equation ut D uxx . Use these functions to construct a solution of the boundary
value problem

@u

@t
D @2u

@x2
(0 < x < � , t > 0); (14a)

u.0; t/ D u.�; t/ D 0; (14b)

u.x; 0/ D 80 sin3 x D 60 sin x � 20 sin 3x: (14c)

Solution Any linear combination of the form

u.x; t/ D c1u1.x; t/C c2u2.x; t/C c3u3.x; t/

D c1e
�t sin x C c2e

�4t sin 2x C c3e
�9t sin 3x

satisfies both the differential equation in (14a) and the homogeneous conditions in (14b).
Because

u.x; 0/ D c1 sin x C c2 sin 2x C c3 sin 3x;
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we see that we can also satisfy the nonhomogeneous condition in (14c) simply by choosing
c1 D 60, c2 D 0, and c3 D �20. Thus a solution of the given boundary value problem is

u.x; t/ D 60e�t sin x � 20e�9t sin 3x:

The boundary value problem in Example 1 is exceptionally simple in that only
a finite number of homogeneous solutions are needed to satisfy by superposition the
nonhomogeneous boundary condition. It is more usual that an infinite sequence u1,
u2, u3, : : : of functions satisfying (12a) and (12b) is required. If so, we write the
infinite series

u.x; t/ D
1X

nD1

cnun.x; t/ (15)

and then attempt to determine the coefficients c1, c2, c3, : : : in order to satisfy (12c)
as well. The following principle summarizes the properties of this infinite series that
must be verified to ensure that we have a solution of the boundary value problem in
(12).

PRINCIPLE Superposition of Solutions

Suppose that each of the functions u1, u2, u3, : : : satisfies both the differential
equation in (12a) (for 0 < x < L and t > 0) and the homogeneous conditions
in (12b). Suppose also that the coefficients in Eq. (15) are chosen to meet the
following three criteria:

1. For 0 < x < L and t > 0, the function determined by the series in (15) is
continuous and termwise differentiable (once with respect to t and twice
with respect to x).

2.
1X

nD1

cnun.x; 0/ D f .x/ for 0 < x < L.

3. The function u.x; t/ determined by Eq. (15) interior to the strip 0 5 x 5

L and t = 0, and by the boundary conditions in (12b) and (12c) on its
boundary, is continuous.

Then u.x; t/ is a solution of the boundary value problem in (12).

In the method of separation of variables described next, we concentrate on
finding the solutions u1, u2, u3, : : : satisfying the homogeneous conditions and on
determining the coefficients so that the series in Eq. (15) satisfies the nonhomoge-
neous conditions upon substitution of t D 0. At this point we have only a formal
series solution of the boundary value problem—one that is subject to verification of
the continuity and differentiability conditions given in part (1) of the superposition
principle stated here. If the function f .x/ in (12c) is piecewise smooth, it can be
proved that a formal series solution always satisfies the restrictions and, moreover,
is the unique solution of the boundary value problem. For a proof, see the chapter
on boundary value problems in R. V. Churchill and J. W. Brown, Fourier Series and
Boundary Value Problems, 8th ed. (New York: McGraw-Hill, 2011).

Separation of Variables
This method of solving the boundary value problem in (12) for the heated rod was
introduced by Fourier in his study of heat cited in Section 9.1. We first search
for the building block functions u1, u2, u3, : : : that satisfy the differential equation
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ut D kuxx and the homogeneous conditions u.0; t/ D u.L; t/ D 0, with each of
these functions being of the special form

u.x; t/ D X.x/T .t/ (16)

in which the variables are “separated”—that is, each of the building-block functions
is a product of a function of position x (only) and a function of time t (only). Sub-
stitution of (16) in ut D kuxx yields XT 0 D kX 00T , where for brevity we write T 0
for T 0.t/ and X 00 for X 00.x/. Division of both sides by kXT then gives

X 00

X
D T 0

kT
: (17)

The left-hand side of Eq. (17) is a function of x alone, but the right-hand side is a
function of t alone. If t is held constant on the right-hand side, then the left-hand
side X 00=X must remain constant as x varies. Similarly, if x is held constant on
the left-hand side, then the right-hand side T 0=kT must remain constant as t varies.
Consequently, equality can hold only if each of these two expressions is the same
constant, which for convenience we denote by ��. Thus Eq. (17) becomes

X 00

X
D T 0

kT
D ��; (18)

which consists of the two equations

X 00.x/C �X.x/ D 0; (19)

T 0.t/C �kT .t/ D 0: (20)

It follows that the product function u.x; t/ D X.x/T .t/ satisfies the partial differen-
tial equation ut D kuxx if X.x/ and T .t/ separately satisfy the ordinary differential
equations in (19) and (20) for some (common) value of the constant �.

We focus first on X.x/. The homogeneous endpoint conditions are

u.x; 0/ D X.0/T .t/ D 0; u.L; t/ D X.L/T .t/ D 0: (21)

If T .t/ is to be a nontrivial function of t , then (21) can hold only ifX.0/DX.L/D 0.
Thus X.x/ must satisfy the endpoint value problem

X 00 C �X D 0;
X.0/ D 0; X.L/ D 0: (22)

This is actually an eigenvalue problem of the type we discussed in Section 3.8.
Indeed, we saw in Example 3 of that section that (22) has a nontrivial solution if
and only if � is one of the eigenvalues

�n D
n2�2

L2
; n D 1; 2; 3; : : : ; (23)

and that an eigenfunction associated with �n is

Xn.x/ D sin
n�x

L
; n D 1; 2; 3; : : : : (24)
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Recall that the reasoning behind (23) and (24) is as follows. If � D 0, then
(22) obviously implies that X.x/ � 0. If � D �˛2 < 0, then

X.x/ D A cosh˛x C B sinh˛x;

and then the conditions X.0/ D 0 D X.L/ imply that A D B D 0. Hence the only
possibility for a nontrivial eigenfunction is that � D ˛2 > 0. Then

X.x/ D A cos˛x C B sin˛x;

and the conditions X.0/ D 0 D X.L/ then imply that A D 0 and that ˛ D n�=L

for some positive integer n. (Whenever separation of variables leads to an unfa-
miliar eigenvalue problem, we generally must consider separately the cases � D 0,
� D �˛2 < 0, and � D ˛2 > 0.)

Now we turn our attention to Eq. (20), knowing that the constant � must be
one of the eigenvalues listed in (23). For the nth of these possibilities we write
Eq. (20) as

T 0
n C

n2�2k

L2
Tn D 0; (25)

in anticipation of a different solution Tn.t/ for each different positive integer n. A
nontrivial solution of this equation is

Tn.t/ D exp
��n2�2kt=L2

	
: (26)

We omit the arbitrary constant of integration because it will (in effect) be inserted
later.

To summarize our progress, we have discovered the two associated sequences
fXng11 and fTng11 of functions given in (24) and (26). Together they yield the
sequence of building-block product functions

un.x; t/ D Xn.x/Tn.t/ D exp
��n2�2kt=L2

	
sin

n�x

L
; (27)

n D 1; 2; 3; : : : : Each of these functions satisfies both the heat equation ut D kuxx

and the homogeneous conditions u.0; t/D u.L; t/D 0. Now we combine these func-
tions (superposition) to attempt to satisfy the nonhomogeneous condition u.x; 0/ D
f .x/ as well. We therefore form the infinite series

u.x; t/ D
1X

nD1

cnun.x; t/ D
1X

nD1

cn exp
��n2�2kt=L2

	
sin

n�x

L
: (28)

It remains only to determine the constant coefficients fcng11 so that

u.x; 0/ D
1X

nD1

cn sin
n�x

L
D f .x/ (29)

for 0 < x < L. But this will be the Fourier series of f .x/ on Œ0; L� provided that we
choose

cn D bn D
2

L

Z L

0

f .x/ sin
n�x

L
dx (30)

for each n D 1; 2; 3; : : : : Thus we have the following result.
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THEOREM 1 The Heated Rod with Zero Endpoint Temperatures

The boundary value problem in (12) for a heated rod with zero endpoint temper-
atures has the formal series solution

u.x; t/ D
1X

nD1

bn exp
��n2�2kt=L2

	
sin

n�x

L
; (31)

where the fbng are the Fourier sine coefficients in Eq. (30) of the rod’s initial
temperature function f .x/ D u.x; 0/.

Remark By taking the limit in (31) termwise as t!1, we get u.x;1/� 0, as we expect
because the two ends of the rod are held at temperature zero.

The series solution in Eq. (31) usually converges quite rapidly, unless t is very
small, because of the presence of the negative exponential factors. Therefore it is
practical for numerical computations. For use in problems and examples, values of
the thermal diffusivity constant k for some common materials are listed in the table
in Fig. 9.5.3.

Material k (cm2=s)

Silver

Copper

Aluminum

Iron

Concrete

1.70

1.15

0.85

0.15

0.005

FIGURE 9.5.3. Some thermal
diffusivity constants.

Example 2 Suppose that a rod of length L D 50 cm is immersed in steam until its temperature is u0 D
100ıC throughout. At time t D 0, its lateral surface is insulated and its two ends are imbedded
in ice at 0ıC. Calculate the rod’s temperature at its midpoint after half an hour if it is made
of (a) iron; (b) concrete.

Solution The boundary value problem for this rod’s temperature function u.x; t/ is

ut D kuxx ;

u.0; t/ D u.L; t/ D 0I
u.x; 0/ D u0:

Recall the square-wave series

f .t/ D 4

�

X
n odd

1

n
sin

n�t

L
D
(
C1 if 0 < t < L,

�1 if �L < t < 0

that we derived in Example 1 of Section 9.2. It follows that the Fourier sine series of f .x/ �
u0 is

f .x/ D 4u0

�

X
n odd

1

n
sin

n�x

L

for 0 < x < L. Hence the Fourier coefficients in Eq. (31) are given by

bn D

8̂<̂
:
4u0

n�
for n odd;

0 for n even;

and therefore the rod’s temperature function is given by

u.x; t/ D 4u0

�

X
n odd

1

n
exp

 
�n

2�2kt

L2

!
sin

n�x

L
:

Figure 9.5.4 shows a graph u D u.x; t/ with u0 D 100 and L D 50. As t increases, we see
the maximum temperature of the rod (evidently at its midpoint) steadily decreasing. The
temperature at the midpoint x D 25 after t D 1800 seconds is

u.25; 1800/ D 400

�

X
n odd

.�1/nC1

n
exp

 
�18n

2�2k

25

!
:
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(a) With the value k D 0:15 that was used in Fig. 9.5.4, this series gives

u.25; 1800/ � 43:8519 � 0:0029C 0:0000 � � � � � 43:85ıC:

This value u.25; 1800/� 43:85 is the maximum height (at its midpoint x D 25) of the vertical
sectional curve u D u.x; 1800/ that we see at one “end” of the temperature surface shown in
Fig. 9.5.4.
(b) With k D 0:005 for concrete, it gives

u.25; 1800/ � 122:8795 � 30:8257C 10:4754 � 3:1894
C 0:7958 � 0:1572C 0:0242 � 0:0029
C 0:0003 � 0:0000C � � � � 100:00ıC:

Thus concrete is a very effective insulator.

30
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0
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0
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m

p 
u

50

FIGURE 9.5.4. The graph of the temperature function u.x; t/ in Example 2.

Insulated Endpoint Conditions
We now consider the boundary value problem

@u

@t
D k @

2u

@x2
(0 < x < L, t > 0); (32a)

ux.0; t/ D ux.L; t/ D 0; (32b)

u.x; 0/ D f .x/; (32c)

which corresponds to a rod of length L with initial temperature f .x/, but with its
two ends insulated. The separation of variables u.x; t/ D X.x/T .t/ proceeds as in
Eqs. (16) through (20) without change. But the homogeneous endpoint conditions in
(32b) yield X 0.0/D X 0.L/D 0. Thus X.x/must satisfy the endpoint value problem

X 00 C �X D 0I
X 0.0/ D 0; X 0.L/ D 0: (33)

We must again consider separately the possibilities � D 0, � D �˛2 < 0, and � D
˛2 > 0 for the eigenvalues.



606 Chapter 9 Fourier Series Methods and Partial Differential Equations

With � D 0, the general solution of X 00 D 0 is X.x/ D Ax C B , so X 0.x/ D
A. Hence the endpoint conditions in (33) require A D 0, but B may be nonzero.
Because a constant multiple of an eigenfunction is an eigenfunction, we can choose
any constant value we wish for B . Thus, with B D 1, we have the zero eigenvalue
and associated eigenfunction

�0 D 0; X0.x/ � 1: (34)

With � D 0 in Eq. (20), we get T 0.t/ D 0, so we may take T0.t/ � 1 as well.
With � D �˛2 < 0, the general solution of the equation X 00 � ˛2X D 0 is

X.x/ D A cosh˛x C B sinh˛x;

and we readily verify that X 0.0/ D X 0.L/ D 0 only if A D B D 0. Thus there are no
negative eigenvalues.

With � D ˛2 > 0, the general solution of X 00 C ˛2X D 0 is

X.x/ D A cos˛x C B sin˛x;

X 0.x/ D �A˛ sin˛x C B˛ cos˛x:

Hence X 0.0/ D 0 implies that B D 0, and then

X 0.L/ D �A˛ sin˛L D 0

requires that ˛L be an integral multiple of � , because ˛ ¤ 0 and A ¤ 0 if we are
to have a nontrivial solution. Thus we have the infinite sequence of eigenvalues and
associated eigenfunctions

�n D ˛2
n D

n2�2

L2
; Xn.x/ D cos

n�x

L
(35)

for n D 1; 2; 3; : : : : Just as before, the solution of Eq. (20) with � D n2�2=L2 is
Tn.t/ D exp

��n2�2kt=L2
	
.

Therefore, the product functions satisfying the homogeneous conditions are

u0.x; t/ � 1I un.x; t/ D exp
�
n2�2kt=L2

	
cos

n�x

L
(36)

for n D 1; 2; 3; : : : : Hence the trial solution is

u.x; t/ D c0 C
1X

nD1

cn exp
��n2�2kt=L2

	
cos

n�x

L
: (37)

To satisfy the nonhomogeneous condition u.x; 0/ D f .x/, we obviously want
Eq. (37) to reduce when t D 0 to the Fourier cosine series

f .x/ D a0

2
C

1X
nD1

an cos
n�x

L
; (38)

where

an D
2

L

Z L

0

f .x/ cos
n�x

L
dx (39)

for n D 0; 1; 2; : : : : Thus we have the following result.
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THEOREM 2 Heated Rod with Insulated Ends

The boundary value problem in (32) for a heated rod with insulated ends has the
formal series solution

u.x; t/ D a0

2
C

1X
nD1

an exp
��n2�2kt=L2

	
cos

n�x

L
(40)

where the fang are the Fourier cosine coefficients in (39) of the rod’s initial tem-
perature function f .x/ D u.x; 0/.

Remark Note that

lim
t!1u.x; t/ D a0

2
D 1

L

Z L

0
f .x/ dx; (41)

the average value of the initial temperature. With both the lateral surface and the ends of the
rod insulated, its original heat content ultimately distributes itself uniformly throughout the
rod.

Example 3 We consider the same 50-cm rod as in Example 2, but now suppose that its initial temperature
is given by the “triangular function” graphed in Fig. 9.5.5. At time t D 0, the rod’s lateral
surface and its two ends are insulated. Then its temperature function u.x; t/ satisfies the

50250
x

0

50

100
f (25) = 100

f(
x)

 =
 u

(x
, 0

)

FIGURE 9.5.5. The graph of the
initial temperature function
u.x; 0/ D f .x/ in Example 3.

boundary value problem

ut D kuxx ;

ux.0; t/ D ux.50; t/ D 0;
u.x; 0/ D f .x/:

Now substitution of L D 25 in the even triangular-wave series of Eq. (15) in Section 9.3
(where the length of the interval is denoted by 2L), followed by multiplication by 4, yields
the Fourier cosine series

f .x/ D 50 � 400
�2

X
n odd

1

n2
cos

n�x

25

(for 0 < x < 50) of our initial temperature function. But in order to match terms with the
series in (40) with L D 50, we need to exhibit terms of the form cos.n�x=50/ rather than
terms of the form cos.n�x=25/. Hence we replace n with n=2 throughout and thereby rewrite
the series in the form

f .x/ D 50 � 1600
�2

X
nD2;6;10;:::

1

n2
cos

n�x

50
I

note that the summation runs through all positive integers of the form 4m� 2. Then Theorem
2 implies that the rod’s temperature function is given by

u.x; t/ D 50 � 1600
n2

X
nD2;6;10;:::

1

n2
exp

 
�n

2�2kt

2500

!
cos

n�x

50
:

Figure 9.5.6 shows the graph uDu.x; t/ for the first 1200 seconds, and we see the temperature
in the rod beginning with a sharp maximum at the midpoint x D 25, but rapidly “averaging
out” as the heat in the rod is redistributed with increasing t .

Finally, we point out that, although we set up the boundary value problems in
(12) and (32) for a rod of length L, they also model the temperature u.x; t/ within
the infinite slab 0 5 x 5 L in three-dimensional space if its initial temperature f .x/
depends only on x and its two faces x D 0 and x D L are either both insulated or
both held at temperature zero.
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FIGURE 9.5.6. The graph of the temperature function u.x; t/ in Example 3.

9.5 Problems
Solve the boundary value problems in Problems 1 through 12.

1. ut D 3uxx , 0 < x < � , t > 0; u.0; t/ D u.�; t/ D 0,
u.x; 0/ D 4 sin 2x

2. ut D 10uxx , 0 < x < 5, t > 0; ux.0; t/ D ux.5; t/ D 0,
u.x; 0/ D 7

3. ut D 2uxx , 0 < x < 1, t > 0; u.0; t/ D u.1; t/ D 0,
u.x; 0/ D 5 sin�x � 1

5 sin 3�x
4. ut D uxx , 0 < x < � , t > 0; u.0; t/ D u.�; t/ D 0,
u.x; 0/ D 4 sin 4x cos 2x

5. ut D 2uxx , 0 < x < 3, t > 0; ux.0; t/ D ux.3; t/ D 0,
u.x; 0/ D 4 cos 2

3�x � 2 cos 4
3�x

6. 2ut D uxx , 0 < x < 1, t > 0; u.0; t/ D u.1; t/ D 0,
u.x; 0/ D 4 sin�x cos3 �x

7. 3ut D uxx , 0 < x < 2, t > 0; ux.0; t/ D ux.2; t/ D 0,
u.x; 0/ D cos2 2�x

8. ut D uxx , 0 < x < 2, t > 0; ux.0; t/ D ux.2; t/ D 0,
u.x; 0/ D 10 cos�x cos 3�x

9. 10ut D uxx , 0 < x < 5, t > 0; u.0; t/ D u.5; t/ D 0,
u.x; 0/ D 25

10. 5ut D uxx , 0 < x < 10, t > 0; u.0; t/ D u.10; t/ D 0,
u.x; 0/ D 4x

11. 5ut D uxx , 0 < x < 10, t > 0; ux.0; t/ D ux.10; t/ D 0,
u.x; 0/ D 4x

12. ut D uxx , 0 < x < 100, t > 0; u.0; t/ D u.100; t/ D 0,
u.x; 0/ D x.100 � x/

13. Suppose that a rod 40 cm long with insulated lateral sur-
face is heated to a uniform temperature of 100ıC, and that
at time t D 0 its two ends are embedded in ice at 0ıC. (a)
Find the formal series solution for the temperature u.x; t/
of the rod. (b) In the case the rod is made of copper,
show that after 5 min the temperature at its midpoint is
about 15ıC. (c) In the case the rod is made of concrete,

use the first term of the series to find the time required for
its midpoint to cool to 15ıC.

14. A copper rod 50 cm long with insulated lateral surface has
initial temperature u.x; 0/ D 2x, and at time t D 0 its two
ends are insulated. (a) Find u.x; t/. (b) What will its
temperature be at x D 10 after 1 min? (c) After approxi-
mately how long will its temperature at x D 10 be 45ıC?

15. The two faces of the slab 0 5 x 5 L are kept at temper-
ature zero, and the initial temperature of the slab is given
by u.x; 0/ D A (a constant) for 0 < x < L=2, u.x; 0/ D 0
for L=2 < x < L. Derive the formal series solution

u.x; t/ D
4A

�

1X
nD1

sin2.n�=4/

n
exp

�
�n2�2kt=L2

�
sin

n�x

L
:

16. Two iron slabs are each 25 cm thick. Initially one is at tem-
perature 100ıC throughout and the other is at temperature
0ıC. At time t D 0 they are placed face to face, and their
outer faces are kept at 0ıC. (a) Use the result of Prob-
lem 15 to verify that after a half hour the temperature of
their common face is approximately 22ıC. (b) Suppose
that the two slabs are instead made of concrete. How long
will it be until their common face reaches a temperature
of 22ıC?

17. (Steady-state and transient temperatures) Let a laterally
insulated rod with initial temperature u.x; 0/ D f .x/ have
fixed endpoint temperatures u.0; t/ D A and u.L; t/ D B .
(a) It is observed empirically that as t ! C1, u.x; t/
approaches a steady-state temperature uss.x/ that corre-
sponds to setting ut D 0 in the boundary value problem.
Thus uss.x/ is the solution of the endpoint value problem

@2uss

@x2
D 0I uss.0/ D A; uss.L/ D B:
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Find uss.x/. (b) The transient temperature utr.x; t/ is
defined to be

utr.x; t/ D u.x; t/ � uss.x/:

Show that utr satisfies the boundary value problem

@utr

@t
D k @

2utr

@x2
I

utr.0; t/ D utr.L; t/ D 0;
utr.x; 0/ D g.x/ D f .x/ � uss.x/:

(c) Conclude from the formulas in (30) and (31) that

u.x; t/ D uss.x/C utr.x; t/

D uss.x/C
1X

nD1

cn exp
�
�n2�2kt=L2

�
sin

n�x

L
;

where

cn D
2

L

Z L

0
Œf .x/ � uss.x/� sin

n�x

L
dx:

18. Suppose that a laterally insulated rod with length L D
50 and thermal diffusivity k D 1 has initial tempera-
ture u.x; 0/ D 0 and endpoint temperatures u.0; t/ D 0,
u.50; t/ D 100. Apply the result of Problem 17 to show
that

u.x; t/ D

2x � 200
�

1X
nD1

.�1/nC1

n
exp

�
�n2�2kt=2500

�
sin

n�x

50
:

19. Suppose that heat is generated within a laterally insulated
rod at the rate of q.x; t/ calories per second per cubic cen-
timeter. Extend the derivation of the heat equation in this
section to derive the equation

@u

@t
D k @

2u

@x2
C q.x; t/

cı
:

20. Suppose that current flowing through a laterally insulated
rod generates heat at a constant rate; then Problem 19
yields the equation

@u

@t
D k @

2u

@x2
C C:

Assume the boundary conditions u.0; t/D u.L; t/D 0 and
u.x; 0/ D f .x/. (a) Find the steady-state temperature
uss.x/ determined by

0 D k d
2uss

dx2
C C; uss.0/ D uss.L/ D 0:

(b) Show that the transient temperature

utr.x; t/ D u.x; t/ � uss.x/

satisfies the boundary value problem

@utr

@t
D k @

2utr

@x2
I

utr.0; t/ D utr.L; t/ D 0;
utr.x; 0/ D g.x/ D f .x/ � uss.x/:

Hence conclude from the formulas in (34) and (35) that

u.x; t/ D uss.x/C
1X

nD1

cn exp
�
�n2�2kt=L2

�
sin

n�x

L
;

where

cn D
2

L

Z L

0
Œf .x/ � uss.x/� sin

n�x

L
dx:

21. The answer to part (a) of Problem 20 is uss.x/ D Cx.L �
x/=2k. If f .x/� 0 in Problem 20, so the rod being heated
is initially at temperature zero, deduce from the result of
part (b) that

u.x; t/ D Cx

2k
.L � x/

� 4CL
2

k�3

X
n odd

1

n3
exp

�
�n2�2kt=L2

�
sin

n�x

L
:

22. Consider the temperature u.x; t/ in a bare slender wire
with u.0; t/ D u.L; t/ D 0 and u.x; 0/ D f .x/. Instead
of being laterally insulated, the wire loses heat to a sur-
rounding medium (at fixed temperature zero) at a rate pro-
portional to u.x; t/. (a) Conclude from Problem 19 that

@u

@t
D k @

2u

@x2
� hu;

where h is a positive constant. (b) Then substitute

u.x; t/ D e�htv.x; t/

to show that v.x; t/ satisfies the boundary value problem
having the solution given in (30) and (31). Hence con-
clude that

u.x; t/ D e�ht
1X

nD1

cn exp
�
�n2�2kt=L2

�
sin

n�x

L
;

where

cn D
2

L

Z L

0
f .x/ sin

n�x

L
dx:

23. Consider a slab with thermal conductivity K occupying
the region 0 5 x 5 L. Suppose that, in accord with New-
ton’s law of cooling, each face of the slab loses heat to
the surrounding medium (at temperature zero) at the rate
of Hu calories per second per square centimeter. Deduce
from Eq. (2) that the temperature u.x; t/ in the slab satis-
fies the boundary conditions

hu.0; t/ � ux.0; t/ D 0 D hu.L; t/C ux.L; t/

where h D H=K.



610 Chapter 9 Fourier Series Methods and Partial Differential Equations

24. Suppose that a laterally insulated rod with length L, ther-
mal diffusivity k, and initial temperature u.x; 0/ D f .x/

is insulated at the end x D L and held at temperature zero
at x D 0. (a) Separate the variables to show that the
eigenfunctions are

Xn.x/ D sin
n�x

2L

for n odd. (b) Use the odd half-multiple sine series of

Problem 21 in Section 9.3 to derive the solution

u.x; t/ D
X

n odd

cn exp
�
�n2�2kt=4L2

�
sin

n�x

2L
;

where

cn D
2

L

Z L

0
f .x/ sin

n�x

2L
dx:

9.5 Application Heated-Rod Investigations
First let’s investigate numerically the temperature function

u.x; t/ D 4u0

�

X
n odd

1

n
exp

�
�n

2�2kt

L2

�
sin

n�x

L

of the heated rod of Example 2, having length L D 50 cm, uniform initial tem-
perature u0 D 100ıC, and thermal diffusivity k D 0:15 (for iron). The following
MATLAB function sums the first N nonzero terms of this series.

function u = u(x,t)
k = 0.15; % diffusivity of iron
L = 50; % length of rod
u0 = 100; % initial temperature
S = 0; % initial sum
N = 50; % number of terms
for n = 1:2:2�N+1;

S = S +(1/n)�exp(--n^2�pi^2�k�t/L^2).�sin(n�pi�x/L);
end
u = 4�u0�S/pi;

This function was used to plot Figs. 9.5.7 through 9.5.10. The corresponding Maple
and Mathematica functions are provided in the applications manual that accompa-
nies this text. As a practical matter, N D 50 terms suffice to give the value u.x; t/
after 10 seconds (or longer) with two decimal places of accuracy throughout the
interval 0 5 x 5 50. (How might you check this assertion?)

The graph of u.x; 30/ in Fig. 9.5.7 shows that after 30 seconds the rod has
cooled appreciably only near its two ends and still has temperature near 100ıC for
10 5 x 5 40. Figure 9.5.8 shows the graph of u.x; 1800/ after 30 minutes and
illustrates the fact (?) that the rod’s maximum temperature is always at its midpoint,
where x D 25.

The graph of u.25; t/ for a two-hour period shown in Fig. 9.5.9 indicates that
the midpoint temperature takes something more than 1500 seconds (25 minutes) to
fall to 50ı. Figure 9.5.10 shows a magnification of the graph near its intersection
point with the horizontal line u D 50 and indicates that this actually takes about
1578 seconds (26 min 18 s).

For your very own rod with constant initial temperature f .x/ D T0 D 100 to
investigate in this manner, let

L D 100C 10p and k D 1C .0:1/q;

where p is the largest and q is the smallest nonzero digit of your student ID number.
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FIGURE 9.5.7. The graph of
u.x; 30/ giving rod temperatures after
30 seconds.
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FIGURE 9.5.8. The graph of
u.x; 1800/ giving rod temperature
after 30 minutes.
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FIGURE 9.5.9. The graph of
u.25; t/ giving the midpoint
temperatures of the rod.
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FIGURE 9.5.10. Magnification of the
graph of u.25; t/ giving the midpoint
temperatures of the rod.

1. If the two ends of the rod are both held at temperature zero, then determine
how long (to the nearest second) it will take for the rod’s midpoint temperature
to fall to 50ı.

2. If the end xDL of the rod is insulated, but the end xD 0 is held at temperature
zero, then the temperature function u.x; t/ is given by the series in Problem 24
of this section. Determine how long it will be until the maximum temperature
anywhere in the rod is 50ı.

9.6 Vibrating Strings and the One-Dimensional Wave Equation
Although Fourier systematized the method of separation of variables, trigonometric
series solutions of partial differential equations had appeared earlier in 18th-century
investigations of vibrating strings by Euler, d’Alembert, and Daniel Bernoulli. To
derive the partial differential equation that models the vibrations of a string, we
begin with a flexible uniform string with linear density � (in grams per centimeter
or slugs per foot) stretched under a tension of T (dynes or pounds) between the
fixed points x D 0 and x D L. Suppose that, as the string vibrates in the xy-plane
around its equilibrium position, each point moves parallel to the y-axis, so we can
denote by y.x; t/ the displacement at time t of the point x of the string. Then, for
any fixed value of t , the shape of the string at time t is the curve y D y.x; t/. We
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assume also that the deflection of the string remains so slight that the approximation
sin � � tan � D yx.x; t/ is quite accurate (Fig. 9.6.1). Finally, we assume that in

F (x ) x

x

y

x x

T

T

θ

 + Δ

x + Δx

θ θ

Δ

Δ

Δ

FIGURE 9.6.1. Forces on a short
segment of the vibrating string.

addition to the internal forces of tension acting tangentially to the string, it is acted
on by an external vertical force with linear density F.x/ in such units as dynes per
centimeter or pounds per foot.

We want to apply Newton’s second law F Dma to the short segment of string
of mass ��x corresponding to the interval Œx; x C �x�, with a being the vertical
acceleration yt t .x; t/ of its midpoint. Reading the vertical components of the force
shown in Fig. 9.6.1, we get

.��x/ � yt t .x; t/ � T sin.� C��/ � T sin � C F.x/�x
� Tyx.x C�x; t/ � Tyx.x; t/C F.x/�x;

so division by �x yields

�yt t .x; t/ � T
yx.x C�x; t/ � yx.x; t/

�x
C F.x/:

We now take limits in this equation as �x ! 0, so x ! x (because x lies in the
interval Œx; x C�x� with fixed left endpoint x). Then the two sides of the equation
approach the two sides of the partial differential equation

�
@2y

@t2
D T @

2y

@x2
C F.x/ (1)

that describes the vertical vibrations of a flexible string with constant linear density
� and tension T under the influence of an external vertical force with linear density
F.x/.

If we set

a2 D T

�
(2)

and set F.x/ � 0 in Eq. (1), we get the one-dimensional wave equation

@2y

@t2
D a2 @

2y

@x2
(3)

that models the free vibrations of a uniform flexible string.
The fixed ends of the string at the points x D 0 and x D L on the x-axis

correspond to the endpoint conditions

y.0; t/ D y.L; t/ D 0: (4)

Our intuition about the physics of the situation suggests that the motion of the string
will be determined if we specify both its initial position function

y.x; 0/ D f .x/ .0 < x < L/ (5)

and its initial velocity function

yt .x; 0/ D g.x/ .0 < x < L/: (6)
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On combining Eqs. (3) through (6), we get the boundary value problem

@2y

@t2
D a2

@2y

@x2
.0 < x < L; t > 0/I (7a)

y.0; t/ D y.L; t/ D 0; (7b)

y.x; 0/ D f .x/ .0 < x < L/; ((7c))

yt .x; 0/ D g.x/ .0 < x < L/ (7d)

for the displacement function y.x; t/ of a freely vibrating string with fixed ends,
initial position f .x/, and initial velocity g.x/.

Solution by Separation of Variables
Like the heat equation, the wave equation in (7a) is linear: Any linear combination
of two solutions is again a solution. Another similarity is that the endpoint condi-
tions in (7b) are homogeneous. Unfortunately, the conditions in both (7c) and (7d)
are nonhomogeneous; we must deal with two nonhomogeneous boundary condi-
tions.

As we described in Section 9.5, the method of separation of variables involves
superposition of solutions satisfying the homogeneous conditions to obtain a solu-
tion that also satisfies a single nonhomogeneous boundary condition. To adapt the
technique to the situation at hand, we adopt the “divide and conquer” strategy of
splitting the problem in (7) into the following two separate boundary value prob-
lems, each involving only a single nonhomogeneous boundary condition:

Problem A Problem B

yt t D a2yxx ;

y.0; t/ D y.L; t/ D 0,
y.x; 0/ D f .x/,
yt .x; 0/ D 0.

yt t D a2yxx ;

y.0; t/ D y.L; t/ D 0;
y.x; 0/ D 0,
yt .x; 0/ D g.x/.

If we can separately find a solution yA.x; t/ of Problem A and a solution yB.x; t/

of Problem B, then their sum y.x; t/ D yA.x; t/C yB.x; t/ will be a solution of the
original problem in (7), because

y.x; 0/ D yA.x; 0/C yB.x; 0/ D f .x/C 0 D f .x/

and
yt .x; 0/ D fyAgt .x; 0/C fyBgt .x; 0/ D 0C g.x/ D g.x/:

So let us attack Problem A with the method of separation of variables. Substi-
tution of

y.x; t/ D X.x/T .t/ (8)

in yt t D a2yxx yields XT 00 D a2X 00T , where (as before) we write X 00 for X 00.x/ and
T 00 for T 00.t/. Therefore,

X 00

X
D T 00

a2T
: (9)
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The functions X 00=X of x and T 00=a2T of t can agree for all x and t only if each is
equal to the same constant. Consequently, we may conclude that

X 00

X
D T 00

a2T
D �� (10)

for some constant �; the minus sign is inserted here merely to facilitate recognition
of the eigenvalue problem in (13). Thus our partial differential equation separates
into the two ordinary differential equations

X 00 C �X D 0; (11)

T 00 C �a2T D 0: (12)

The endpoint conditions

y.0; t/ D X.0/T .t/ D 0; y.L; t/ D X.L/T .t/ D 0

require that X.0/DX.L/D 0 if T .t/ is nontrivial. Hence X.x/must satisfy the now
familiar eigenvalue problem

X 00 C �X D 0; X.0/ D X.L/ D 0: (13)

As in Eqs. (23) and (24) of Section 9.5, the eigenvalues of this problem are the
numbers

�n D
n2�2

L2
; n D 1; 2; 3; : : : ; (14)

and the eigenfunction associated with �n is

Xn.x/ D sin
n�x

L
; n D 1; 2; 3; : : : : (15)

Now we turn to Eq. (12). The homogeneous initial condition

yt .x; 0/ D X.x/T 0.0/ D 0

implies that T 0.0/ D 0. Therefore, the solution Tn.t/ associated with the eigenvalue
�n D n2�2=L2 must satisfy the conditions

T 00
n C

n2�2a2

L2
Tn D 0; T 0

n.0/ D 0: (16)

The general solution of the differential equation in (16) is

Tn.t/ D An cos
n�at

L
C Bn sin

n�at

L
: (17)

Its derivative

T 0
n.t/ D

n�a

L

�
�An sin

n�at

L
C Bn cos

n�at

L

�
satisfies the condition T 0

n.0/ D 0 if Bn D 0. Thus a nontrivial solution of (16) is

Tn.t/ D cos
n�at

L
: (18)
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We combine the results in Eqs. (15) and (18) to obtain the infinite sequence of
product functions

yn.x; t/ D Xn.x/Tn.t/ D cos
n�at

L
sin

n�x

L
; (19)

n D 1; 2; 3; : : : : Each of these building block functions satisfies both the wave equa-
tion yt t D a2yxx and the homogeneous boundary conditions in Problem A. By
superposition we get the infinite series

yn.x; t/ D
1X

nD1

AnXn.x/Tn.t/ D
1X

nD1

An cos
n�at

L
sin

n�x

L
: (20)

It remains only to choose the coefficients fAng to satisfy the nonhomogeneous
boundary condition

y.x; 0/ D
1X

nD1

An sin
n�x

L
D f .x/ (21)

for 0 < x < L. But this will be the Fourier sine series of f .x/ on Œ0; L� provided
that we choose

An D
2

L

Z L

0

f .x/ sin
n�x

L
dx: (22)

Thus we see finally that a formal series solution of Problem A is

yA.x; t/ D
1X

nD1

An cos
n�at

L
sin

n�x

L
; (23)

with the coefficients fAng11 computed using Eq. (22). Note that the series in
(23) is obtained from the Fourier sine series of f .x/ simply by inserting the fac-
tor cos.n�at=L/ in the nth term. Note also that this term has (circular) frequency
!n D n�a=L.

Example 1 It follows immediately that the solution of the boundary value problem

@2y

@t2
D 4@

2y

@x2
(0 < x < � , t > 0);

y.0; t/ D y.�; t/ D 0;
y.x; 0/ D 1

10 sin3 x D 3
40 sin x � 1

40 sin 3x;

yt .x; 0/ D 0;

for which L D � and a D 2, is

y.x; t/ D 3
40 cos 2t sin x � 1

40 cos 6t sin 3x:

The reason is that we are given explicitly the Fourier sine series of f .x/ with A1 D 3
40 ,

A3 D � 1
40 , and An D 0 otherwise.
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Example 2 A plucked string Figure 9.6.2 shows the initial position function f .x/ for a stretched string
(of length L) that is set in motion by moving its midpoint x D L=2 aside the distance 1

2bL

and then releasing it from rest at time t D 0. The corresponding boundary value problem is

x

y

y = f (x)

L

bL

L
2

1
2

FIGURE 9.6.2. The initial position
of the plucked string of Example 2.

yt t D a2yxx (0 < x < L, t > 0);

y.0; t/ D y.L; t/ D 0;
y.x; 0/ D f .x/;
yt .x; 0/ D 0;

where f .x/ D bx for 0 5 x 5 L=2 and f .x/ D b.L � x/ for L=2 5 x 5 L. Find y.x; t/.
Solution The nth Fourier sine coefficient of f .x/ is

An D
2

L

Z L

0
f .x/ sin

n�x

L
dx

D 2

L

Z L=2

0
bx sin

n�x

L
dx C 2

L

Z L

L=2
b.L � x/ sin

n�x

L
dxI

it follows that

An D
4bL

n2�2
sin

n�

2
:

Hence Eq. (23) yields the formal series solution

y.x; t/ D 4bL

�2

1X
nD1

1

n2
sin

n�

2
cos

n�at

L
sin

n�x

L

D 4bL

�2

�
cos

�at

L
sin

�x

L
� 1

32
cos

3�at

L
sin

3�x

L
C � � �

�
: (24)

Music
Numerous familiar musical instruments employ vibrating strings to generate the
sounds they produce. When a string vibrates with a given frequency, vibrations at
this frequency are transmitted through the air—in the form of periodic variations in
air density called sound waves—to the ear of the listener. For example, middle C
is a tone with a frequency of approximately 256 Hz. When several tones are heard
simultaneously, the combination is perceived as harmonious if the ratios of their
frequencies are nearly ratios of small whole numbers; otherwise many perceive the
combinations as dissonant.

The series in Eq. (23) represents the motion of a string as a superposition of
infinitely many vibrations with different frequencies. The nth term

An cos
n�at

L
sin

n�x

L

represents a vibration with frequency

�n D
!n

2�
D n�a=L

2�
D n

2L

s
T

�
(Hz): (25)

The lowest of these frequencies,

�1 D
1

2L

s
T

�
(Hz); (26)
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is called the fundamental frequency, and it is ordinarily predominant in the sound
we hear. The frequency �n D n�1 of the nth overtone or harmonic is an integral
multiple of �1, and this is why the sound of a single vibrating string is harmonious
rather than dissonant.

Note in Eq. (26) that the fundamental frequency �1 is proportional to
p
T and

inversely proportional to L and to
p
�. Thus we can double this frequency—and

hence get a fundamental tone one octave higher—either by halving the length L
or by quadrupling the tension T . The initial conditions do not affect �1; instead,
they determine the coefficients in (23) and hence the extent to which the higher
harmonics contribute to the sound produced. Therefore the initial conditions affect
the timbre, or overall frequency mixture, rather than the fundamental frequency.
(Technically this is true only for relatively small displacements of the string; if you
strike a piano key rather forcefully you can detect a slight and brief initial deviation
from the usual frequency of the note.)

According to one (rather simplistic) theory of hearing, the loudness of the
sound produced by a vibrating string is proportional to its total (kinetic plus poten-
tial) energy, which is given by

E D 1

2

Z L

0

"
�

�
@y

@t

�2

C T
�
@y

@x

�2
#
dx: (27)

In Problem 17 we ask you to show that substitution of the series in (23) in the
formula in (27) yields

E D �2T

4L

1X
nD1

n2A2
n: (28)

The ratio of the nth term n2A2
n to the sum

P
n2A2

n is then the portion of the whole
sound attributable to the nth harmonic.

We illustrate this theory with the series in (24), which describes the motion of
the plucked string of Example 2. Note that the even harmonics are missing, and that
An D 4bL=.�2n2/ for n odd. Hence Eq. (28) gives

E D �2T

4L

X
n odd

n2 16b
2L2

�4n4
D 4b2LT

�2

X
n odd

1

n2
;

so the proportion of the sound associated with the nth harmonic (for n odd) is

1=n2X
n odd

1=n2
D 1=n2

�2=8
D 8

�2n2
:

Substituting n D 1 and n D 3, we find that 81:06% of the sound of the string of
Example 2 is associated with the fundamental tone and 9:01% with the harmonic
corresponding to n D 3.

The d’Alembert Solution
In contrast with series solutions of the heat equation, formal series solutions of the
wave equation ordinarily do not possess sufficient termwise differentiability to per-
mit verification of the solution by application of a superposition theorem analogous
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to the one stated in Section 9.5. For instance, termwise differentiation of the series
in (24) would yield the series

@2y

@x2
D �4b

L

1X
nD1

sin
n�

2
cos

n�at

L
sin

n�x

L
;

which generally fails to converge, because the “convergence factor” 1=n2 has disap-
peared after the second differentiation.

There is, however, an alternative approach that both verifies the solution in
(23) and yields valuable additional information about it. If we apply the trigono-
metric identity

2 sinA cosB D sin.AC B/C sin.A � B/
with A D n�x=L and B D n�at=L, then (23) gives

y.x; t/ D
1X

nD1

An sin
n�x

L
cos

n�at

L

D 1

2

1X
nD1

An sin
n�

L
.x C at/C 1

2

1X
nD1

An sin
n�

L
.x � at/: (29)

But by definition of the coefficients,

1X
nD1

An sin
n�x

L
D F.x/

for all x, where F.x/ is the odd extension of period 2L of the initial position function
f .x/. Hence Eq. (29) means that

y.x; t/ D 1
2
ŒF .x C at/C F.x � at/� : (30)

Therefore, the series in (23) converges to the expression on the right-hand side in
(30), which is known as the d’Alembert form of the solution of Problem A for the
vibrating string. Moreover, using the chain rule, it is easy to verify (Problems 13
and 14) that the function y.x; t/ defined in (30) does, indeed, satisfy the equation
yt t D a2yxx (under the assumption that F is twice differentiable), as well as the
boundary conditions y.0; t/ D y.L; t/ D 0 and y.x; 0/ D f .x/.

For any function F.x/, the functions F.x C at/ and F.x � at/ represent
“waves” moving to the left and right, respectively, along the x-axis with speed a.
This fact is illustrated in Fig. 9.6.3, which shows the graphs of these two functions
for successive values of t , in a typical case where the initial position function F.x/
is a pulse function centered at the midpoint x D �=2 of a string of length L D �

with a D 1 (so the fundamental period of vibration is 2�). Thus the d’Alembert so-
lution in (30) expresses y.x; t/ as a superposition of two waves moving in opposite
directions with speed a. This is why the equation yt t D a2yxx is called the wave
equation.

Example 3 A vibrating string of length L D � with initial position given by

f .x/ D 2 sin2 x D 1 � cos 2x
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FIGURE 9.6.3. The pulse F .x/ produces two waves—one moving to the left, one to
the right.

is released from rest at time t D 0. To apply the d’Alembert formula in Eq. (30), we find the
odd extension F.x/ of period 2L D 2� of the initial position f .x/. Because f .�x/ D f .x/

for all x, Eq. (10) of Section 9.3 gives

F.x/ D
(
1 � cos 2x if 0 < x < �

cos 2x � 1 if �� < x < 0

with F.x C 2�/ D F.x/ for all x. If we “freeze” the time at t D �
4 and take a D 1 (so that

the period of oscillation of the string is 2�), then Eq. (30) leads to

y
�
x;
�

4

�
D 1

2

h
F
�
x C �

4

�
C F

�
x � �

4

�i
D

8̂<̂
:

sin 2x if 0 < x < �
4

1 if �
4 < x < 3�

4

� sin 2x if 3�
4 < x < �

:

(In Problem 23 we ask you to verify this formula.) Figure 9.6.4 shows the position function
y.x; �

4 / of the string together with the “traveling” waves 1
2F.x C �

4 / and 1
2F.x � �

4 /. It is
remarkable that the string exhibits a momentary “flat spot” over �

4 < x < 3�
4 at the instant

t D �
4 . In Application 9.6 we use technology to graph y.x; t/ for a range of values of t , thus

effectively animating the vibration of the string over time.

x

y

0 ππ

4
3π

4

FIGURE 9.6.4. The position
function y.x; �

4
/ (drawn in solid blue)

as the sum of the two traveling waves
1
2

F .x C �
4

/ and 1
2

F .x � �
4

/, drawn
in dashed black and blue, respectively.

Strings with Initial Velocity
The separation-of-variables solution of Problem B, with initial conditions y.x; 0/D
0 and yt .x; 0/ D g.x/, proceeds precisely as did that of Problem A until Eq. (16) is
reached. But then y.x; 0/ D X.x/T .0/ D 0 implies that T .0/ D 0, so instead of (16)
we have

d2Tn

dt2
C n2�2a2

L2
Tn D 0; Tn.0/ D 0: (31)
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From Eq. (17) we see that a nontrivial solution of (31) is

Tn.t/ D sin
n�at

L
: (32)

The resulting formal power series solution is therefore of the form

yB.x; t/ D
1X

nD1

Bn sin
n�at

L
sin

n�x

L
; (33)

so we want to choose the coefficients fBng so that

yt .x; 0/ D
1X

nD1

Bn

n�a

L
sin

n�x

L
D g.x/: (34)

Thus we want Bn � n�a=L to be the Fourier sine coefficient bn of g.x/ on Œ0; L�:

Bn

n�a

L
D bn D

2

L

Z L

0

g.x/ sin
n�x

L
dx:

Hence we choose

Bn D
2

n�a

Z L

0

g.x/ sin
n�x

L
dx (35)

in order for yB.x; t/ in (33) to be a formal series solution of Problem B—and thus
for y.x; t/D yA.x; t/CyB.x; t/ to be a formal series solution of our original bound-
ary value problem in Eqs. (7a)–(7d).

Example 4 Consider a string on a guitar lying crosswise in the back of a pickup truck that at time t D 0
slams into a brick wall with speed v0. Then g.x/ � v0, so

Bn D
2

n�a

Z L

0
v0 sin

n�x

L
dx D 2v0L

n2�2a



1 � .�1/n� :

Hence the series in (33) gives

y.x; t/ D 4v0L

�2a

X
n odd

1

n2
sin

n�at

L
sin

n�x

L
:

If we differentiate the series in (33) termwise with respect to t , we get

yt .x; t/ D
1X

nD1

bn sin
n�x

L
cos

n�at

L
D 1

2
ŒG.x C at/CG.x � at/� ; (36)

where G is the odd period 2L extension of the initial velocity function g.x/, using
the same device as in the derivation of Eq. (30). In Problem 15 we ask you to deduce
that

y.x; t/ D 1

2a
ŒH.x C at/CH.x � at/� ; (37)

where the function H.x/ is defined to be

H.x/ D
Z x

0

G.s/ ds: (38)
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If, finally, a string has both a nonzero initial position function y.x; 0/ D f .x/
and a nonzero initial velocity function yt .x; 0/ D g.x/, then we can obtain its dis-
placement function by adding the d’Alembert solutions of Problems A and B given
in Eqs. (30) and (37), respectively. Hence the vibrations of this string with general
initial conditions are described by

y.x; t/ D 1

2
ŒF.x C at/C F.x � at/�C 1

2a
ŒH.x C at/CH.x � at/� ; (39)

a superposition of four waves moving along the x-axis with speed a, two moving to
the left and two to the right.

9.6 Problems
Solve the boundary value problems in Problems 1 through 10.

1. yt t D 4yxx , 0 < x < � , t > 0; y.0; t/ D y.�; t/ D 0,
y.x; 0/ D 1

10 sin 2x, yt .x; 0/ D 0
2. yt t D yxx , 0 < x < 1, t > 0; y.0; t/ D y.1; t/ D 0,
y.x; 0/ D 1

10 sin�x � 1
20 sin 3�x, yt .x; 0/ D 0

3. 4yt t D yxx , 0 < x < � , t > 0; y.0; t/ D y.�; t/ D 0,
y.x; 0/ D yt .x; 0/ D 1

10 sin x
4. 4yt t D yxx , 0 < x < 2, t > 0; y.0; t/ D y.2; t/ D 0,
y.x; 0/ D 1

5 sin�x cos�x, yt .x; 0/ D 0
5. yt t D 25yxx , 0 < x < 3, t > 0; y.0; t/ D y.3; t/ D 0,
y.x; 0/ D 1

4 sin�x, yt .x; 0/ D 10 sin 2�x
6. yt t D 100yxx , 0 < x < � , t > 0; y.0; t/ D y.�; t/ D 0,
y.x; 0/ D x.� � x/, yt .x; 0/ D 0

7. yt t D 100yxx , 0 < x < 1, t > 0; y.0; t/ D y.1; t/ D 0,
y.x; 0/ D 0, yt .x; 0/ D x

8. yt t D 4yxx , 0 < x < � , t > 0; y.0; t/ D y.�; t/ D 0,
y.x; 0/ D sin x, yt .x; 0/ D 1

9. yt t D 4yxx , 0 < x < 1, t > 0; y.0; t/ D y.1; t/ D 0,
y.x; 0/ D 0, yt .x; 0/ D x.1 � x/

10. yt t D 25yxx , 0 < x < � , t > 0; y.0; t/ D y.�; t/ D 0,
y.x; 0/ D yt .x; 0/ D sin2 x

11. Suppose that a string 2 ft long weighs 1
32 oz and is sub-

jected to a tension of 32 lb. Find the fundamental fre-
quency with which it vibrates and the velocity with which
the vibration waves travel along it.

12. Show that the amplitude of the oscillations of the midpoint
of the string of Example 4 is

y

�
L

2
;
L

2a

�
D 4v0L

�2a

X
n odd

1

n2
D v0L

2a
:

If the string is the string of Problem 11 and the impact
speed of the pickup truck is 60 mi=h, show that this am-
plitude is approximately 1 in.

13. Suppose that the function F.x/ is twice differentiable for
all x. Use the chain rule to verify that the functions

y.x; t/ D F.x C at/ and y.x; t/ D F.x � at/

satisfy the equation yt t D a2yxx .

14. Given the differentiable odd period 2L function F.x/,
show that the function

y.x; t/ D 1
2 ŒF .x C at/C F.x � at/�

satisfies the conditions y.0; t/ D y.L; t/ D 0, y.x; 0/ D
F.x/, and yt .x; 0/ D 0.

15. If y.x; 0/ D 0, then Eq. (36) implies (why?) that

y.x; t/ D 1
2

Z t

0
G.x C a�/ d� C 1

2

Z t

0
G.x � a�/ d�:

Make appropriate substitutions in these integrals to derive
Eqs. (37) and (38).

16. (a) Show that the substitutions uD xC at and v D x � at
transform the equation yt t D a2yxx into the equation
yuv D 0. (b) Conclude that every solution of yt t D a2yxx

is of the form

y.x; t/ D F.x C at/CG.x � at/;
which represents two waves traveling in opposite direc-
tions, each with speed a.

17. Suppose that

y.x; t/ D
1X

nD1

An cos
n�at

L
sin

n�x

L
:

Square the derivatives yt and yx and then integrate
termwise—applying the orthogonality of the sine and co-
sine functions—to verify that

E D 1

2

Z L

0
.�y2

t C Ty2
x/ dx D

�2T

4L

1X
nD1

n2A2
n:

18. Consider a stretched string, initially at rest; its end at xD 0
is fixed, but its end at x DL is partially free—it is allowed
to slide without friction along the vertical line x D L. The
corresponding boundary value problem is

yt t D a2yxx (0 < x < L, t > 0);

y.0; t/ D yx.L; t/ D 0;
y.x; 0/ D f .x/;
yt .x; 0/ D 0:
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Separate the variables and use the odd half-multiple sine
series of f .x/, as in Problem 24 of Section 9.5, to derive
the solution

y.x; t/ D
X

n odd

An cos
n�at

2L
sin

n�x

2L
;

where

An D
2

L

Z L

0
f .x/ sin

n�x

2L
dx:

Problems 19 and 20 deal with the vibrations of a string un-
der the influence of the downward force F.x/ D ��g of grav-
ity. According to Eq. (1), its displacement function satisfies the
partial differential equation

@2y

@t2
D a2 @

2y

@x2
� g (40)

with endpoint conditions y.0; t/ D y.L; t/ D 0.
19. Suppose first that the string hangs in a stationary position,

so that y D y.x/ and yt t D 0, and hence its differential
equation of motion takes the simple form a2y00 D g. De-
rive the stationary solution

y.x/ D �.x/ D gx

2a2
.x � L/:

20. Now suppose that the string is released from rest in equi-
librium; consequently the initial conditions are y.x; 0/D 0
and yt .x; 0/ D 0. Define

v.x; t/ D y.x; t/ � �.x/;

where �.x/ is the stationary solution of Problem 19. De-
duce from Eq. (40) that v.x; t/ satisfies the boundary value
problem

vt t D a2vxx I
v.0; t/ D v.L; t/ D 0;
v.x; 0/ D ��.x/;
vt .x; 0/ D 0:

Conclude from Eqs. (22) and (23) that

y.x; t/ � �.x/ D
1X

nD1

An cos
n�at

L
sin

n�x

L
;

where the coefficients fAng are the Fourier sine coeffi-
cients of f .x/ D ��.x/. Finally, explain why it follows
that the string oscillates between the positions y D 0 and
y D 2�.x/.

21. For a string vibrating in air with resistance proportional to
velocity, the boundary value problem is

yt t D a2yxx � 2hyt I
y.0; t/ D y.L; t/ D 0;
y.x; 0/ D f .x/;
yt .x; 0/ D 0:

(41)

Assume that 0 < h < �a=L. (a) Substitute

y.x; t/ D X.x/T .t/

in (41) to obtain the equations

X 00 C �X D 0; X.0/ D X.L/ D 0 (42)

and

T 00 C 2hT 0 C a2�T D 0; T 0.0/ D 0: (43)

(b) The eigenvalues and eigenfunctions of (42) are

�n D
n2�2

L2
and Xn.x/ D sin

n�x

L

(as usual). Show that the general solution with � D
n2�2=L2 of the differential equation in (43) is

Tn.t/ D e�ht .An cos!nt C Bn sin!nt / ;

where !n D
p
.n2�2a2=L2/ � h2 < n�a=L. (c) Show

that T 0
n.0/ D 0 implies that Bn D hAn=!n, and hence that

to within a constant multiplicative coefficient,

Tn.t/ D e�ht cos .!nt � ˛n/

where ˛n D tan�1.h=!n/. (d) Finally, conclude that

y.x; t/ D e�ht
1X

nD1

cn cos .!nt � ˛n/ sin
n�x

L
;

where

cn D
2

L cos˛n

Z L

0
f .x/ sin

n�x

L
dx:

From this formula we see that the air resistance has three
main effects: exponential damping of amplitudes, de-
creased frequencies !n < n�a=L, and the introduction of
the phase delay angles ˛n.

22. Rework Problem 21 as follows: First substitute y.x; t/ D
e�htv.x; t/ in Eq. (41) and then show that the boundary
value problem for v.x; t/ is

vt t D a2vxx C h2vI
v.0; t/ D v.L; t/ D 0;
v.x; 0/ D f .x/;
vt .x; 0/ D hf .x/:

Next show that the substitution v.x; t/ D X.x/T .t/ leads
to the equations

X 00 C �X D 0; X.0/ D X.L/ D 0;
T 00 C .�a2 � h2/T D 0:

Proceed in this manner to derive the solution y.x; t/ given
in part (d) of Problem 21.
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FIGURE 9.6.5. Successive snapshots of the vibrating string of Example 3 and Problems 23 and 24.

The snapshots in Fig. 9.6.5 show successive positions of a vi-
brating string with length L D � and a D 1 (so its period of
oscillation is 2�). The string is initially at rest with fixed end-
points, and at time t D 0 it is set in motion with initial position
function

f .x/ D 2 sin2 x D 1 � cos 2x: (44)

23. Verify the formula for y.x; �
4 / in Example 3.

24. (a) Show that the position function f .x/ defined in
Eq. (44) has inflection points [f 00.x/ D 0] at x D �=4 and
at x D 3�=4. (b) In snapshots (a)–(e) of Fig. 9.6.5 it
appears that these two inflection points may remain fixed
during some initial portion of the string’s vibration. In-
deed, apply the d’Alembert formula to show that if either
x D �=4 or x D 3�=4, then y.x; t/ D 1 for 0 5 t 5 �=4.

9.6 Application Vibrating-String Investigations
Here we describe a Mathematica implementation of the d’Alembert solution

y.x; t/ D 1
2
ŒF .x C at/C F.x � at/� (1)

of the vibrating-string problem of Example 3, and apply it to investigate graphically
the motions that result from a variety of different initial positions of the string.
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Maple and MATLAB versions of this implementation are included in the applications
manual that accompanies this text.

To plot the snapshots shown in Fig. 9.6.5, we began with the initial position
function

f[x ] := 2�Sin[x]^2
To define the odd period 2� extension F.x/ of f .x/, we need the function s.x/ that
shifts the point x by an integral multiple of � into the interval Œ0; ��.

s[x ] := Block[{k}, k = Floor[N[x/Pi]];
If[EvenQ[k], (� k is even �)
(� then �) N[x -- k�Pi],
(� else �) N[x -- k�Pi -- Pi]]]

Then the desired odd extension is defined by

F[x ] := If[s[x] > 0, (� then �) f[s[x]],
(� else �)--f[--s[x]]]

Finally, the d’Alembert solution in (1) is

G[x , t ] := ( F[x + t] + F[x -- t] )/2

A snapshot of the position of the string at time t is defined by

stringAt[t ] := Plot[G[x,t], {x, 0, Pi},
PlotRange ��> {--2, 2}];

For example, the command stringAt[Pi/4] plots the snapshot corresponding
to t D �=4 shown in Fig. 9.6.5(e), once again showing the flat spot appearing in
Fig. 9.6.4. We can plot a whole sequence of shapshots at once:

snapshots = Table[ stringAt[t], {t, 0, Pi, Pi/12}]

These snapshots can be animated to show the vibrating string in motion:

Manipulate[stringAt[t], {t, 0, Pi}]

We can also exhibit simultaneously the successive positions of the string in a single
composite figure (see Fig. 9.6.6) with the command Show[snapshots].

The initial position function

f[x ] := If[x < Pi/2, (� then �) x,
(� else �) Pi -- x] // N

(corresponding to the triangular wave function of Fig. 9.2.4) generates in this way
the composite picture shown in Fig. 9.6.7. Similarly, the initial position function

f[x ] := Which[ 0 <= x < Pi/3, x,
Pi/3 <= x < 2�Pi/3, Pi/3,
2�Pi/3 <= x <= Pi, Pi -- x ] // N

(corresponding to the trapezoidal wave function of Fig. 9.2.5) produces the picture
shown in Fig. 9.6.8.

You can test your implementation of d’Alembert’s method by attempting to
generate Figs. 9.6.7 and 9.6.8 for yourself. The initial position “bump function”

f .x/ D sin200 x; 0 5 x 5 �

generates traveling waves traveling (initially) in opposite directions, as indicated in
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FIGURE 9.6.6. Successive positions of
the vibrating string with initial position
f .x/ D 2 sin2 x.
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FIGURE 9.6.7. Successive positions
of the vibrating string
with triangular initial position.
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FIGURE 9.6.8. Successive positions
of the vibrating string with trapezoidal
initial position.

Fig. 9.6.3 in the text. The initial position function

f .x/ D
(

sin200
�
x C �

2

	
for 0 < x < �=2,

0 for �=2 < x < �

generates a single wave that begins at xD 0 and (initially) travels to the right. (Think
of a jump rope tied to a tree, whose free end is given a “snap” at time t D 0.)

After exploring some of the possibilities indicated previously, try some initial
position functions of your own choice. Any continuous function f such that f .0/D
f .�/ D 0 is fair game. The more exotic the resulting vibration of the string, the
better.

9.7 Steady-State Temperature and Laplace’s Equation
We now consider the temperature in a two-dimensional plate, or lamina, that occu-
pies a region R in the xy-plane bounded by a piecewise smooth curve C , as shown
in Fig. 9.7.1. We assume that the faces of the plate are insulated, and that it is so thin

x

y

R

C

FIGURE 9.7.1. A plane region R
and its bounding curve C .

that the temperature within it does not vary in the direction perpendicular to the xy-
plane. We want to determine, under various conditions, the temperature u.x; y; t/ at
the point .x; y/ at time t .

Let the plate consist of material with density ı (mass per unit volume), specific
heat c (per unit mass), and thermal conductivityK, all assumed constant throughout
the plate. Under these assumptions, it can be shown (by a generalization of the
derivation of the one-dimensional heat equation in Section 9.5) that the temperature
function u.x; y; t/ satisfies the two-dimensional heat equation

@u

@t
D k

�
@2u

@x2
C @2u

@y2

�
: (1)

As in Section 9.5, k denotes the thermal diffusivity,

k D K

cı
; (2)
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of the material of the plate. The sum of second derivatives on the right-hand side in
(1) is the Laplacian of the function u, commonly denoted by

r
2u D @2u

@x2
C @2u

@y2
; (3)

so the two-dimensional heat equation may be written as

@u

@t
D kr

2u: (10)

In comparing Eq. (10) with the one-dimensional heat equation ut D kuxx ,
we see that in passing from one to two dimensions, the second-order space deriva-
tive uxx is replaced with the Laplacian r

2u. This is an instance of a general phe-
nomenon. For instance, if a flexible stretched membrane occupies in equilibrium
a region in the xy-plane and vibrates in the (perpendicular) ´-direction, then its
displacement function ´ D ´.x; y; t/ satisfies the two-dimensional wave equation

@2´

@t2
D a2

�
@2´

@x2
C @2´

@y2

�
D a2

r
2´: (4)

This equation has the same relation to the one-dimensional wave equation ´t t D
a2´xx (here writing ´.x; t/ for the displacement of a string) as Eq. (10) has to the
one-dimensional heat equation.

In this section we confine our attention to the steady-state situation in which
the temperature u does not vary with time, and so is a function only of x and y. Thus
we are interested in the steady-state temperature of a plate. In this case ut D 0, so
Eq. (1) becomes the two-dimensional Laplace equation

r
2u D @2u

@x2
C @2u

@y2
D 0: (5)

This important partial differential equation is also known as the potential equation.
The three-dimensional Laplace equation uxx C uyy C u´´ D 0 is satisfied (in empty
space) by electric and gravitational potential functions. It is also satisfied by the
velocity potential function for the steady irrotational flow of an incompressible and
inviscid fluid (that is, one having zero viscosity).

Dirichlet Problems
A particular solution of Laplace’s equation in a bounded plane region R is deter-
mined by appropriate boundary conditions. For example, it is plausible on physical
grounds that the steady-state temperature u.x; y/ in a plate is determined if we know
that u.x; y/ agrees with a given function f .x; y/ at each point of the boundary curve
C of the plate. To find the steady-state temperature in a plate with assigned bound-
ary values, we need to solve the boundary value problem

@2u

@x2
C @2u

@y2
D 0 (within R);

u.x; y/ D f .x; y/ (if .x; y/ is on C ).

(6)

Such a problem, finding a solution of Laplace’s equation in a region R with given
boundary values, is called a Dirichlet problem. It is known that if the boundary
curve C and the boundary value function f are reasonably well behaved, then there
exists a unique solution of the Dirichlet problem in (6).
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x

y

Ru(0, y) = g1(y)

u(x, b) = f2(x)

u(x, 0) = f1(x)(0, 0) (a , 0)

(0, b) (a , b)

u(a , y) = g2(y)

FIGURE 9.7.2. A rectangular plate with given boundary values.

Figure 9.7.2 shows a rectangular plate with indicated boundary values along
its four edges. The corresponding Dirichlet problem is

uxx C uyy D 0 .within R/I
u.x; 0/ D f1.x/; u.x; b/ D f2.x/ .0 < x < a/; (7)

u.0; y/ D g1.y/; u.a; y/ D g2.y/ .0 < y < b/:

Because there are four nonhomogeneous conditions (rather than one), this boundary
value problem is not directly susceptible to the method of separation of variables. In
Section 9.6, when confronted with this difficulty, we split the problem of the vibrat-
ing string with both nonzero initial position and nonzero initial velocity into prob-
lems with a single nonhomogeneous condition each. In a similar way, the boundary
value problem in (7) can be split into four problems, each with a single nonhomo-
geneous boundary condition. For each of these problems, u.x; y/ will be zero along
three edges of the rectangle and will have assigned values on the fourth. Each of
these four boundary values can be solved by the method of separation of variables,
and the sum of the four solutions is the solution of the original problem in (7). In
the following example we solve one of these four problems—the one illustrated in
Fig. 9.7.3.

Example 1 Solve the boundary value problem

uxx C uyy D 0I
u.0; y/ D u.a; y/ D u.x; b/ D 0;
u.x; 0/ D f .x/

(8)

for the rectangle in Fig. 9.7.3.
Solution Substitution of u.x; y/ D X.x/Y.y/ gives X 00Y CXY 00 D 0, so

X 00

X
D �Y

00

Y
D �� (9)

for some constant �. Thus X.x/ must satisfy the familiar eigenvalue problem

x

y

Ru = 0 u = 0

u = 0

u = f (x) (a , 0)

(a , b)

FIGURE 9.7.3. The boundary value
problem of Example 1.

X 00 C �X D 0;
X.0/ D X.a/ D 0:

The eigenvalues and associated eigenfunctions are

�n D
n2�2

a2
; Xn.x/ D sin

n�x

a
(10)

for nD 1; 2; 3; : : : : From Eq. (9) with �D n2�2=a2 and the remaining homogeneous boundary
conditions in (8), we get

Y 00
n �

n2�2

a2
Yn D 0; Yn.b/ D 0: (11)
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The general solution of the differential equation in (11) is

Yn.y/ D An cosh
n�y

a
C Bn sinh

n�y

a
;

and the condition

Yn.b/ D An cosh
n�b

a
C Bn sinh

n�b

a
D 0

implies that Bn D �ŒAn cosh.n�b=a/�=Œsinh.n�b=a/�, so

Yn.y/ D An cosh
n�y

a
� An cosh.n�b=a/

sinh.n�b=a/
sinh

n�y

a

D An

sinh.n�b=a/

�
sinh

n�b

a
cosh

n�y

a
� cosh

n�b

a
sinh

n�y

a

�
:

Therefore,

Yn.y/ D cn sinh
n�.b � y/

a
(12)

where cn D An=sinh.n�b=a/. From (10) and (12) we obtain the formal series solution

u.x; y/ D
1X

nD1

Xn.x/Yn.y/ D
1X

nD1

cn sin
n�x

a
sinh

n�.b � y/
a

: (13)

It remains only to choose the coefficients fcng to satisfy the nonhomogeneous condition

u.x; 0/ D
1X

nD1

�
cn sinh

n�b

a

�
sin

n�x

a
D f .x/:

For this purpose we want

cn sinh
n�b

a
D bn D

2

a

Z a

0
f .x/ sin

n�x

a
dx;

so

cn D
2

a sinh.n�b=a/

Z a

0
f .x/ sin

n�x

a
dx: (14)

With this choice of coefficients, the series in (13) is a formal series solution of the Dirichlet
problem in (8).

For instance, suppose that

f .x/ � T0 D
4T0

�

X
n odd

1

n
sin

n�x

a

if 0 < x < a, so that bn D 4T0=.�n/ for n odd and bn D 0 for n even. Then the
formulas in (13) and (14) yield

u.x; y/ D 4T0

�

X
n odd

sin.n�x=a/ sinhŒn�.b � y/=a�
n sinh.n�b=a/

(15)

for the steady-state temperature in a rectangular plate with its base held at temper-
ature T0 and its other three edges at temperature zero. In particular, suppose that
T0 D 100 and that a D b D 10. Then from Eq. (15) we find that the temperature at
the center of the plate is

u.5; 5/ D 400

�

X
n odd

sin.n�=2/ sinh.n�=2/
n sinh n�

� 25:3716 � 0:3812C 0:0099 � 0:0003I
that is, u.5; 5/ is approximately 25:00.
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Remark 1: Can you supply an argument—perhaps using symmetry—that proves (without
using the series solution) that u.5; 5/ is exactly 25?

Remark 2: In practice, engineers use solutions like the one in Eq. (15) to plot the variation
of temperature within a plate or piece of machinery; they are particularly interested in any
“hot spots” that may appear. Such information is often presented by constructing level curves
on which the temperature function u.x; y/ is constant. Figure 9.7.4 shows typical level curves
for the function u.x; y/ in (15) with a D b D 10 and T0 D 100.

Example 2 Let R be the “semi-infinite” strip shown in Fig. 9.7.5. Solve the boundary value problem

uxx C uyy D 0 .in R);

u.x; 0/ D u.x; b/ D 0 .0 < x <1/;
u.x; y/ is bounded as x !C1,

u.0; y/ D g.y/:

(16)

Solution The condition that u.x; y/ is bounded as x ! C1 plays the role of a homogeneous bound-
ary condition associated with the “missing” right edge of the “rectangle”; this is typical of
Dirichlet problems for unbounded regions. With u.x; y/ D X.x/Y.y/, the actual homoge-

x

y

(0, 0) (10, 0)

(0, 10)
(10, 10)

u = 0 u = 0

u = 0

10

20

30
40
50

u = 100

FIGURE 9.7.4. Typical level curves
of the function u.x; y/ in Eq. (15).

neous conditions give Y.0/ D Y.b/ D 0. Hence it is Y.y/ that will satisfy an eigenvalue
problem. We therefore write the separation in (9) as

Y 00

Y
D �X

00

X
D ��; (17)

changing the sign of � to get the familiar eigenvalue problem

Y 00 C �Y D 0; Y.0/ D Y.b/ D 0
with eigenvalues and associated eigenfunctions

�n D
n2�2

b2
; Yn.y/ D sin

n�y

b
: (18)

The general solution of

X 00
n �

n2�2

b2
Xn D 0

is Xn.x/ D An exp.n�x=b/CBn exp.�n�x=b/. We write the solution in exponential form—
instead of using the hyperbolic sine and cosine—because then the condition that u.x; y/,

x

y

u(0, y) = g(y)

(0, b)
u = 0

u = 0

FIGURE 9.7.5. The “semi- infinite”
strip of Example 2.

and hence X.x/, is bounded as x ! C1 immediately implies that An D 0 for all n. Upon
suppressing the constant Bn we are left with

Xn.x/ D exp
�
�n�x

b

�
: (19)

From Eqs. (18) and (19) we get the formal series solution

u.x; y/ D
1X

nD1

bnXn.x/Yn.y/ D
1X

nD1

bn exp
�
�n�x

b

�
sin

n�y

b
(20)

that satisfies the homogeneous boundary conditions and the boundedness condition. In order
also to satisfy the nonhomogeneous condition

u.0; y/ D
1X

nD1

bn sin
n�y

b
D g.y/;

we choose bn to be the Fourier sine coefficient

bn D
2

b

Z b

0
g.y/ sin

n�y

b
dy (21)

of the function g.y/ on Œ0; b�.
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For instance, if

x

y

(0, 0)

(0, 10)
(10, 10)

u = 100 51020304050

u = 0

u = 100

(10, 0)

FIGURE 9.7.6. Typical level curves
of the function u.x; y/ of Example 2.

g.y/ D T0 D
4T0

�

X
n odd

1

n
sin

n�y

b

for 0 < y < b, then Eqs. (20) and (21) yield

u.x; y/ D 4T0

�

X
n odd

1

n
exp

�
�n�x

b

�
sin

n�y

b
:

Figure 9.7.6 shows some typical level curves of the temperature function defined by this
formula with b D 10 and T0 D 100. Because of the negative exponential factors in the terms
of the final series, we see that the temperature u.x; y/! 0 as x ! C1 (whereas in (16) we
assumed only that u.x; y/ remains bounded as x !C1).

The Dirichlet Problem for a Circular Disk
We now investigate the steady-state temperature in a circular disk of radius a with
insulated faces and with given boundary temperatures. Obviously we should ac-
commodate the geometry of the circle by expressing u D u.r; �/ in terms of polar
coordinates r and � , with x D r cos � and y D r sin � . When these equations are
used to transform the Laplacian—see, for instance, Problem 45 in Section 12.7 of
Edwards and Penney, Calculus: Early Transcendentals, 7th edition, (Upper Saddle
River, NJ: Prentice Hall, 2008)—the result is Laplace’s equation in polar coordi-
nates:

r
2u D @2u

@r2
C 1

r

@u

@r
C 1

r2

@2u

@�2
D 0: (22)

We prescribe assigned boundary temperatures (as indicated in Fig. 9.7.7) by requir-

x

y

(a , 0)

R
(r, )θ

r
θ

u(a, ) = f ( )θ θ

FIGURE 9.7.7. The Dirichlet
problem for a circular disk.

ing that

u.a; �/ D f .�/; (23)

where the function f .�/ of period 2� is given. In addition, because .r; �/ and .r; �C
2�/ are the polar coordinates of the same point, we impose on u the periodicity
condition

u.r; �/ D u.r; � C 2�/ (24)

for r < a and all � ; this will play the role of a homogeneous boundary condition.
To solve the boundary value problem in Eqs. (22) through (24), we substitute

u.r; �/ D R.r/‚.�/ in Eq. (22); the result is

R00‚C 1

r
R0‚C 1

r2
R‚00 D 0:

Division by R‚=r2 gives

r2R00 C rR0

R
C ‚00

‚
D 0;

so it follows that
r2R00 C rR0

R
D �‚

00

‚
D �

for some constant �. This yields the two ordinary differential equations

r2R00 C rR0 � �R D 0 (25)
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and

‚00 C �‚ D 0: (26)

The general solution of Eq. (26) is

‚.�/ D A cos˛� C B sin˛� if � D ˛2 > 0, (27a)

‚.�/ D AC B‚ if � D 0, (27b)

‚.�/ D Ae˛� C Be�˛� if � D �˛2 < 0. (27c)

Now we apply the condition in (24), which implies that ‚.�/ D ‚.� C 2�/;
that is, that‚.�/ has period 2� . In Problems 22 and 23 we ask you to show that this
is so only if � D n2 (n an integer) in (27a) or if � D 0 and B D 0 in (27b). Thus we
have the eigenvalues and associated eigenfunctions

�0 D 0; ‚0.�/ D 1I (28a)

�n D n2; ‚n.�/ D An cosn� C Bn sinn� (28b)

for n D 1; 2; 3; : : : :
Next we turn our attention to Eq. (25). With �0 D 0 it reduces to the equation

r2R00
0 C rR0

0 D 0 with general solution

R0.r/ D C0 CD0 ln r: (29)

Of course we want u.r; �/, and hence R.r/, to be continuous at r D 0; this requires
that D0 D 0 in Eq. (29), so R0.r/ D C0. Then, with � D �n D n2, Eq. (25) is

r2R00
n C rR0

n � n2Rn D 0:

On substituting the trial solution R.r/ D rk , we find that k D ˙n, so the general
solution of the previous equation is

Rn.r/ D Cnr
n C Dn

rn
: (30)

Continuity at r D 0 then requires that Dn D 0, so Rn.r/ D Cnr
n.

Finally we combine the results in Eqs. (28) through (30) withDn � 0 to obtain
a formal series solution of the form

u.r; �/ D
1X

nD0

Rn.r/‚n.�/I

that is,

u.r; �/ D a0

2
C

1X
nD1

.an cos n� C bn sinn�/rn: (31)

In order that the boundary condition u.a; �/ D f .�/ be satisfied, we want

u.a; �/ D a0

2
C

1X
nD1

.ana
n cosn� C bna

n sinn�/
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to be the Fourier series of f .�/ on Œ0; 2��. Hence we choose

an D
1

�an

Z 2�

0

f .�/ cos n� d� (n D 0, 1, 2, : : : ) (32a)

and

bn D
1

�an

Z 2�

0

f .�/ sinn� d� (n D 1, 2, 3, : : : ). (32b)

Example 3 For instance, if f .�/ D T0 for 0 < � < � and f .�/ D �T0 for � < � < 2� , so that

f .�/ D 4T0

�

X
n odd

1

n
sinn�;

then an D 0 for all n = 0, bn D 0 for n even, and bn D 4T0=.�na
n/ for n odd. So Eqs. (31)

and (32) yield

u.r; �/ D 4T0

�

X
n odd

rn

nan
sinn�:

Note In the Dirichlet problems of this section, we have concentrated on temperature func-
tions with preassigned boundary values. In the case of a plate with an insulated edge—across
which no heat can flow—the boundary condition is that the derivative of u.x; y/ in the direc-
tion normal to this edge vanishes. For instance, consider the rectangular plate in Fig. 9.7.2.
If the edge x D 0 is insulated, then ux.0; y/ � 0, whereas if the edge y D b is insulated, then
uy.x; b/ � 0.

9.7 Problems
In Problems 1 through 3, solve the Dirichlet problem for the
rectangle 0 < x < a, 0 < y < b consisting of Laplace’s equa-
tion uxx C uyy D 0 and the given boundary value conditions.

1. u.x; 0/ D u.x; b/ D u.0; y/ D 0, u.a; y/ D g.y/
2. u.x; 0/ D u.x; b/ D u.a; y/ D 0, u.0; y/ D g.y/
3. u.x; 0/ D u.0; y/ D u.a; y/ D 0, u.x; b/ D f .x/
4. Consider the boundary value problem

uxx C uyy D 0I
ux.0; y/ D ux.a; y/ D u.x; 0/ D 0;
u.x; b/ D f .x/

corresponding to a rectangular plate 0 < x < a, 0 < y < b
with the edges x D 0 and x D a insulated. Derive the
solution

u.x; y/ D a0y

2b
C

1X
nD1

an

�
cos

n�x

a

�� sinh.n�y=a/
sinh.n�b=a/

�
;

where

an D
2

a

Z a

0
f .x/ cos

n�x

a
dx (n D 0, 1, 2, : : : ).

(Suggestion: Show first that �0 is an eigenvalue with
X0.x/ � 1 and Y0.y/ D y.)

In Problems 5 and 6, find a solution of Laplace’s equation
uxx C uyy D 0 in the rectangle 0 < x < a, 0 < y < b that
satisfies the given boundary conditions (see Problem 4).

5. uy.x; 0/ D uy.x; b/ D u.a; y/ D 0, u.0; y/ D g.y/
6. ux.0; y/ D ux.a; y/ D uy.x; 0/ D 0, u.x; b/ D f .x/

In Problems 7 and 8, find a solution of Laplace’s equation in
the semi-infinite strip 0 < x < a, y > 0 that satisfies the given
boundary conditions and the additional condition that u.x; y/
is bounded as y !C1.

7. u.0; y/ D u.a; y/ D 0, u.x; 0/ D f .x/
8. ux.0; y/ D ux.a; y/ D 0, u.x; 0/ D f .x/
9. Suppose that a D 10 and f .x/ D 10x in Problem 8. Show

that

u.x; y/ D 50 � 400
�2

X
n odd

1

n2
e�n�y=10 cos

n�x

10
:

Then compute (with two-decimal-place accuracy) the val-
ues u.0; 5/, u.5; 5/, and u.10; 5/.

10. The edge x D a of the rectangular plate 0 < x < a,
0 < y < b is insulated, the edges x D 0 and y D 0 are
held at temperature zero, and u.x; b/D f .x/. Use the odd
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half-multiple sine series of Problem 21 of Section 9.3 to
derive a solution of the form

u.x; y/ D
X

n odd

cn sin
n�x

2a
sinh

n�y

2a
:

Then give a formula for cn.
11. The edge y D 0 of the rectangular plate 0 < x < a,

0 < y < b is insulated, the edges x D a and y D b are
held at temperature zero, and u.0; y/ D g.y/. Use the odd
half-multiple cosine series of Problem 22 of Section 9.3 to
find u.x; y/.

12. A vertical cross section of a long high wall 30 cm thick
has the shape of the semi-infinite strip 0 < x < 30, y > 0.
The face x D 0 is held at temperature zero, but the face
x D 30 is insulated. Given u.x; 0/ D 25, derive the
formula

u.x; y/ D 100

�

X
n odd

1

n
e�n�y=60 sin

n�x

60

for the steady-state temperature within the wall.

Problems 13 through 15 deal with the semicircular plate of ra-
dius a shown in Fig. 9.7.8. The circular edge has a given tem-
perature u.a; �/ D f .�/. In each problem, derive the given
series for the steady-state temperature u.r; �/ satisfying the
given boundary conditions along � D 0 and � D � , and give
the formula for the coefficients cn.

x

y

D r

r = a

θ

u = f ( )θ

 = 0θ = θ π

FIGURE 9.7.8. The semicircular plate of
Problems 13 through 15.

13. u.r; 0/ D u.r; �/ D 0;

u.r; �/ D
1X

nD1

cnr
n sinn�

14. u� .r; 0/ D u� .r; �/ D 0;

u.r; �/ D c0

2
C

1X
nD1

cnr
n cosn�

15. u.r; 0/ D u� .r; �/ D 0;

u.r; �/ D
X

n odd

cnr
n=2 sin

n�

2

16. Consider Dirichlet’s problem for the region exterior to the
circle r D a. You want to find a solution of

r2urr C rur C u�� D 0

such that u.a; �/ D f .�/ and u.r; �/ is bounded as
r !C1. Derive the series

u.r; �/ D a0

2
C

1X
nD1

1

rn
.an cosn� C bn sinn�/;

and give formulas for the coefficients fang and fbng.
17. The velocity potential function u.r; �/ for steady flow of

an ideal fluid around a cylinder of radius r D a satisfies
the boundary value problem

r2urr C rur C u�� D 0 .r > a/I
ur .a; �/ D 0; u.r; �/ D u.r;��/;
lim

r!1Œu.r; �/ � U0r cos �� D 0:

(a) By separation of variables, derive the solution

u.r; �/ D U0

r
.r2 C a2/ cos �:

(b) Hence show that the velocity components of the flow
are

ux D
@u

@x
D U0

r2
.r2 � a2 cos 2�/

and

uy D
@u

@y
D �U0

r2
a2 sin 2�:

The streamlines for this fluid flow around the cylinder are
shown in Fig. 9.7.9.

FIGURE 9.7.9. Streamlines for ideal fluid
flow around a cylinder.

Comment The streamlines in Fig. 9.7.9 are the level curves
of the function  .x; y/ given in part (b) of Problem 18. It is
troublesome to write a computer program to plot such level
curves. It is far easier to plot some solutions of the differential
equation dy=dx D uy=ux . We did so with initial conditions
x0 D �5, y0 D �2:7, �2:5, �2:3, : : : ; 2:5, 2:7. The solutions
were obtained numerically using the improved Euler method
(Section 2.5) with step size 0:02.

18. (a) Show that the velocity potential in part (a) of Problem
17 can be written in rectangular coordinates as

u.x; y/ D U0x

 
1C a2

x2 C y2

!
:
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(b) The stream function for the flow is

 .x; y/ D U0y

 
a2

x2 C y2
� 1

!
:

Show that ru � r � 0. Because v D ru is the velocity
vector, this shows that the streamlines of the flow are the
level curves of  .x; y/.

Problems 19 through 21 deal with a solid spherical ball of ra-
dius r D a with initial temperature T0 throughout. At time
t D 0 it is packed in ice, so its temperature at the surface r D a
is zero thereafter. Its temperature then depends only on time
t and the distance r from the center of the ball, so we write
u D u.r; t/.
19. (a) The heat content of the spherical shell with inner ra-

dius r and outer radius r C�r is

Q.t/ D
Z rC�r

r
cıu.x; t/ � 4�s2 ds:

Show that Q0.t/ D 4�cır2ut .r; t/ for some r in the inter-
val .r; r C �r/. (b) The radial heat flux is � D �Kur

across the bounding spherical surfaces of the shell in part
(a). Conclude that

Q0.t/ D 4�K
h
.r C�r/2ur .r C�r; t/ � r2ur .r; t/

i
:

(c) Equate the values of Q0.t/ in parts (a) and (b); then
take the limit as �r ! 0 to get the equation

@u

@t
D k

r2

@

@r

�
r2 @u

@r

�
:

(d) Finally, show that this last equation is equivalent to

@

@t
.ru/ D k @2

@r2
.ru/:

20. It follows from part (d) of Problem 19 that u.r; t/ satisfies
the boundary value problem

@

@t
.ru/ D k @2

@r2
.ru/ .r < a/I

u.a; t/ D 0; u.r; 0/ D T0:

Show that the new function v.r; t/D ru.r; t/ satisfies a fa-
miliar boundary value problem (in Section 9.5), and thus
derive the solution

u.r; t/ D 2aT0

�

1X
nD1

.�1/nC1

nr
exp

 
�n

2�2kt

a2

!
sin

n�r

a
:

21. (a) Deduce from the solution to Problem 20 that the tem-
perature at the center of the ball at time t is

u.0; t/ D 2T0

1X
nD1

.�1/nC1 exp

 
�n

2�2kt

a2

!
:

(b) Let aD 30 cm and T0 D 100ıC. Compute u.0; t/ after
15 min if the ball is made of iron with k D 0:15 cgs. (An-
swer: Approximately 45ıC.) (c) If you have access to
a programmable calculator, repeat part (b) for a ball made
of concrete with k D 0:005 in cgs units. About 15 terms
are required to show that u D 100:00ıC accurate to two
decimal places.

22. In the discussion of the Dirichlet problem for a circular
disk in this section, we obtained the ordinary differen-
tial equation ‚00 C �‚ D 0 with the periodicity condition
‚.�/ D ‚.� C 2�/. (a) Suppose that � D ˛2 > 0. Show
that the general solution

‚.�/ D A cos˛� C B sin˛�

has period 2� only if �D n2 with n an integer. (b) In the
case � D 0, show that the general solution

‚.�/ D A� C B

is periodic only if A D 0.
23. If � D �˛2 < 0 in Problem 22, then the general solution

of the differential equation is

‚.�/ D Ae˛� C Be�˛� :

Show that this function is not periodic unless A D B D 0.



1010 Eigenvalue Methods
and Boundary Value
Problems

10.1 Sturm–Liouville Problems and Eigenfunction Expansions

In the last three sections of Chapter 9, we saw that numerous different boundary
value problems all lead—by separation of variables—to the same ordinary differ-

ential equation

X 00.x/C �X.x/ D 0 .0 < x < L/; (1)

containing an eigenvalue �, but with different endpoint conditions, such as

X.0/ D X.L/ D 0 (2)

or

X 0.0/ D X 0.L/ D 0 (3)

or

X.0/ D X 0.L/ D 0; (4)

depending on the original boundary conditions.
For example, recall the problem (in Section 9.5) of finding the temperature

u.x; t/ in a rod 0 5 x 5 L with given initial temperature u.x; 0/ D f .x/. As a
boundary value problem, this problem of the rod is the same as the problem of
finding the temperature within a large slab that occupies the region 0 5 x 5 L in
xy´-space. If its initial temperature depends only on x and is independent of y
and ´—that is, if u.x; 0/ D f .x/—then the same will be true of its temperature
u D u.x; t/ at time t . When we substitute

u.x; t/ D X.x/T .t/

635
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in the heat equation

@u

@t
D k

@2u

@x2
;

we find thatX.x/ satisfies the endpoint conditions in (2) if the faces xD 0 and xDL
of the slab are held at temperature zero, those in (3) if both faces are insulated, and
those in (4) if one face is insulated and the other is held at temperature zero. But if
each face loses heat to a surrounding medium (at temperature zero) in accord with
Newton’s law of cooling, then (according to Problem 23 of Section 9.5) the endpoint
conditions take the form

hX.0/ �X 0.0/ D 0 D hX.L/CX 0.L/; (5)

where h is a nonnegative heat transfer coefficient.
The point is that when we impose different endpoint conditions on the solution

of Eq. (1), we get different eigenvalue problems, and hence different eigenvalues
f�ng and different eigenfunctions fXn.x/g to use in constructing a formal power
series solution

u.x; t/ D
X

cnXn.x/Tn.t/ (6)

of the boundary value problem. The final step in this construction is to choose the
coefficient fcng in Eq. (6) so that

u.x; 0/ D
X

cnTn.0/Xn.x/ D f .x/: (7)

Thus we need finally an eigenfunction expansion of the given function f .x/ in terms
of the eigenfunctions of the pertinent endpoint value problem.

Sturm–Liouville Problems
In order to unify and generalize the method of separation of variables, it is useful to
formulate a general type of eigenvalue problem that includes as special cases each
of those mentioned previously. Equation (1), with y instead of X as the dependent
variable, can be written in the form

d

dx

�
p.x/

dy

dx

�
� q.x/y C �r.x/y D 0; (8)

where p.x/ D r.x/ � 1 and q.x/ � 0. Indeed, we indicate in Problem 16 that
essentially any linear second-order differential equation of the form

A.x/y00 C B.x/y0 C C.x/y C �D.x/y D 0

takes the form in (8) after multiplication by a suitable factor.

Example 1 If we multiply the parametric Bessel equation

x2y00 C xy0 C .�x2 � n2/y D 0 .x > 0/

of order n by 1=x, the result may be written as

d

dx

�
x
dy

dx

�
� n

2

x
y C �xy D 0;

which is of the form in (8) with p.x/ D r.x/ D x and q.x/ D n2=x.
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Now, on solutions of Eq. (8) in a bounded open interval .a; b/, let us impose
homogeneous (linear) endpoint conditions of the form

˛1y.a/ � ˛2y
0.a/ D 0; ˇ1y.b/C ˇ2y

0.b/ D 0; (9)

where the coefficients ˛1, ˛2, ˇ1, and ˇ2 are constants. In addition to being homo-
geneous, these two conditions are separated, in that one of them involves the values
of y.x/ and y0.x/ at one endpoint x D a, whereas the other involves values at the
other endpoint x D b. For instance, note that the conditions y.a/D y0.b/D 0 are of
the form in (9) with ˛1 D ˇ2 D 1 and ˛2 D ˇ1 D 0.

DEFINITION Sturm–Liouville Problem

A Sturm–Liouville problem is an endpoint value problem of the form

d

dx

�
p.x/

dy

dx

�
� q.x/y C �r.x/y D 0 .a < x < b/I (8)

˛1y.a/ � ˛2y
0.a/ D 0; ˇ1y.b/C ˇ2y

0.b/ D 0; (9)

with neither ˛1 and ˛2 both zero nor ˇ1 and ˇ2 both zero. The parameter � in (8)
is the “eigenvalue” whose possible (constant) values are sought.

Sturm–Liouville problems generalize the endpoint value problems of Section
3.8 with sine and cosine solutions. They are named for the French mathematicians
Charles Sturm (1803–1855) and Joseph Liouville (1809–1882), who investigated
such problems in the 1830s.

Example 2 We get different Sturm–Liouville problems by pairing the same differential equation

y00 C �y D 0 (for 0 < x < L)

with the different homogeneous endpoint conditions

� y.0/ D y.L/ D 0 (where ˛1 D ˇ1 D 1 and ˛2 D ˇ2 D 0),
� y0.0/ D y0.L/ D 0 (where ˛1 D ˇ1 D 0 and ˛2 D ˇ2 D 1), and
� y.0/ D y0.L/ D 0 (where ˛1 D ˇ2 D 1 and ˛2 D ˇ1 D 0).

Note that the Sturm–Liouville problem in (8)–(9) always has the trivial solu-
tion y.x/ � 0. We seek the values of �—the eigenvalues—for which this problem
has a nontrivial real-valued solution (an eigenfunction), and for each eigenvalue
its associated eigenfunction (or eigenfunctions). Note that any constant (nonzero)
multiple of an eigenfunction will also be an eigenfunction. The following theorem
provides sufficient conditions under which the problem in (8)–(9) has an infinite
sequence f�ng11 of nonnegative eigenvalues, with each eigenvalue �n having (to
within a constant multiple) exactly one associated eigenfunction yn.x/. A proof of
this theorem is outlined in Chapter 9 of G. P. Tolstov, Fourier Series (New York:
Dover, 1976).
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THEOREM 1 Sturm–Liouville Eigenvalues

Suppose that the functions p.x/, p0.x/, q.x/, and r.x/ in Eq. (8) are continuous
on the interval Œa; b� and that p.x/ > 0 and r.x/ > 0 at each point of Œa; b�.
Then the eigenvalues of the Sturm–Liouville problem in (8)–(9) constitute an
increasing sequence

�1 < �2 < �3 < � � � < �n�1 < �n < � � � (10)

of real numbers with

lim
n!1�n D C1: (11)

To within a constant factor, only a single eigenfunction yn.x/ is associated with
each eigenvalue �n. Moreover, if q.x/ = 0 on Œa; b� and the coefficients ˛1, ˛2,
ˇ1, and ˇ2 in (9) are all nonnegative, then the eigenvalues are all nonnegative.

Note It is important to observe the signs in (8) and (9) when verifying the hypotheses of
Theorem 1. Sometimes the Sturm–Liouville problem in (8)–(9) is called regular if it satisfies
the hypotheses of Theorem 1; otherwise it is singular. In this section we will confine our at-
tention to regular Sturm–Liouville problems. Singular Sturm–Liouville problems associated
with Bessel’s equation will appear in Section 10.4.

Example 3 In Example 3 of Section 3.8, we saw that the Sturm–Liouville problem

y00 C �y D 0 .0 < x < L/I
y.0/ D 0; y.L/ D 0 (12)

has eigenvalues �n D n2�2=L2 and associated eigenfunctions yn.x/D sin.n�x=L/ (nD 1, 2,
3, : : :). There we had to consider the cases � D �˛2 < 0, � D 0, and � D ˛2 > 0 separately.
Here p.x/D r.x/� 1, q.x/ � 0, ˛1 D ˇ1 D 1, and ˛2 D ˇ2 D 0, so we know from Theorem
1 that the problem in (12) has only nonnegative eigenvalues. Therefore, only the two cases
� D 0 and � D ˛2 > 0 would need to be considered if we were starting afresh.

We are also familiar (from the problems in Section 9.5) with the Sturm–
Liouville problem

y00 C �y D 0 .0 < x < L/I
y0.0/ D 0; y0.L/ D 0; (13)

which has eigenvalues �0 D 0, �n D n2�2=L2 (n D 1, 2, 3, : : :) and associated
eigenfunctions y0.x/ � 1, yn.x/ D cos.n�x=L/. We will customarily write �0 D 0
if 0 is an eigenvalue and otherwise write �1 for the smallest eigenvalue; thus �1

always denotes the smallest positive eigenvalue.

Example 4 Find the eigenvalues and associated eigenfunctions of the Sturm–Liouville problem

y00 C �y D 0 .0 < x < L/I
y0.0/ D 0; y.L/ D 0: (14)

Solution This is a Sturm–Liouville problem satisfying the hypotheses of Theorem 1 with ˛1 D ˇ2 D 0
and ˛2 D ˇ1 D 1, so there are no negative eigenvalues. If � D 0, then y.x/ D Ax C B, and
thus y0.0/ D A D 0 and y.L/ D B D 0. Therefore 0 is not an eigenvalue. If � D ˛2, then

y.x/ D A cos˛x C B sin˛x and y0.x/ D �A˛ sin˛x C B˛ cos˛x:
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Hence y0.0/ D 0 implies that B D 0, and then y.L/ D A cos˛L D 0, so it follows that
˛L is an odd integral multiple of �=2: ˛L D .2n � 1/�=2. Thus we have the eigenvalues and
associated eigenfunctions

�n D ˛2
n D

.2n � 1/2�2

4L2
and yn.x/ D cos

.2n � 1/�x
2L

for n D 1, 2, 3, : : : :
Example 5 Find the eigenvalues and associated eigenfunctions of the Sturm–Liouville problem

y00 C �y D 0 .0 < x < L/I
y.0/ D 0; hy.L/C y0.L/ D 0 .h > 0/:

(15)

Solution This problem satisfies the hypotheses of Theorem 1 with ˛1Dˇ2D 1, ˛2D 0, and ˇ1D h> 0,
so there are no negative eigenvalues. If �D 0, then y.x/D AxCB, thus y.0/D B D 0. Then

hy.L/C y0.L/ D h � ALC A D A � .hLC 1/ D 0;

and it follows that A D 0 as well. Thus 0 is not an eigenvalue.

x

y
y = –tan x

2
π

2
3π

2
5π

y =
x

hL

β1 β2 β3

FIGURE 10.1.1. The solution of
Eq. (17) by geometric methods.

If � D ˛2, then
y.x/ D A cos˛x C B sin˛x:

Hence y.0/ D A D 0, so

y.x/ D B sin˛x and y0.x/ D B˛ cos˛x:

Therefore,
hy.L/C y0.L/ D hB sin˛LC B˛ cos˛L D 0:

If B ¤ 0, it follows that

tan˛L D �˛
h
D �˛L

hL
: (16)

Thus ˇ D ˛L is a (positive) solution of the equation

tan x D � x

hL
: (17)

The solutions of Eq. (17) are the points of intersection of the graphs of y.x/ D � tan x and
y.x/D x=hL, as indicated in Fig. 10.1.1. It is apparent from the figure that there is an infinite
sequence of positive roots ˇ1, ˇ2, ˇ3, : : : ; and that when n is large, ˇn is only slightly larger
than .2n � 1/�=2. See the table in Fig. 10.1.2, in which the first eight solutions of Eq. (17)
are listed for the case hL D 1. At any rate, the eigenvalues and associated eigenfunctions of
the problem in (15) are given by

�n D ˛2
n D

ˇ2
n

L2
; yn.x/ D sin˛nx D sin

ˇnx

L
(18)

for n D 1, 2, 3, : : : : Equation (17) appears frequently in certain applications (mechanical
vibrations and heat conduction are only two of many examples), and its solutions for various
values of hL are tabulated in Table 4.19 of Abramowitz and Stegun, Handbook of Mathemat-
ical Functions (New York: Dover, 1965).

n xn .2n � 1/�=2

1

2

3

4

5

6

7

8

2.0288

4.9132

7.9787

11.0855

14.2074

17.3364

20.4692

23.6043

1.5708

4.7124

7.8540

10.9956

14.1372

17.2788

20.4204

23.5619

FIGURE 10.1.2. Approximate
values of the first eight positive
solutions of tan x D �x.

Orthogonal Eigenfunctions
Recall from Section 9.1 that the familiar formulas for the coefficients in a Fourier
series follow from the orthogonality of the sine and cosine functions. Similarly, the
expansion of a given function in terms of the eigenfunctions of a Sturm–Liouville
problem depends on a crucial orthogonality property of these eigenfunctions. The
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functions �.x/ and  .x/ are said to be orthogonal on the interval Œa; b�with respect
to the weight function r.x/ provided that

Z b

a

�.x/ .x/r.x/ dx D 0: (19)

The following theorem implies that any two eigenfunctions of a regular Sturm–
Liouville problem that are associated with distinct eigenvalues are orthogonal with
respect to the weight function r.x/ in Eq. (8).

THEOREM 2 Orthogonality of Eigenfunctions

Suppose that the functions p, q, and r in the Sturm–Liouville problem in
Eqs. (8)–(9) satisfy the hypotheses of Theorem 1, and let yi .x/ and yj .x/ be
eigenfunctions associated with the distinct eigenvalues �i and �j . ThenZ b

a

yi .x/yj .x/r.x/ dx D 0: (20)

Proof: We begin with the equations

d

dx

�
p.x/

dyi

dx

�
� q.x/yi C �ir.x/yi D 0;

d

dx

�
p.x/

dyj

dx

�
� q.x/yj C �j r.x/yj D 0:

(21)

These equations imply that �i , yi and �j , yj are eigenvalue–eigenfunction pairs. If
we multiply the first equation by yj and the second by yi , then subtract the results,
we get

yj

d

dx

�
p.x/

dyi

dx

�
� yi

d

dx

�
p.x/

dyj

dx

�
C .�i � �j /r.x/yiyj D 0:

Hence

.�i � �j /yiyj r.x/ D yi

d

dx

�
p.x/

dyj

dx

�
� yj

d

dx

�
p.x/

dyi

dx

�

D d

dx

�
p.x/

�
yi

dyj

dx
� yj

dyi

dx

��
;

the latter of the two equalities being verifiable by direct differentiation. Therefore,
integration from x D a to x D b yields

.�i � �j /

Z b

a

yi .x/yj .x/r.x/ dx D
h
p.x/

�
yi .x/y

0
j .x/� yj .x/y

0
i .x/

	ib

a
: (22)

From the endpoint condition in (9), we have

˛1yi .a/ � ˛2y
0
i .a/ D 0 and ˛1yj .a/ � ˛2y

0
j .a/ D 0:
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Because ˛1 and ˛2 are not both zero, it follows that the determinant of coefficients
must be zero:

yi .a/y
0
j .a/ � yj .a/y

0
i .a/ D 0:

Similarly, the second endpoint condition in (9) implies that

yi .b/y
0
j .b/ � yj .b/y

0
i .b/ D 0:

Thus the right-hand side in Eq. (22) vanishes. Inasmuch as �i ¤ �j , the result in
(20) follows, and the proof is complete.

Eigenfunction Expansions
Now suppose that the function f .x/ can be represented in the interval Œa; b� by an
eigenfunction series

f .x/ D
1X

mD1

cmym.x/; (23)

where the functions y1, y2, y3, : : : are the eigenfunctions of the regular Sturm–
Liouville problem in Eqs. (8)–(9). To determine the coefficients c1, c2, c3, : : : ; we
generalize the technique by which we determined the ordinary Fourier coefficients
in Section 9.1. First we multiply each side of Eq. (23) by yn.x/r.x/, and then we
integrate from x D a to x D b. Under the assumption that termwise integration is
valid, we obtain

Z b

a

f .x/yn.x/r.x/ dx D
1X

mD1

cm

Z b

a

ym.x/yn.x/r.x/ dx: (24)

But because of the orthogonality in (20), the only nonzero term on the right-hand
side in Eq. (24) is the one for which m D n. Thus Eq. (24) takes the form

Z b

a

f .x/yn.x/r.x/ dx D cn

Z b

a

Œyn.x/�
2 r.x/ dx;

and therefore

cn D

Z b

a

f .x/yn.x/r.x/ dxZ b

a

Œyn.x/�
2 r.x/ dx

: (25)

We therefore define the eigenfunction series in (23)—representing f .x/ in terms of
the eigenfunctions of the given Sturm–Liouville problem—by means of the choice
of the coefficients specified by Eq. (25).

For instance, suppose that the Sturm–Liouville problem is the familiar

y00 C �y D 0 .0 < x < �/I
y.0/ D y.�/ D 0; (26)
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for which r.x/ � 1 and the eigenfunctions are yn.x/ D sinnx for n D 1, 2, 3, : : : :
Then Eq. (25) yields

cn D

Z �

0

f .x/ sinnx dxZ �

0

sin2 nx dx

D 2

�

Z �

0

f .x/ sinnx dx;

because Z �

0

sin2 x dx D �

2
:

This is the familiar formula for the Fourier sine coefficients, and so the eigenfunc-
tion series in (23) is simply the familiar Fourier sine series

f .x/ D
1X

nD1

cn sinnx

of f .x/ on Œ0; ��.
The following theorem, stated without proof, generalizes the Fourier conver-

gence theorem of Section 9.2.

THEOREM 3 Convergence of Eigenfunction Series

Let y1, y2, y3, : : : be the eigenfunctions of a regular Sturm–Liouville problem on
Œa; b�. If the function f .x/ is piecewise smooth on Œa; b�, then the eigenfunction
series in Eq. (23) converges for a < x < b to the value f .x/ wherever f is
continuous, and to the average 1

2
Œf .xC/C f .x�/� of right-hand and left-hand

limits at each point of discontinuity.

Example 6 For the Sturm–Liouville problem y00C �y D 0 (0 < x < L), y0.0/ D y.L/D 0 of Example 4,
we found the eigenfunctions yn.x/D cos.2n�1/�x=.2L/, nD 1, 2, 3, : : : : The corresponding
eigenfunction series for a function f .x/ is

f .x/ D
1X

nD1

cn cos
.2n � 1/�x

2L
(27)

with

cn D

Z L

0
f .x/ cos Œ.2n � 1/�x=2L� dxZ L

0
cos2 Œ.2n � 1/�x=2L� dx

D 2

L

Z L

0
f .x/ cos

.2n � 1/�x
2L

dx; (28)

because Z L

0
cos2 .2n � 1/�x

2L
dx D L

2
:

Thus the series in Eq. (27) is the odd half-multiple cosine series of Problem 22 of Section
9.3. Similarly, the Sturm–Liouville problem y00C �y D 0, y.0/ D y0.L/ D 0 leads to the odd
half-multiple sine series

f .x/ D
1X

nD1

cn sin
.2n � 1/�x

2L
; cn D

2

L

Z L

0
f .x/ sin

.2n � 1/�x
2L

dx (29)

of Problem 21 of Section 9.3.
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Example 7 Represent the function f .x/ D A (a constant) for 0 < x < 1 as a series of eigenfunctions of
the Sturm–Liouville problem

y00 C �y D 0 .0 < x < 1/I
y.0/ D 0; y.1/C 2y0.1/ D 0: (30)

Solution Comparing (30) with (15), we see that this is the Sturm–Liouville problem of Example 5
with L D 1 and h D 1

2 . From (17) and (18) we see that the eigenfunctions of the problem
are therefore yn.x/ D sinˇnx where ˇ1, ˇ2, ˇ3, : : : are the positive roots of the equation
tan x D �2x. Hence the coefficients in the desired series are given by

cn D

Z 1

0
A sinˇnx dxZ 1

0
sin2 ˇnx dx

: (31)

Now
Z 1

0
A sinˇnx dx D A.1 � cosˇn/=̌ n and

Z 1

0
sin2 ˇnx dx D

Z 1

0

1

2
.1 � cos 2ˇnx/ dx D

1

2

�
x � 1

2ˇn
sin 2ˇnx

�1

0

D 1

2

�
1 � sinˇn cosˇn

ˇn

�
:

Consequently, Z 1

0
sin2 ˇnx dx D

1

2

�
1C 2 cos2 ˇn

�
:

In the last step we used the fact from Eq. (17) that .sinˇn/=̌ n D �2 cosˇn. Substituting
these values for the integrals in (31), we get the eigenfunction series

f .x/ D
1X

nD1

2A.1 � cosˇn/

ˇn.1C 2 cos2 ˇn/
sinˇnx: (32)

Remark A numerical investigation of the eigenfunction series in Eq. (32) is outlined in the
computing project for this section.

Summary
According to the theorems in this section, every regular Sturm–Liouville problem
has the following three properties:

� It has an infinite sequence of eigenvalues diverging to infinity (Theorem 1).
� The eigenfunctions are orthogonal with appropriate weight function (Theorem

2).
� Any piecewise smooth function can be represented by an eigenfunction series

(Theorem 3).

There are other types of eigenvalue problems in applied mathematics that also enjoy
these three important properties. Some isolated examples will appear in subsequent
sections, though we will confine our attention largely to applications of Sturm–
Liouville problems.
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10.1 Problems
The problems for Section 3.8 deal with eigenvalues and eigen-
functions and may be used here as well. In Problems 1 through
5, verify that the eigenvalues and eigenfunctions for the indi-
cated Sturm–Liouville problem are those listed.

1. y00 C �y D 0, y0.0/ D y0.L/ D 0; �0 D 0, y0.x/ � 1 and
�n D n2�2=L2, yn.x/ D cosn�x=L

2. y00 C �y D 0, y.0/ D y0.L/ D 0; �n D .2n� 1/2�2=4L2,
yn.x/ D sin.2n � 1/�x=2L, n = 1

3. y00 C �y D 0, y0.0/ D hy.L/ C y0.L/ D 0 (h > 0);
�n D ˇ2

n=L
2, yn.x/ D cosˇnx=L (n = 1), where ˇn is

the nth positive root of tan x D hL=x. Sketch y D tan x
and y D hL=x to estimate the value of ˇn for n large.

4. y00 C �y D 0, hy.0/ � y0.0/ D y.L/ D 0 (h > 0); �n D
ˇ2

n=L
2, yn.x/ D ˇn cosˇnx=L C hL sinˇnx=L (n = 1),

where ˇn is the nth positive root of tan x D �x=hL.
5. y00C �y D 0, hy.0/� y0.0/D hy.L/C y0.L/D 0 (h > 0);
�n D ˇ2

n=L
2, yn.x/ D ˇn cosˇnx=LC hL sinˇnx=L (n =

1), where ˇn is the nth positive root of tan xD 2hLx=.x2�
h2L2/. Estimate ˇn for n large by sketching the graphs of
y D 2hL cot x and the hyperbola y D .x2 � h2L2/=x.

6. Show that the Sturm–Liouville problem y00 C �y D 0,
y.0/D y0.L/D 0 leads to the odd half-multiple sine series
in Eq. (29) (see Problem 2).

In Problems 7 through 10, represent the given function f .x/
as a series of eigenfunctions of the indicated Sturm–Liouville
problem.

7. f .x/ � 1; the Sturm–Liouville problem of Example 5
8. f .x/ � 1; the Sturm–Liouville problem of Problem 3
9. f .x/ D x; the Sturm–Liouville problem of Example 5

with L D 1
10. f .x/D x; the Sturm–Liouville problem of Problem 3 with

L D 1

Problems 11 through 14 deal with the regular Sturm–Liouville
problem

y00 C �y D 0 .0 < x < L/I
y.0/ D 0; hy.L/ � y0.L/ D 0; (33)

where h > 0. Note that Theorem 1 does not exclude the possi-
bility of negative eigenvalues.

11. Show that �0 D 0 is an eigenvalue if and only if hL D 1,
in which case the associated eigenfunction is y0.x/ D x.

12. Show that the problem in (33) has a single negative eigen-
value �0 if and only if hL> 1, in which case �0D�ˇ2

0=L
2

and y0.x/ D sinhˇ0x=L, where ˇ0 is the positive root of
the equation tanh x D x=hL. (Suggestion: Sketch the
graphs of y D tanh x and y D x=hL.)

13. Show that the positive eigenvalues and associated eigen-
functions of the problem in (33) are �n D ˇ2

n=L
2 and

yn.x/ D sinˇnx=L (n = 1), where ˇn is the nth positive
root of tan x D x=hL.

14. Suppose that hL D 1 in (33) and that f .x/ is piecewise
smooth. Show that

f .x/ D c0x C
1X

nD1

cn sin
ˇnx

L
;

where fˇng11 are the positive roots of tan x D x, and

c0 D
3

L3

Z L

0
xf .x/ dx;

cn D
2

L sin2 ˇn

Z L

0
f .x/ sin

ˇnx

L
dx:

15. Show that the eigenvalues and eigenfunctions of the
Sturm–Liouville problem

y00 C �y D 0 .0 < x < 1/I
y.0/C y0.0/ D 0; y.1/ D 0

are given by �0 D 0, y0.x/ D x � 1 and

�n D ˇ2
n; yn.x/ D ˇn cosˇnx � sinˇnx

for n= 1, where fˇng11 are the positive roots of tan x D x.
16. Beginning with the equation

A.x/y00 C B.x/y0 C C.x/y C �D.x/y D 0;

first divide by A.x/ and then multiply by

p.x/ D exp
�Z

B.x/

A.x/
dx

�
:

Show that the resulting equation can be written in the
Sturm–Liouville form

d

dx

�
p.x/

dy

dx

�
� q.x/y C �r.x/y D 0

with q.x/ D �p.x/C.x/=A.x/ and

r.x/ D p.x/D.x/=A.x/:

Loaded Uniform Beam
Consider a uniform beam with (downward) load w.x/, whose
deflection function y.x/ satisfies the fourth-order equation

EIy.4/ D w.x/

for 0 < x < L and the endpoint conditions

� y D y00 D 0 at a hinged (or simply supported) end;
� y D y0 D 0 at a fixed (built-in) end;
� y00 D y.3/ D 0 at a free end.

In the case in which each end is hinged, y.x/ can be found by
the Fourier series method discussed in Section 9.4—that is, by
substituting the Fourier series

y.x/ D
X

bn sin
n�x

L
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in the differential equation

EIy.4/ D w.x/ D
1X

nD1

cn sin
n�x

L
(34)

(where cn is the nth Fourier sine coefficient of w.x/) to deter-
mine the coefficients fbng.
17. Suppose that w is constant in Eq. (34). Apply the method

described here to obtain the deflection function

y.x/ D 4wL4

EI�5

X
n odd

1

n5
sin

n�x

L
:

18. Suppose that w D bx in (34). Derive the deflection func-
tion

y.x/ D 2bL5

EI�5

1X
nD1

.�1/nC1

n5
sin

n�x

L
:

The method used in Problems 17 and 18 succeeds because
the functions sin.n�x=L/ satisfy the hinged=hinged conditions
y.0/ D y00.0/ D y.L/ D y00.L/ D 0, so that y.x/ does also.

If, instead, both ends of the beam are fixed, in place of
the sine functions we can use the eigenfunctions of the problem

y.4/ � �y D 0 .0 < x < L/I
y.0/ D y0.0/ D 0; y.L/ D y0.L/ D 0;

(35)

because these eigenfunctions satisfy the fixed=fixed endpoint
conditions. The eigenvalues of this problem are all positive,
and by Problem 22 the associated eigenfunctions are orthogo-
nal with weight function r.x/ � 1. Hence we can write

w.x/ D
1X

nD1

cnyn.x/; cn D

Z L

0
w.x/yn.x/ dxZ L

0
Œyn.x/�

2 dx

; (36)

according to the analog of Theorem 3 that holds for the prob-
lem in (35). If we write � D ˛4, then yn.x/ is of the form

y.x/ D A cosh˛x

C B sinh˛x C C cos˛x CD sin˛x; (37)

with ˛ D ˛n, so it follows that y.4/
n .x/ D ˛4

nyn.x/. When we
substitute the series y.x/ DP

bnyn.x/—which evidently sat-
isfies the fixed=fixed endpoint conditions—in (35), we obtain

EI

1X
nD1

bn˛
4
nyn.x/ D

1X
nD1

cnyn.x/:

Hence EIbn˛
4
n D cn, so the deflection function of the beam is

y.x/ D
1X

nD1

cn

EI˛4
n

yn.x/: (38)

The following problems deal with the eigenvalues and
eigenfunctions of the problem in (35) and similar problems.

19. Begin with the general solution in (37) of y.4/ � ˛4y D 0.
First note that y.0/ D y0.0/ D 0 implies that C D �A and
D D �B . Then impose the conditions y.L/ D y0.L/ D 0
to get two homogeneous linear equations in A and B .
Hence the determinant of coefficients of A and B must
vanish; deduce from this that cosh˛L cos˛L D 1. Con-
clude that the nth eigenvalue is �n D ˇ4

n=L
4 where fˇng11

are the positive roots of the equation cosh x cos x D 1 (see
Fig. 10.1.3). Finally, show that an associated eigenfunc-
tion is

yn.x/ D .sinhˇn � sinˇn/

�
cosh

ˇnx

L
� cos

ˇnx

L

�

� .coshˇn � cosˇn/

�
sinh

ˇnx

L
� sin

ˇnx

L

�
:

β1 β2 β3
x

y

y = cos x

y = 1
cosh x

FIGURE 10.1.3. The solutions of cosh x cos x D 1
(the graph is not drawn to scale).

20. For the case of a cantilever (fixed=free) beam, we need to
solve the eigenvalue problem

y.4/ � �y D 0 .0 < x < L/I
y.0/ D y0.0/ D 0; y00.L/ D y.3/.L/ D 0:

Proceeding as in Problem 19, show that the nth eigenvalue
is �n D ˇ4

n=L
4, where fˇng11 are the positive roots of

the equation cosh x cos x D �1. Then find the associated
eigenfunction.

21. For the eigenvalue problem

y.4/ � �y D 0; y.0/ D y0.0/ D 0 D y.L/ D y00.L/

corresponding to a fixed=hinged beam, show that the nth
eigenvalue is �n D ˇ4

n=L
4, where fˇng11 are the positive

roots of the equation tanh x D tan x.

22. Suppose that y.4/
m D �mym and y.4/

n D �nyn. Apply the
method of proof of Theorem 2 and integrate by parts twice
to show that

.�m � �n/

Z L

0
ym.x/yn.x/ dx

D
"
yn.x/

d3ym

dx3
� ym.x/

d3yn

dx3

� dyn

dx

d2ym

dx2
C dym

dx

d2yn

dx2

#L

0

:

Conclude that if each endpoint condition is either yD y0D
0, y D y00 D 0, or y00 D y.3/ D 0, then ym and yn are or-
thogonal if �m ¤ �n.
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10.1 Application Numerical Eigenfunction Expansions
We outline a MATLAB-based numerical investigation of the eigenfunction series

f .x/ D
1X

nD1

2.1 � cosˇn/

ˇn.1C 2 cos2 ˇn/
sinˇnx (1)

for 0 < x < 1. (We have taken A D 1 in Eq. (32) of this section.) Maple and
Mathematica versions of this investigation are included in the applications manual
that accompanies this text.

We saw in the solution of Example 7 that the values fˇng11 in Eq. (1) are
the positive solutions of the equation tanx D �2x. Just as indicated in Fig. 10.1.1
(for the similar equation tan x D �x), the value of ˇn is (for n large) just slightly
larger than .2n � 1/�=2. But because of the discontinuities in the tangent function
near these solutions, it is best for automatic root-finding to rewrite our eigenvalue
equation in the form

sin x C 2x cos x D 0: (2)

Then the MATLAB command

b = fsolve('sin(x)+2�x.�cos(x)', pi/2+0.1+(0:pi:99�pi));
quickly generates the first 100 values of ˇn (see Fig. 10.1.4). (We have provided a

n ˇn

1

2

3

4

5

6

7

8

9

10

1.8366

4.8158

7.9171

11.0408

14.1724

17.3076

20.4448

23.5831

26.7222

29.8619

FIGURE 10.1.4. The first 10
positive solutions of Eq. (2).

vector
x0 D

�

2
C 0:1C 
 0 � 2� 3� : : : 99�

�
of 100 initial guesses.) The commands

1.00.50.0
x

–1.5

0.0

–1.0

0.5

–0.5

1.0

1.5

y

n = 1n = 2

n = 3n = 4

FIGURE 10.1.5. The eigenfunctions
yn.x/ D sin ˇnx for n D 1, 2, 3, 4.

x = 0 : 1/200 : 1;
for n = 1 : 4

plot(x, sin(b(n)�x)
end

graph the first four eigenfunctions (Fig. 10.1.5).
You may find it interesting to apply the MATLAB command diff(b) to verify

that ˇn �ˇn�1 � 3:1416 for n = 65. Thus successive eigenvalues do, indeed, appear
to be separated by � . The command

c = 2�(1 -- cos(b))./(b.�(1 + 2�cos(b).^2));
calculates the first 100 coefficients in the eigenfunction series in (1). We find that

f .x/ � .1:2083/ sinˇ1x C .0:3646/ sinˇ2x C .0:2664/ sinˇ3x

C .0:1722/ sinˇ4x C � � � C .0:0066/ sinˇ97x C .0:0065/ sinˇ98x

C .0:0065/ sinˇ99x C .0:0064/ sinˇ100x

with the numerical coefficients evidently decreasing quite slowly. Finally, the com-
mands

x = 0 : 1/500 : 1;
y = zeros(size(x));
for n = 1 : 100

y = y + c(n)�sin(b(n)�x);
end
plot(x,y)

graph this partial sum (Fig. 10.1.6). Note the Gibbs phenomenon that appears at
x D 0.
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0 1

0

1

x

y
25 terms

–1

–1 0 1

0

1

x

y

50 terms

–1

–1 0 1

0

1

x

y

100 terms

–1

–1

FIGURE 10.1.6. Graphs with N D 25, N D 50, N D 100 of the partial sum
NX

nD1

cn sin ˇnx of the eigenfunction series in Eq. (1).

You can check your understanding of eigenfunction expansions by reworking
Example 7, except on the interval 0 < x <L and with the right-endpoint condition in
(30) replaced with y.L/Cky0.L/D 0. Select your own valuesL>1 and k >2. Then
calculate the resulting values of ˇn and construct graphs like those in Figs. 10.1.5
and 10.1.6. In Fig. 10.1.6 we see convergence to f .x/ � 1 within the interval
0 < x < 1, but a typical Gibbs phenomenon at x D 0.

10.2 Applications of Eigenfunction Series
This section is devoted to three examples that illustrate the application of the eigen-
function series of Section 10.1 to boundary value problems. In each, the method of
separation of variables leads to a Sturm–Liouville problem in which the eigenfunc-
tions are used as building blocks to construct a solution satisfying the nonhomoge-
neous boundary condition in the original problem.

Example 1 A uniform slab of material with thermal diffusivity k occupies the space region 0 5 x 5 L

and initially has temperature U0 throughout. Beginning at time t D 0, the face x D 0 is held
at temperature zero, while at the face x D L, heat exchange takes place with a surrounding
medium at temperature zero, so huCux D 0 there (by Problem 23 of Section 9.5; the constant
h is an appropriate heat transfer coefficient). We want to find the temperature u.x; t/ of the
slab at position x at time t ; u.x; t/ satisfies the boundary value problem

ut D kuxx (0 < x < L, t > 0); (1)

u.0; t/ D 0; (2)
hu.L; t/C ux.L; t/ D 0; (3)

u.x; 0/ D U0: (4)

Solution As in Section 9.5, we begin by substituting u.x; t/ D X.x/T .t/ in Eq. (1) and thereby obtain

X 00

X
D T 0

kT
D ��

as usual, so

X 00 C �X D T 0 C �kT D 0: (5)

Now Eq. (2) gives X.0/ D 0, and Eq. (3) yields hX.L/T .t/C X 0.L/T .t/ D 0. We naturally
assume that T .t/ is not identically zero (because we are not looking for a trivial solution); it
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follows that X.x/ and � satisfy the Sturm–Liouville problem

X 00 C �X D 0 .0 < x < L/I
X.0/ D 0; hX.L/CX 0.L/ D 0: (6)

In Example 3 of Section 10.1, we found that the eigenvalues and associated eigenfunctions
of this problem are

�n D
ˇ2

n

L2
; Xn.x/ D sin

ˇnx

L
(7)

for n D 1, 2, 3, : : : ; where ˇn denotes the nth positive root of the equation

tan x D � x

hL
: (8)

When we substitute � D ˇ2
n=L

2 in the right-hand equation in (5), we get the first-order
equation

T 0
n D �

ˇ2
nk

L2
Tn

with solution (to within a multiplicative constant)

Tn.t/ D exp

 
�ˇ

2
nkt

L2

!
: (9)

Consequently, each of the functions

un.x; t/ D Xn.x/Tn.t/ D exp

 
�ˇ

2
nkt

L2

!
sin

ˇnx

L

satisfies the homogeneous conditions in (1)–(3) of the boundary value problem. It remains
only for us to choose the coefficients so that the formal series

u.x; t/ D
1X

nD1

cn exp

 
�ˇ

2
nkt

L2

!
sin

ˇnx

L
(10)

also satisfies the nonhomogeneous condition

u.x; 0/ D
1X

nD1

cn sin
ˇnx

L
D U0: (11)

Now r.x/ � 1 in the Sturm–Liouville problem in (6), so by Theorem 3 and Eq. (25) of
Section 10.1, we can satisfy Eq. (11) by choosing

cn D

Z L

0
U0 sin

ˇnx

L
dxZ L

0
sin2 ˇnx

L
dx

:

But Z L

0
U0 sin

ˇnx

L
dx D U0L

ˇn
.1 � cosˇn/ ;

and by essentially the same computations as in Example 5 of Section 10.1 we find thatZ L

0
sin2 ˇnx

L
dx D 1

2h

�
hLC cos2 ˇn

�
:

Hence

cn D
2U0hL.1 � cos2 ˇn/

ˇn.hLC cos2 ˇn/
;
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and substitution of this value in (10) yields the formal series solution

u.x; t/ D 2U0hL

1X
nD1

1 � cosˇn

ˇn.hLC cos2 ˇn/
exp

 
�ˇ

2
nkt

L2

!
sin

ˇnx

L
: (12)

Remark A numerical investigation of the eigenfunction series in (12) is outlined in the
computing project for this section.

Longitudinal Vibrations of Bars
Suppose that a uniform elastic bar has length L, cross-sectional area A, and density
ı (mass per unit volume), and occupies the interval 05 x 5Lwhen it is unstretched.
We consider longitudinal vibrations of the bar in which each cross section (normal
to the x-axis) moves only in the x-direction. We can then describe the motion of the
bar in terms of the displacement u.x; t/ at time t of the cross section whose position
is x when the bar is unstretched (and at rest); we may refer to this particular cross
section as the cross section x of the bar. Then the position at time t of the cross
section x is x C u.x; t/. It follows (see Problem 13) from Hooke’s law and the
definition of the Young’s modulus E of the material of the bar that the force F.x; t/
exerted on the cross section x by the part of the bar to the left of this section is

F.x; t/ D �AEux.x; t/; (13)

the minus sign signifying that F acts to the left when ux.x; t/ > 0. To see why this
is so, we consider the segment of the bar that lies between cross section x and cross
section x C�x (Fig. 10.2.1). At time t the ends of this segment are at x C u.x; t/
and x C�x C u.x C�x; t/, respectively, so its length (originally �x > 0) is now
(using the mean value theorem)

x x + x

F(x + x, t )F(x, t ) Δ

Δ

FIGURE 10.2.1. A small segment of
the bar.

�x C u.x C�x; t/ � u.x; t/ D �x C ux. Ox; t/�x

for some Ox between x and x C�x. So if ux.x; t/ > 0 and �x is sufficiently small,
then (by continuity) ux. Ox; t/�x > 0. Hence the segment is indeed stretched to a
length greater than �x. And therefore forces F.x; t/ and F.xC�x; t/ acting to the
left and right, respectively (as indicated in Fig. 10.2.1), would be required to sustain
this stretching.

We take Eq. (13) as the starting point for our derivation of the partial differen-
tial equation that the displacement function u.x; t/ satisfies when the displacements
are sufficiently small that Hooke’s law may be applied. If we apply Newton’s second
law of motion to the segment of the bar between cross section x and cross section
x C�x, we get

.ıA�x/ut t .x; t/ � �F.x C�x; t/C F.x; t/
D AE Œux.x C�x; t/ � ux.x; t/� ; (14)

where x denotes the midpoint of Œx; x C�x�, because this segment has mass ıA�x
and approximate acceleration ut t .x; t/. When we divide the expression in (14) by
ıA�x and then take the limit as �x ! 0, the result is the one-dimensional wave
equation

@2u

@t2
D a2 @

2u

@x2
; (15)
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where

a2 D E

ı
: (16)

Because Eq. (15) is identical to the equation of the vibrating string, it follows from
our discussion of the d’Alembert solution in Section 9.6 that the (free) longitu-
dinal vibrations of a bar with fixed ends are represented by waves of the form
u.x; t/ D g.x ˙ at/. The velocity a D

p
E=ı with which these waves travel is

the velocity of sound in the material of the bar. Indeed, the wave equation in (15)
also describes ordinary one-dimensional sound waves in a gas in a pipe. In this
case, E in Eq. (16) denotes the bulk modulus (fractional increase in density per unit
increase in pressure) of the gas and ı is its equilibrium density.

Example 2 A bar has length L, density ı, cross-sectional area A, Young’s modulus E, and total mass
M D ıAL. Its end x D 0 is fixed and a mass m is attached to its free end (Fig. 10.2.2). The
bar initially is stretched linearly by moving m a distance d D bL to the right (so the cross
section x of the bar is initially displaced by bx). Then at time t D 0 the system is released

x
m

FIGURE 10.2.2. The bar-and-mass
system of Example 2.

from rest. To determine the subsequent vibrations of the bar, we must solve the boundary
value problem

ut t D a2uxx (0 < x < L, t > 0); (17a)

u.0; t/ D 0; (17b)
mut t .L; t/ D �AEux.L; t/; (17c)

u.x; 0/ D bx; ut .x; 0/ D 0: (17d)

Solution The endpoint condition at x D L in (17c) comes from equating ma D mut t for the mass with
the force F D �AEux given in (13)—the mass being acted on only by the bar. Substitution
of u.x; t/ D X.x/T .t/ in ut t D a2uxx leads, as usual, to the equations

X 00 C �X D 0; T 00 C �a2T D 0: (18)

The boundary condition in (17b) yields u.0; t/ D X.0/T .t/ D 0, so one endpoint condition is
X.0/ D 0. Because ut t D XT 00 and ux D X 0T , Eq. (17c) yields

mX.L/T 00.t/ D �AEX 0.L/T .t/

as the other endpoint condition. Substitution of

T 00.t/ D ��a2T .t/ D ��E
ı
T .t/;

followed by division by �ET.t/=ı, givesm�X.L/ D AıX 0.L/. Thus the eigenvalue problem
for X.x/ is

X 00 C �X D 0I
X.0/ D 0; m�X.L/ D AıX 0.L/:

(19)

It is important to note that—because of the presence of � in the right-endpoint condition—
this is not a Sturm–Liouville problem, so Theorems 1 through 3 of Section 10.1 do not apply.
Nevertheless, all eigenvalues of (19) are positive (Problem 9). We therefore write � D ˛2,
and note that X.x/ D sin˛x satisfies X.0/ D 0. The right-endpoint condition in (19) then
yields

m˛2 sin˛L D Aı˛ cos˛L;

and thus

tan˛L D Aı

m˛
D M=m

˛L
(20)
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because M D AıL. We put ˇ D ˛L; it follows that the eigenvalues of (19) and associated
eigenfunctions are

�n D
ˇ2

n

L2
; Xn.x/ D sin

ˇnx

L
(21)

for n D 1, 2, 3, : : : ; where fˇng11 are the positive roots of the equation

tan x D M=m

x
; (22)

indicated in Fig. 10.2.3.
Next, we deduce in the usual way from

T 00
n C

ˇ2
na

2

L2
Tn D 0; T 0

n.0/ D 0 (23)

that Tn.t/ D cos.ˇnat=L/ to within a multiplicative constant. Thus it remains only to find

2
π

2
3π

2
5π x

y
y = tan x

y = M /m
x

β1 β2 β3

β4

FIGURE 10.2.3. The positive roots
fˇng1

1
of Eq. (22).

coefficients fcng11 so that the series

u.x; t/ D
1X

nD1

cn cos
ˇnat

L
sin

ˇnx

L
(24)

satisfies the nonhomogeneous condition

u.x; 0/ D
1X

nD1

cn sin
ˇnx

L
D f .x/ D bx: (25)

Caution is required because (19) is not a Sturm–Liouville problem. Indeed, we ask you to
show in Problems 14 and 15 that the eigenfunctions fsin.ˇnx=L/g11 are not orthogonal on
the interval Œ0; L� with respect to the putative weight function r.x/ � 1, so the coefficient
formula in Eq. (25), Section 10.1, is not applicable here.

But in the case of longitudinal vibrations one ordinarily is not so much concerned with
the displacement function u.x; t/ itself. Of greater interest is the question of how the bar’s
natural frequencies of vibration are affected by the mass m on its free end. Whatever the
coefficients in Eq. (25) may be, we see from Eq. (24) that the nth circular frequency is

!n D
ˇna

L
D ˇn

L

r
E

ı
; (26)

where ˇn is the nth positive solution of Eq. (22), which can be rewritten in the form

cot x D mx

M
: (27)

Thus the natural frequencies are determined by the ratio of the mass m to the total mass M
of the bar.

Remark The case of no mass on the free end of the bar corresponds tomD 0. Then Eq. (27)
reduces to the equation cos x D 0, whose nth positive solution is ˇn D .2n� 1/�=2. Then the
nth circular frequency is given by

!n D
.2n � 1/�

2L

r
E

ı
: (28)

In Problem 8 we ask you to derive this result directly, beginning with the boundary value
problem for a bar with one end fixed and the other end (completely) free.
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Transverse Vibrations of Bars
We now discuss vibrations of a uniform elastic bar in which the motion of each

y (x, t )

L

y

x

FIGURE 10.2.4. A bar undergoing
transverse vibrations.

point is not longitudinal, but instead is perpendicular to the x-axis (the axis of the
bar in its equilibrium position). Let y.x; t/ denote the transverse displacement of
the cross section at x at time t , as indicated in Fig. 10.2.4. We merely want to
outline a derivation of the partial differential equation that the deflection function
y.x; t/ satisfies. Recall first that in Section 3.8 we introduced the equationEIy.4/ D
F for the static deflection of a bar or beam under the influence of a transverse
external force F (per unit length). According to a general dynamical principle, we
can transform the static equation EIy.4/ D F into a dynamical equation (with no
external force) by replacing F with the reversed inertial force F D ��yt t , where �
is the linear density (mass=length) of the bar, and also by replacing y.4/ with yxxxx .
This gives

EI
@4y

@x4
D ��@

2y

@t2
;

which may be written in the form

@2y

@t2
C a4 @

4y

@x4
D 0; (29)

where

a4 D EI

�
: (30)

The following example illustrates the solution of this fourth-order partial differential
equation by the method of separation of variables.

Example 3 A uniform bar with linear density �, Young’s modulus E, and cross-sectional moment of
inertia I is simply supported (or hinged) at its two ends x D 0 and x D L. If the bar is set
in motion from rest with given initial position f .x/, then its displacement function y.x; t/
satisfies the boundary value problem

yt t C a4yxxxx D 0 (0 < x < L, t > 0); (31a)

y.0; t/ D yxx.0; t/ D y.L; t/ D yxx.L; t/ D 0; (31b)

y.x; 0/ D f .x/; yt .x; 0/ D 0: (31c)

Find y.x; t/. The boundary conditions in (31b) are the hinged-end conditions that we accept
without proof, and those in (31c) are the initial conditions.

Solution Substitution of y.x; t/ D X.x/T .t/ in the differential equation yields XT 00 C
a4X .4/T D 0, so

X .4/

X
D � T

00

a4T
D �: (32)

To determine the sign of �, we reason that the equation

T 00 C �a4T D 0 (33)

must have trigonometric rather than exponential solutions. The reason is that on the basis
of practical experience—with tuning forks or xylophone bars, for instance—one expects pe-
riodic vibrations to take place. This could not occur if � were negative and Eq. (33) had
exponential solutions. Hence � must be positive, and it is convenient to write � D ˛4 > 0.
Then X.t/ must satisfy the equation

X .4/.x/ � ˛4X.x/ D 0; (34)
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which has the general solution

X.x/ D A cos˛x C B sin˛x C C cosh˛x CD sinh˛x;

with
X 00.t/ D ˛2.�A cos˛x � B sin˛x C C cosh˛x CD sinh˛x/:

The endpoint conditions in (31) yield

X.0/ D X 00.0/ D X.L/ D X 00.L/ D 0: (35)

Hence
X.0/ D AC C D 0 and X 00.0/ D �AC C D 0;

and these two equations imply that A D C D 0. Therefore,

X.L/ D B sin˛LCD sinh˛L D 0

and
X 00.L/ D ˛2.�B sin˛LCD sinh˛L/ D 0:

It follows that
B sin˛L D 0 and D sinh˛L D 0:

But sinh˛L ¤ 0 because ˛ ¤ 0; consequently, D D 0. Hence B ¤ 0 if we are to have a
nontrivial solution, so sin˛L D 0. Thus ˛ must be an integral multiple of �=L. Therefore,
the eigenvalues and associated eigenfunctions of the problem determined by Eqs. (34) and
(35) are

�n D ˛4
n D

n4�4

L4
; Xn.x/ D sin

n�x

L
(36)

for n D 1, 2, 3, : : : :
With � D n4�4=L4 in (33) we get the equation

T 00
n C

n4�4a4

L4
Tn D 0: (37)

Because the initial condition yt .x; 0/ D 0 yields T 0
n.0/ D 0, we take

Tn.t/ D cos
n2�2a2t

L2
: (38)

Combining the results in (36) and (38), we construct the series

y.x; t/ D
1X

nD1

cn cos
n2�2a2t

L2
sin

n�x

L
(39)

that formally satisfies the partial differential equation in (31) and the homogeneous boundary
conditions. The nonhomogeneous condition is

y.x; 0/ D
1X

nD1

cn sin
n�x

L
D f .x/;

so we choose the Fourier sine coefficients, given by

cn D
2

L

Z L

0
f .x/ sin

n�x

L
dx; (40)

in order for Eq. (39) to provide a formal series solution.
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Note that the circular frequency of the nth term in (39) is

!n D
n2�2a2

L2
D n2!1; (41)

where the fundamental frequency of the bar is

!1 D
�2a2

L2
D �2

L2

s
EI

�
: (42)

Because the frequency of each of the higher harmonics is an integral multiple of
!1, the sound of a vibrating bar with simply supported ends is musical. Because
the higher frequencies fn2!1g12 are sparser than the higher frequencies fn!1g12 of
a vibrating string, the tone of a vibrating bar is purer than that of a vibrating string.
This partly accounts for the silkiness of the sound of the vibraphone as played by
Milt Jackson, former member of the Modern Jazz Quartet.

10.2 Problems
Find formal series solutions of the boundary value problems in
Problems 1 through 6. Express each answer in the form given
in Problem 1.

1. ut D kuxx (0 < x < L, t > 0); ux.0; t/ D hu.L; t/C
ux.L; t/ D 0, u.x; 0/ D f .x/
Answer:

u.x; t/ D
1X

nD1

cn exp

 
�ˇ

2
nkt

L2

!
cos

ˇnx

L
;

where fˇng11 are the positive roots of the equation tan xD
hL=x and

cn D
2h

hLC sin2 ˇn

Z L

0
f .x/ cos

ˇnx

L
dx:

2. uxx C uyy D 0 (0 < x < L, 0 < y < L); u.0; y/ D
hu.L; y/C ux.L; y/ D 0, u.x;L/ D 0, u.x; 0/ D f .x/

3. uxx C uyy D 0 (0 < x < L, 0 < y < L); uy.x; 0/ D
hu.x; L/C uy.x; L/ D 0, u.L; y/ D 0, u.0; y/ D g.y/

4. uxx C uyy D 0 (0 < x < L, y > 0); u.0; y/ D
hu.L; y/C ux.L; y/ D 0, u.x; y/ bounded as y ! C1,
u.x; 0/ D f .x/

5. ut D kuxx (0 < x < L, t > 0); hu.0; t/ � ux.0; t/ D
u.L; t/ D 0, u.x; 0/ D f .x/

6. ut D kuxx (0 < x < L, t > 0); hu.0; t/ � ux.0; t/ D
hu.L; t/C ux.L; t/ D 0, u.x; 0/ D f .x/

7. Let u.x; y/ denote the bounded steady-state temperature
in an infinitely high wall with base y D 0 and faces x D 0
and x D 1. The face x D 0 is insulated, the base y D 0 is
kept at temperature 100ıC, and heat transfer with h D 1

takes place at the face x D 1. Derive the solution

u.x; y/ D 200
1X

nD1

exp .�˛ny/ sin˛n cos˛nx

˛n C sin˛n cos˛n
;

where f˛ng11 are the positive roots of the equation cot x D
x. Given ˛1 D 0:860, ˛2 D 3:426, ˛3 D 6:437, and
˛4 D 9:529, calculate the temperature u.1; 1/ accurate to
0:1ıC.

8. If the bar in Example 2 has no mass attached to the end
x D L, then Eq. (17c) is replaced with the free end con-
dition ux.L; t/ D 0. Separate variables in the resulting
boundary value problem to derive the series solution

u.x; t/ D
1X

nD1

cn cos
.2n � 1/�at

2L
sin

.2n � 1/�x
2L

;

where

cn D
2

L

Z L

0
bx sin

.2n � 1/�x
2L

dx D 8bL.�1/nC1

.2n � 1/2�2
:

In particular, the bar’s natural frequencies of longitudinal
vibration are given by Eq. (28).

9. (a) Show that �D 0 is not an eigenvalue of the problem in
(19). (b) Show that this problem has no negative eigen-
values. (Suggestion: Sketch the graphs y D tanh x and
y D �k=x with k > 0.)

10. Calculate the speed (in miles per hour) of longitudinal
sound waves in each case. (a) Steel, with ı D 7:75 g=cm3

and E D 2 � 1012 in cgs units. (b) Water, with ı D 1

g=cm3 and bulk modulus K D 2:25 � 1010 in cgs units.
11. Consider a mass m D nm0 of an ideal gas of molecular

weight m0 whose pressure p and volume V satisfy the
law pV D nRTK , where n is the number of moles of the
gas, R D 8314 in mks units, and TK D TC C 273, where
TC is the Celsius temperature. The bulk modulus of the
gas is K D �p, where the value of the dimensionless con-
stant � is 1:4 for air having molecular weight m0 D 29.
(a) Show that the velocity of sound in this gas is

a D
r
K

ı
D
s
�RTK

m0
:
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(b) Use this formula to show that the speed of sound
in air at Celsius temperature TC is approximately 740 C
.1:36/TC miles per hour.

12. Suppose that the free end of the bar of Example 2 is
attached to a spring (rather than to a mass), as shown
in Fig. 10.2.5. The endpoint condition then becomes
ku.L; t/ C AEux.L; t/ D 0. (Why?) Assume that
u.x; 0/ D f .x/ and that ut .x; 0/ D 0. Derive a solution
of the form

u.x; t/ D
1X

nD1

cn cos
ˇnat

L
sin

ˇnx

L
;

where fˇng11 are the positive roots of the equation tan xD
�AEx=kL.

k

FIGURE 10.2.5. The bar of Problem 12.

13. If a bar has natural length L, cross-sectional area A, and
Young’s modulus E, then (as a consequence of Hooke’s
law) the axial force at each end required to stretch it the
small amount �L is F D .AE �L/=L. Apply this result
to a segment of the bar of natural length L D �x between
the cross sections at x and x C�x that is stretched by the
amount�LD u.xC�x; t/� u.x; t/. Then let �x! 0 to
derive Eq. (13).

14. Show that the eigenfunctions fXn.x/g11 of the problem in
(19) are not orthogonal. (Suggestion: Apply Eq. (22) of
Section 10.1 to show that if m ¤ n, thenZ L

0
Xm.x/Xn.x/ dx D �

m

Aı
Xm.L/Xn.L/:/

15. Show that the eigenfunctions fsinˇnx=Lg11 of the prob-
lem in (19) are not orthogonal; do so by obtaining the ex-
plicit value of the integralZ L

0
sin

ˇmx

L
sin

ˇnx

L
dx:

(Suggestion: Use the fact that fˇng11 are the roots of the
equation x tan x DM=m.)

16. According to Problem 19 of Section 9.7, the temperature
u.r; t/ in a uniform solid spherical ball of radius a satisfies
the partial differential equation .ru/t D k.ru/rr . Suppose
that the ball has initial temperature u.r; 0/D f .r/ and that
its surface r D a is insulated, so that ur .a; t/ D 0. Substi-
tute v.r; t/ D ru.r; t/ to derive the solution

u.r; t/ D c0 C
1X

nD1

cn

r
exp

 
�ˇ

2
nkt

a2

!
sin

ˇnr

a
;

where fˇng11 are the positive roots of the equation tan xD
x and

c0 D
3

a3

Z a

0
r2f .r/ dr;

cn D
2

a sin2 ˇn

Z a

0
rf .r/ sin

ˇnr

a
dr

(see Problem 14 of Section 10.1).
17. A problem concerning the diffusion of gas through a mem-

brane leads to the boundary value problem

ut D kuxx (0 < x < L, t > 0);

u.0; t/ D ut .L; t/C hkux.L; t/ D 0;
u.x; 0/ D 1:

Derive the solution

u.x; t/ D 4
1X

nD1

1 � cosˇn

2ˇn � sin 2ˇn
exp

 
�ˇ

2
nkt

L2

!
sin

ˇnx

L
;

where fˇng11 are the positive roots of the equation
x tan x D hL.

18. Suppose that the simply supported uniform bar of Exam-
ple 3 has, instead, initial position y.x; 0/ D 0 and initial
velocity yt .x; 0/ D g.x/. Then derive the solution

y.x; t/ D
1X

nD1

cn sin
n2�2a2t

L2
sin

n�x

L
;

where

cn D
2L

n2�2a2

Z L

0
g.x/ sin

n�x

L
dx:

19. To approximate the effect of an initial momentum impulse
P applied at the midpoint x D L=2 of a simply supported
bar, substitute

g.x/ D
8<:
P

2�

if
L

2
� 
 < x < L

2
C 
,

0 otherwise

in the result of Problem 18. Then let 
 ! 0 to obtain the
solution

y.x; t/ D C
1X

nD1

1

n2
sin

n�

2
sin

n2�2a2t

L2
sin

n�x

L
;

where

C D 2PL

�2
p
EI�

:

20. (a) If g.x/ D v0 (a constant) in Problem 18, show that

y.x; t/ D 4v0L
2

�3a2

X
n odd

1

n3
sin

n2�2a2t

L2
sin

n�x

L
:

This describes the vibrations of a hinged bar lying cross-
wise in the back of a pickup truck that hits a brick wall
with speed v0 at time t D 0. (b) Now suppose that the
bar is made of steel .E D 2 � 1012 dyn=cm2, ı D 7:75

g=cm3), has a square cross section with edge a D 1 in. (so
that I D 1

12a
4), and length L D 19 in. What is its funda-

mental frequency (in hertz)?
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10.2 Application Numerical Heat Flow Investigations
We outline a Mathematica-based numerical investigation of the temperature func-
tion

u.x; t/ D 2u0hL

1X
nD1

1 � cosˇn

ˇn.hLC cos2 ˇn/
exp

�
�ˇ

2
nkt

L2

�
sin

ˇnx

L
(1)

of the heated slab of Example 1 in this section. Maple and MATLAB versions of this
investigation are included in the applications manual that accompanies this text.

We suppose that the slab has thickness LD 50 cm, uniform initial temperature
u0 D 100ı, fixed temperature 0ı at the slab’s left-hand boundary x D 0, thermal
diffusivity k D 0:15 (for iron), and heat transfer coefficient hD 0:1 at the right-hand
boundary x D L. According to Eq. (8) of this section, the eigenvalues fˇng11 in (1)
are the positive solutions of the equation tan x D �x=.hL/. As in Fig. 10.1.1, we
see that if n is large then ˇn is slightly larger than .2n � 1/�=2. We can therefore
approximate the first 20 of these eigenvalues using the commands

L = 50; h = 0.1;
roots = Table[ FindRoot[ Tan[x] == --x/(h�L),

{x, (2�n -- 1)�Pi/2 + 0.1}], {n,1,20}];
beta = x /. roots

The first ten of these eigenvalues are listed in the table of Fig. 10.2.6.
The following Mathematica function now sums the first 20 nonzero terms of

the series in Eq. (1).

n ˇn

1

2

3

4

5

6

7

8

9

10

2.6537

5.4544

8.3913

11.4086

14.4699

17.5562

20.6578

23.7693

26.8874

30.0102

FIGURE 10.2.6. The first 10 positive
solutions of the eigenvalue equation

tan x D � x

hL

with L D 50 and h D 0:1.

b = beta; u0 = 100; k = 0.15;
c = (1 -- Cos[b])/(b�(h�L + Cos[b]^2)); (� coeffs �)
u[x , t ] := 2�u0�h�L�Apply[ Plus,

c�Exp[--b�b�k�t/L^2]�Sin[b�x/L]] // N

As a practical matter, this suffices to calculate the value u.x; t/ for t = 10 (sec) with
two-place accuracy throughout the interval 0 5 x 5 50. (How might you verify this
assertion?) The command

Plot[u[x,900], {x, 0, 50}];

then yields the graph u D u.x; 900/ for 0 5 x 5 50 shown in Fig. 10.2.7. We see

50
x

u

0 10 20 30 40
0

100

80

60

40

20

u = u (x, 900)

FIGURE 10.2.7. Temperatures in the
slab after 15 minutes.

that after 15 minutes the right boundary x D 50 of the slab has cooled below 40ı,
whereas interior temperatures near x D 30 remain above 80ı. The command

Plot[{u[50,t], 25}, {t, 0, 3600}];

yields the graph u D u.50; t/ for 0 5 t 5 3600 shown in Fig. 10.2.8. Now we see
that the right boundary temperature of the slab falls to 25ı in a bit less than 2000
seconds. The calculation

t1 = t /. FindRoot[u[50,t] == 25, {t, 2000}]

shows that this actually occurs in about 1951 s; that is, about 32 min 31 s.
Figure 10.2.9 indicates that interior temperatures of the slab at time t1 still

remain above 50ı at some points, with a maximum occurring near x D 30. We can
find this maximum value of the temperature u.x; t1/ by finding the minimum value
of its negative �u.x; t1/. The command

FindMinimum[--u[x,t1], {x, 30}]

yields the result that the maximum value is u.29:36; t1/ � 53:80ı.
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FIGURE 10.2.8. Right boundary
temperatures of the slab.
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FIGURE 10.2.9. Interior temperatures when the
right boundary temperature is 25ı.

For your own slab with uniform initial temperature u.x; 0/ D 100ı to inves-
tigate in this manner, let h D 0:1, L D 50.10C p/, and k D q=10, where p is the
largest and q is the smallest nonzero digit of your student ID number. Then carry
out the investigations outlined here to find

� When the right boundary temperature of the slab is 25ı, and
� The maximum temperature within the slab at that instant.

As an alternative to finding roots and maximum values numerically, you can “zoom
in” graphically on appropriate points in figures like 10.2.8 and 10.2.9.

10.3 Steady Periodic Solutions and Natural Frequencies
In Section 9.6 we derived the solution

y.x; t/ D
1X

nD1

�
An cos

n�at

L
C Bn sin

n�at

L

�
sin

n�x

L

D
1X

nD1

Cn cos
�
n�at

L
� �n

�
sin

n�x

L
(1)

of the vibrating-string problem

@2y

@t2
D a2 @

2y

@x2

 
a D

s
T

�

!
I (2)

y.0; t/ D y.L; t/ D 0; (3)

y.x; 0/ D f .x/; yt .x; 0/ D g.x/: (4)

The solution in Eq. (1) describes the free vibrations of a string with length L and
linear density � under tension T ; the constant coefficients in Eq. (1) are determined
by the initial conditions in (4).

In particular, we see from the terms in Eq. (1) that the natural (circular) fre-
quencies of vibration (in radians per second) of the string are given by

!n D
n�a

L
; (5)
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n D 1, 2, 3, : : : : These are the only values of ! for which Eq. (2) has a steady
periodic solution of the form

y.x; t/ D X.x/ cos.!t � �/ (6)

that satisfies the endpoint conditions in (3). For if we substitute Eq. (6) in (2) and
cancel the factor cos.!t � �/, we find that X.x/ must satisfy the equation

a2X 00.x/C !2X.x/ D 0;

whose general solution

X.x/ D A cos
!x

a
C B sin

!x

a

satisfies the conditions in (3) only if AD 0 and ! D n�a=L for some positive integer
n.

Forced Vibrations and Resonance
Now suppose that the string is influenced by a periodic external force F.t/ D
F0 cos!t (force per unit mass) that acts uniformly on the string along its length.
Then, according to Eq. (1) of Section 9.6, the displacement y.x; t/ of the string will
satisfy the nonhomogeneous partial differential equation

@2y

@t2
D a2 @

2y

@x2
C F0 cos!t (7)

together with boundary conditions such as those in (3) and (4). For instance, if the
string is initially at rest in equilibrium when the external force begins to act, we
want to find a solution of Eq. (7) that satisfies the conditions

y.0; t/ D y.L; t/ D y.x; 0/ D yt .x; 0/ D 0 (8)

for 0 < x < L. To do this, it suffices first to find a particular solution yp.x; t/

of Eq. (7) that satisfies the fixed endpoint conditions in (3), and second to find a
solution yc.x; t/ like Eq. (1) of the familiar problem in (2)–(4) with

f .x/ D �yp.x; 0/ and g.x/ D �Dtyp.x; 0/:

Evidently,
y.x; t/ D yc.x; t/C yp.x; t/

will then satisfy Eqs. (7) and (8).
So our new task is to find yp.x; t/. Examination of the individual terms in

Eq. (7) suggests that we try

yp.x; t/ D X.x/ cos!t: (9)

Substitution of this in Eq. (7) and cancellation of the common factor cos!t yields
the ordinary differential equation

a2X 00 C !2X D �F0
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with general solution

X.x/ D A cos
!x

a
C B sin

!x

a
� F0

!2
: (10)

The condition x.0/ D 0 requires that A D F0=!
2, and then X.L/ D 0 requires that

X.L/ D F0

!2

�
cos

!L

a
� 1

�
C B sin

!L

a
D 0: (11)

Now suppose that the frequency ! of the periodic external force is not equal to any
one of the natural frequencies !n D n�a=L of the string. Then sin.!L=a/ ¤ 0, so
we can solve Eq. (11) for B and then substitute the result in Eq. (10) to obtain

X.x/ D F0

!2

�
cos

!x

a
� 1

�
� F0Œcos.!L=a/ � 1�

!2 sin.!L=a/
sin

!x

a
: (12)

Then Eq. (9), with this choice of X.x/, gives the desired particular solution yp.x; t/.
Note, however, that as the value of ! approaches !n D n�a=L with n odd, the

coefficient of sin.!x=a/ in Eq. (12) approaches ˙1; thus resonance occurs. This
explains the fact that when (only) one of two nearby identical strings is plucked, the
other will begin to vibrate as well, due to its being acted on (through the medium
of the air) by an external periodic force at its fundamental frequency. Observe also
that if ! D !n D n�a=L with n even, then we can choose B D 0 in Eq. (11),
so resonance does not occur in this case. Problem 20 explains why some of the
resonance possibilities are absent.

The vibrating string is typical of continuous systems that have an infinite se-
quence of natural frequencies of vibration. When a periodic external force acts on
such a system, potentially destructive resonance vibrations may occur if the im-
posed frequency is close to one of the natural frequencies of the system. Hence
an important aspect of proper structural design is the avoidance of such resonance
vibrations.

Natural Frequencies of Beams
Figure 10.3.1 shows a uniform beam of length L, linear density �, and Young’sy (x, t )

x = 0 x = L
x

FIGURE 10.3.1. A bar clamped at
each end.

modulus E, clamped at each end. For 0 < x < L and t > 0, its deflection function
y.x; t/ satisfies the fourth-order equation

@2y

@t2
C a4 @

4y

@x4
D 0

�
a4 D EI

�

�
(13)

that we discussed in Section 10.2; I denotes the moment of inertia of the cross
section of the beam around its horizontal axis of symmetry. Because both the dis-
placement and the slope are zero at each fixed end, the endpoint conditions are

y.0; t/ D yx.0; t/ D 0 (14)

and

y.L; t/ D yx.L; t/ D 0: (15)
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Here we want only to find the natural frequencies of vibration of the beam, so we
will not be concerned with initial conditions. The natural frequencies are the values
of ! for which Eq. (13) has a nontrivial solution of the form

y.x; t/ D X.x/ cos.!t � �/ (16)

that satisfies the conditions in Eqs. (14) and (15). When we substitute y.x; t/ from
(16) into (13) and then cancel the common factor cos.!t � �/, we obtain the fourth-
order ordinary differential equation �!2X C a4X .4/ D 0; that is,

X .4/ � !
2

a4
X D 0: (17)

If we write ˛4 D !2=a4, we can express the general solution of Eq. (17) as

X.x/ D A cosh˛x C B sinh˛x C C cos˛x CD sin˛x;

with
X 0.x/ D ˛.A sinh˛x C B cosh˛x � C sin˛x CD cos˛x/:

The conditions in (14) give

X.0/ D AC C D 0 and X 0.0/ D ˛.B CD/ D 0;

so C D �A and D D �B . Hence the conditions in (15) give

X.L/ D A.cosh˛L � cos˛L/C B.sinh˛L � sin˛L/ D 0

and
1

˛
X 0.L/ D A.sinh˛LC sin˛L/C B.cosh˛L � cos˛L/ D 0:

In order for these two linear homogeneous equations in A and B to have a nontrivial
solution, the determinant of coefficients must be zero:

.cosh˛L � cos˛L/2 � .sinh2 ˛L � sin2 ˛L/ D 0I
.cosh2 ˛L � sinh2 ˛L/C .cos2 ˛LC sin2 ˛L/ � 2 cosh˛L cos˛L D 0I

2 � 2 cosh˛L cos˛L D 0:

Then ˇ D ˛L must be a nonzero root of the equation

coshx cos x D 1: (18)

From Fig. 10.3.2 we see that this equation has an increasing sequence of positive

β1 β2 β3π x

y

y = cos x

y = 1
cosh x

π2 π3

1

–1

FIGURE 10.3.2. Solutions of
cosh x cos x D 1.

roots fˇng11 . Now ! D ˛2a2 D ˇ2a2=L2 and a2 D
p
EI=�, so it follows that the

natural (circular) frequencies of vibration of the beam with clamped ends are given
by

!n D
ˇ2

n

L2

s
EI

�
(rad=s) (19)

for n D 1, 2, 3, : : : : The roots of Eq. (18) are ˇ1 � 4:73004, ˇ2 � 7:85320, ˇ3 �
10:99561, and ˇn � .2nC 1/�=2 for n = 4 (as indicated in Fig. 10.3.2).
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Example 1 For example, suppose that the basic structural element of a bridge is a 120-ft-long steel I
beam with the cross section indicated in Fig. 10.3.3, having moment of inertia I D 9000 cm4.
If we substitute the values

2 cm

30 cm
0 cm

10 cm

FIGURE 10.3.3. An idealized I
beam.

L D .120 ft/
�
30:48

cm
ft

�
; � D

�
7:75

g

cm3

�
.40 cm2/; E D 2 � 1012 dyn

cm2
;

and the values of ˇ1 and ˇ2 in Eq. (19), we find that the lowest two natural frequencies of the
beam are

!1 � 12:74
rad
s

�
122

cycles
min

�
and !2 � 35:13

rad
s

�
335

cycles
min

�
:

If a company of soldiers marching at about 120 steps per minute approaches this bridge, they
therefore would be well advised to break cadence before crossing. From time to time bridges
collapse because of resonance vibrations. Recall the Kansas City hotel disaster of July 17,
1981, in which a skywalk filled with dancers collapsed. Newspapers quoted investigators
who speculated that the rhythmic movement of the dancers had set up destructive resonance
vibrations in the steel I beams that supported the skywalk.

Underground Temperature Oscillations
Let us assume that the underground temperature at a particular location is a function
u.x; t/ of time t and the depth x beneath the surface. Then u satisfies the heat
equation ut D kuxx , with k being the thermal diffusivity of the soil. We may regard
the temperature u.0; t/ at the surface x D 0 as being known from weather records. In
fact, the periodic seasonal variation of monthly average surface temperatures, with
a maximum in midsummer (July in the northern hemisphere) and a minimum in
midwinter (January), is very close to a sine or cosine oscillation. We shall therefore
assume that

u.0; t/ D T0 C A0 cos!t; (20)

where we take t D 0 at midsummer. Here T0 is the average annual temperature, A0

the amplitude of seasonal temperature variation, and ! is chosen to make the period
of u.0; t/ exactly one year. (In cgs units, for instance, ! would be 2� divided by the
number of seconds—31;557;341—in a year; thus ! � 1:991 � 10�7.)

It is reasonable to assume that the temperature at a fixed depth also varies
periodically with t . If we introduce U.x; t/ D u.x; t/� T0 for convenience, then we
are interested in periodic solutions of the heat equation of the form

U.x; t/ D A.x/ cos.!t � �/ D V.x/ cos!t CW.x/ sin!t (21)

of the problem

@U

@t
D k @

2U

@x2
(x > 0, t > 0), (22)

U.0; t/ D A0 cos!t: (23)

To solve this problem, let us regard U.x; t/ in Eq. (21) as the real part of the
complex-valued function

eU.x; t/ D X.x/ei!t : (24)
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Then we want eU .x; t/ to satisfy the conditions

eU t D keU xx; (220)eU.0; t/ D A0e
i!t : (230)

If we substitute Eq. (24) in Eq. (220), we get i!X D kX 00; that is,

X 00 � ˛2X D 0; (25)

where

˛ D ˙
r
i!

k
D ˙.1C i/

r
!

2k
(26)

because
p
i D ˙.1C i/=

p
2. Hence the general solution of Eq. (25) is

X.x/ D A exp
�
�.1C i/x

p
!=2k

�
C B exp

�
C.1C i/x

p
!=2k

�
: (27)

In order that eU .x; t/, and hence X.x/, be bounded as x ! C1, it is necessary that
B D 0. Also, we see from Eqs. (230) and (24) that A D X.0/ D A0. So

X.x/ D A0 exp
�
�.1C i/x

p
!=2k

�
: (28)

Finally, the solution of our original problem in (22)–(23) is

U.x; t/ D ReeU.x; t/ D ReX.x/ei!t

D Re
�
.A0 exp .i!t/ exp

�
�.1C i/x

p
!=2k

� �

D Re
�
A0 exp

�
�x
p
!=2k

�
exp

�
i.!t � x

p
!=2k/

� �
I

hence

U.x; t/ D A0 exp
�
�x
p
!=2k

�
cos

�
!t � x

p
!=2k

�
: (29)

Thus the amplitude A.x/ of the annual temperature is exponentially damped
as a function of the depth x:

A.x/ D A0 exp
�
�x
p
!=2k

�
: (30)

In addition, there is a phase delay �.x/ D x
p
!=2k at the depth x.

Example 2 With k D 0:005 (a typical value for soil in cgs units) and the value of ! previously mentioned,
we find that

p
!=2k � 0:004462 cm�1. For instance, we then see from Eq. (30) that the

amplitude is one-half the surface amplitude, A.x/ D 1
2A0, when .0:004462/x D ln 2; that is,

when x � 155:34 cm � 5:10 ft. If A0 D 16ıC, it follows that at a depth of about 20 ft, the
amplitude of annual temperature variation is only 1ı.

Example 3 Another interesting consequence of Eq. (29) is the “reversal of seasons” that occurs when
�.x/ D .0:004462/x D �; that is, at a depth of x � 704:06 cm, about 23:11 ft. Figure 10.3.4
shows the graph U D U.x; t/ for 0 5 x 5 X , 0 5 t 5 T , where X corresponds to 23 feet
in centimeters and T to 2:5 years in seconds. Can you see by inspection of the right edge of
the graph that the temperature at depth 23 feet appears to be at a maximum when the surface
temperature is at a minimum?
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FIGURE 10.3.4. The graph of the temperature function U.x; t/ in Eq. (29).

10.3 Problems
A uniform bar of length L is made of material with density ı
and Young’s modulus E. In Problems 1 through 6, substitute
u.x; t/ D X.x/ cos!t in ıut t D Euxx to find the natural fre-
quencies of longitudinal vibration of the bar with the two given
conditions at its ends x D 0 and x D L.

1. Both ends are fixed.

2. Both ends are free.

3. The end at x D 0 is fixed; the end at x D L is free.

4. The end at x D 0 is fixed; the free end at x D L is attached
to a mass m as in Example 2 of Section 10.2.

5. Each end is free, but the end at x D L is attached to a
spring with Hooke’s constant k as in Problem 12 of Sec-
tion 10.2.

6. The free ends are attached to masses m0 and m1.

7. Suppose that the mass on the free end at x DL in Problem
4 is attached also to the spring of Problem 5. Show that
the natural frequencies are given by !n D .ˇn=L/

p
E=ı ,

where fˇng11 are the positive roots of the equation

.mEx2 � kıL2/ sin x D MEx cos x:

(Note: The condition at x D L is mut t D �AEux � ku.)

Problems 8 through 14 deal with transverse vibrations of the
uniform beam of this section, but with various end conditions.
In each case show that the natural frequencies are given by the
formula in Eq. (19), with fˇng11 being the positive roots of the
given frequency equation. Recall that y D y0 D 0 at a fixed

end, y D y00 D 0 at a hinged end, and y00 D y.3/ D 0 at a free
end (primes denote derivatives with respect to x).

8. The ends at x D 0 and x D L are both hinged; the fre-
quency equation is sin x D 0, so that ˇn D n� .

9. The end at x D 0 is fixed and the end at x D L is hinged;
the frequency equation is tanh x D tan x.

10. The beam is a cantilever with the end at x D 0 fixed
and the end at x D L free; the frequency equation is
cosh x cos x D �1.

11. The end at x D 0 is fixed and the end at x D L is attached
to a vertically sliding clamp, so y0 D y.3/ D 0 there; the
frequency equation is tanh x C tan x D 0.

12. The cantilever of Problem 10 has total mass M D �L and
has a mass m attached to its free end; the frequency equa-
tion is

M.1C cosh x cos x/ D mx.cosh x sin x � sinh x cos x/:

The conditions at x DL are yxx D 0 andmyt t DEIyxxx .

13. The free end at x D L of the cantilever of Problem 10 is
attached (as in Fig. 10.3.5) to a spring with Hooke’s con-
stant k; the frequency equation is

EIx3.1C cosh x cos x/

D kL3.sinh x cos x � cosh x sin x/:

The conditions at x D L are yxx D 0 and ky D EIyxxx .
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k

FIGURE 10.3.5. The cantilever of Problem 13.

14. Suppose that the mass m on the free end of the cantilever
of Problem 12 is attached to the spring of Problem 13. The
conditions at xDL are yxx D 0 andmyt t DEIyxxx �ky.
Derive the frequency equation

MEIx3.1C cosh x cos x/

D .kML3 �mEIx4/.sinh x cos x � cosh x sin x/:

Note that the frequency equations in Problems 12 and 13
are the special cases k D 0 and m D 0, respectively.

15. Suppose that the cantilever of Problem 10 is a diving board
made of steel with density ı D 7:75 g=cm3. The diving
board is 4 m long and its cross section is a rectangle of
width a D 30 cm and thickness b D 2 cm. The moment of
inertia of this rectangle around its horizontal axis of sym-
metry is I D 1

12ab
3. Given that the least positive root of

the equation cosh x cos x D �1 is ˇ1 � 1:8751, determine
the frequency (in hertz) at which a person should bounce
up and down at the tip of the diving board for maximal
(resonant) effect.

16. If a uniform bar hinged at each end is subjected to an ax-
ial force of compression P , then its transverse vibrations
satisfy the equation

�
@2y

@t2
C P @

2y

@x2
C EI @

4y

@x4
D 0:

Show that its natural frequencies are given by

!n D
n2�2

L2

 
1 � PL2

n2�2EI

!1=2s
EI

�

for n D 1, 2, 3, : : : : Note that with P D 0, this reduces to
the result in Example 3 of Section 10.2 and that the effect
of P > 0 is to decrease each of the bar’s natural frequen-
cies of vibration. (Does this seem intuitively correct? That
is, would you expect an axially compressed bar to vibrate
more slowly than an uncompressed bar?)

17. A beam hinged at each end is sufficiently thick that its ki-
netic energy of rotation must be taken into account. Then
the differential equation for its transverse vibrations is

�
@2y

@t2
� I

A

@4y

@x2@t2
CEI @

4y

@x4
D 0:

Show that its natural frequencies are given by

!n D
n2�2

L2

 
1C n2�2I

�AL2

!�1=2s
EI

�

for n D 1, 2, 3, : : : :

18. Suppose that the end x D 0 of a uniform bar with cross-
sectional area A and Young’s modulus E is fixed, while
the longitudinal force F.t/ D F0 sin!t acts on its end
x D L, so that AEux.L; t/D F0 sin!t . Derive the steady
periodic solution

u.x; t/ D F0a sin.!x=a/ sin!t
AE! cos.!L=a/

:

19. Repeat Problem 18, except here a transverse force F.t/ D
F0 sin!t acts at the free end x D L, so that

yxx.L; t/ D EIyxxx.L; t/C F0 sin!t D 0:

Determine the steady periodic transverse oscillations of
the cantilever in the form y.x; t/ D X.x/ sin!t .

20. A string with fixed ends is acted on by a periodic force
F.x; t/ D F.x/ sin!t per unit mass, so

yt t D a2yxx C F.x/ sin!t:

Substitute

y.x; t/ D
1X

nD1

cn sin
n�x

L
sin!t

and

F.x/ D
1X

nD1

Fn sin
n�x

L

to derive the steady periodic solution

y.x; t/ D
1X

nD1

Fn sin.n�x=a/ sin!t

!2
n � !2

;

where !n D n�a=L. Hence resonance does not result if
! D !n but Fn D 0.

21. Suppose that the string of Problem 20 is also subject to air
resistance proportional to its velocity, so that

yt t D a2yxx � cyt C F.x/ sin!t:

Generalize the method of Problem 20 to derive the steady
periodic solution

y.x; t/ D
1X

nD1

�nFn sin
n�x

L
sin.!t � ˛n/;

where

�n D
h
.!2

n � !2/2 C !2c2
i�1=2

and
˛n D tan�1 !c

!2
n � !2

:

Note the similarity to damped forced motion of a mass on
a spring.
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22. The telephone equation for the voltage e.x; t/ in a long
transmission line at the point x = 0 at time t is

@2e

@x2
D LC @

2e

@t2
C .RC C LG/@e

@t
C RGe;

where R, L, G, and C denote resistance, inductance, con-
ductance, and capacitance (all per unit length of line), re-
spectively. The condition e.0; t/ D E0 cos!t represents
a periodic signal voltage at the origin of transmission at
x D 0. Assume that e.x; t/ is bounded as x ! C1. Sub-
stitute ee.x; t/ D E.x/ei!t to derive the steady periodic
solution

e.x; t/ D E0e
�˛x cos.!t � ˇx/;

where ˛ and ˇ are the real and imaginary parts, respec-
tively, of the complex numberh

.RG � LC!2/C i!.RC C LG/
i1=2

:

23. The temperature u.x; t/ at the point x = 0 at time t of wa-
ter moving with velocity � = 0 in a long pipe satisfies the

equation
@u

@t
D k @

2u

@x2
� � @u

@x
:

Suppose that u.0; t/ D A0 cos!t and that u.x; t/ is
bounded as x ! C1. Substituteeu.x; t/ D X.x/ei!t to
derive the steady periodic solution

u.x; t/ D A0e
�˛x cos.!t � ˇx/;

where

˛ D 1

2k

�
�4 C 16k2!2

�1=4
cos

�

2
� �

2k
;

ˇ D 1

2k

�
�4 C 16k2!2

�1=4
sin

�

2
; and

� D tan�1 4k

�2
:

Show also that when � D 0, this solution reduces to that
in Eq. (29).

10.3 Application Vibrating Beams and Diving Boards
In this project you are to investigate further the transverse vibrations of an elastic bar
or beam of length L whose position function y.x; t/ satisfies the partial differential
equation

�
@2y

@t2
CEI @

4y

@x4
D 0 .0 < x < L/

and the initial conditions y.x; 0/ D f .x/, yt .x; 0/ D 0.
First separate the variables (as in Example 3 of Section 10.3) to derive the

n ˇn

1

2

3

4

5

6

7

8

9

10

4.7300

7.8532

10.9956

14.1372

17.2788

20.4204

23.5619

26.7035

29.8451

32.9867

FIGURE 10.3.6. The first 10
positive solutions of the eigenvalue
equation cosh x cos x D 1 for the
vibrating beam with fixed ends.

formal series solution

y.x; t/ D
1X

nD1

cn

�
cos

ˇ2
na

2t

L2

�
Xn.x/;

where a4 D EI=�, the fcng are the appropriate eigenfunction expansion coefficients
of the initial position function f .x/, and fˇng11 and Xn.x/ are determined by the
end conditions imposed on the bar. In a particular case, we want to find both the
frequency equation whose positive roots are the fˇng11 and the eigenfunctions
fXn.x/g. In this section we saw that the frequency equation for the fixed=fixed case
(with y.0/ D y0.0/ D y.L/ D y0.L/ D 0) is cosh x cos x D 1. This equation can
be solved using computer system methods like those illustrated in the applications
for Sections 10.1 and 10.2; the table in Fig. 10.3.6 lists the first ten positive solu-
tions fˇng10

1
. The calculations preceding Eq. (18) in this section imply that the nth

eigenfunction is then given by

Xn.x/ D An

�
cosh

ˇnx

L
� cos

ˇnx

L

�
C Bn

�
sinh

ˇnx

L
� sin

ˇnx

L

�
where the ratio An=Bn is determined by the endpoint condition Xn.L/D 0. The first
three of these eigenfunctions are graphed in Fig. 10.3.7, which was plotted with
each An D 1 and with L D 3657:6 cm for the 120-ft steel I beam of this section.
The fact that each (correctly) appears to have slope zero at both endpoints serves to
corroborate the calculations that generated the figure.
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The following cases describe other vibrating-beam situations that you can in-

x
–2

0

–1

1

2

y 
=

 X
(x

)

n = 1

n = 2

n = 3

FIGURE 10.3.7. The first three
eigenfunction graphs y D Xn.x/ for
the fixed-fixed I beam.

vestigate similarly.

Case 1: Hinged at each end
The boundary conditions are

y.0/ D y00.0/ D y.L/ D y00.L/ D 0:

According to Problem 8, the frequency equation is sin x D 0, so ˇn D n� and
Xn.x/ D sinn�x. Suppose that the bar is made of steel (with density ı D 7:75

g=cm3 and Young’s modulus E D 2� 1012 dyn=cm2) and is 19 in. long with square
cross section of edge w D 1 in. (so its moment of inertia is I D 1

12
w4). Determine

its first few natural frequencies of vibration (in Hz). How does this bar sound when
it vibrates?

Case 2: Free at each end
The boundary conditions are

y00.0/ D y.3/.0/ D y00.L/ D y.3/.L/ D 0:

This case models, for example, a weightless bar suspended in space in an orbiting
spacecraft. Now show that the frequency equation is cosh x cos x D 1 (although the
eigenfunctions differ from those in the fixed=fixed case). Solve this equation (either
graphically or numerically, as in the Section 10.2 application) to approximate the
first several natural frequencies of vibration of the same bar considered in Case 1.
How does it sound now?

Case 3: Fixed at x D 0 , free at x = L
Now the boundary conditions are

y.0/ D y0.0/ D y00.L/ D y.3/.L/ D 0:

This is a cantilever like the diving board illustrated in Fig. 10.3.8. According to

x

y

L

FIGURE 10.3.8. The most
spectacular dives are determined by the
frequency equation of Case 3.

Problem 15, the frequency equation is coshx cos x D �1. Approximate the first
several positive solutions of this equation and show graphically that ˇn � .2n �
1/�=2 for n large. Thereby determine the first several natural frequencies (in Hz)
of vibration of the particular diving board described in Problem 15. These are the
frequencies at which a diver on this board should bounce up and down at the free
end for maximal resonant effect.

10.4 Cylindrical Coordinate Problems
When the Laplacian r

2u D uxx C uyy C u´´ of a function u D u.x; y; ´/ is trans-
formed by means of the substitution x D r cos � , y D r sin � , the result is the Lapla-
cian in cylindrical coordinates,

r
2u D @2u

@r2
C 1

r

@u

@r
C 1

r2

@2u

@�2
C @2u

@´2
: (1)

[See, for instance, Problem 45 in Section 12.7 of Edwards and Penney, Calculus:
Early Transcendentals, 7th edition (Upper Saddle River, NJ: Prentice Hall, 2008)].
For a typical application, consider a very long uniform solid cylinder of radius c
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that is centered along the ´-axis (Fig. 10.4.1). Suppose that it is heated to a “radiallyz 

r = c

FIGURE 10.4.1. Long uniform solid
cylinder of radius r D c.

symmetric” initial (t D 0) temperature that depends only on the distance r from the
´-axis (but not on the angular coordinate � or the height ´ of a point). Suppose also
that beginning at time t D 0 the boundary condition�

ˇ1uC ˇ2

@u

@r

�ˇ̌̌̌
rDc

D 0 (2)

is imposed at the lateral surface r D c of the cylinder. Note the following special
cases for Eq. (2):

� It reduces to the condition u D 0 if ˇ1 D 1 and ˇ2 D 0.
� It reduces to the insulation condition ur D 0 if ˇ1 D 0 and ˇ2 D 1.
� It reduces to the heat transfer condition huC ur D 0 if ˇ1 D h and ˇ2 D 1.

It is reasonable to expect the temperature u within the cylinder at time t to depend
only on r , so we write u D u.r; t/. Then u�� D u´´ D 0, so substitution of (1) in the
heat equation ut D kr

2u yields the boundary value problem

@u

@t
D k

�
@2u

@r2
C 1

r

@u

@r

�
(r < c, t > 0); (3)

ˇ1u.c; t/C ˇ2ur .c; t/ D 0; (4)

u.r; 0/ D f .r/ (initial temperature). (5)

To solve this problem by separation of variables, we substitute

u.r; t/ D R.r/T .t/

in Eq. (3); thus we obtain

RT 0 D k
�
R00T C 1

r
R0T

�
: (6)

Division by kRT yields
R00 CR0=r

R
D T 0

kT
D ��: (7)

Hence R.r/ must satisfy the equation

R00 C 1

r
R0 C �R D 0; (8)

as well as the equation ˇ1R.c/C ˇ2R
0.c/ D 0 that follows from Eq. (4). Moreover,

the equation
T 0 D ��kT

implies that T .t/ D e��kt to within a constant multiple. Because the diffusivity
k is positive, it follows that � must be nonnegative if T .t/ is to remain bounded
as t ! C1, as is required by the physical problem that Eqs. (3)–(5) model. We
therefore write � D ˛2, so Eq. (8) takes the form

r2R00 C rR0 C ˛2r2R D 0: (80)
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A Singular Sturm–Liouville Problem
Equation (80) is—with x D r and y.x/ D R.r/—the parametric Bessel equation

x2y00 C xy0 C ˛2x2y D 0 (9)

of order zero that we discussed in Section 8.5. More generally, recall that the para-
metric Bessel equation

x2y00 C xy0 C .˛2x2 � n2/y D 0 (10)

has general solution

y.x/ D AJn.˛x/C BYn.˛x/ (11)

if ˛ > 0. Upon division by x, the Bessel equation in (10) takes the Sturm–Liouville
form

d

dx

�
x
dy

dx

�
� n

2

x
y C �xy D 0 (12)

with p.x/ D x, q.x/ D n2=x, r.x/ D x, and � D ˛2. We want to determine the
nonnegative values of � for which there is a solution of Eq. (12) in .0; c/ that is
continuous (along with its derivative dy=dx) on the closed interval Œ0; c� and satisfies
the endpoint condition

ˇ1y.c/C ˇ2y
0.c/ D 0; (13)

where ˇ1 and ˇ2 are not both zero.
The Sturm–Liouville problem associated with Eqs. (12) and (13) is singular

because p.0/D r.0/D 0 and q.x/!C1 as x! 0C, whereas we assumed in Theo-
rem 1 of Section 10.1 that p.x/ and r.x/ were positive and that q.x/was continuous
on the entire interval. This problem also fails to fit the pattern of Section 10.1 in
that no condition like (13) is imposed at the left endpoint x D 0. Nevertheless, the
requirement that y.x/ be continuous on Œ0; c� plays the role of such a condition. Be-
cause Yn.x/! �1 as x ! 0, the solution in Eq. (11) for ˛ > 0 can be continuous
at x D 0 only if B D 0, so

y.x/ D Jn.˛x/

to within a constant multiple. It remains only to impose the condition in Eq. (13) at
x D c.

It is convenient to distinguish the cases ˇ2 D 0 and ˇ2 ¤ 0. If ˇ2 D 0, then
Eq. (13) takes the simple form

y.c/ D 0: (13a)

If ˇ2 ¤ 0, we multiply each term in Eq. (13) by c=̌ 2 and then write h D cˇ1=̌ 2 to
obtain the equivalent condition

hy.c/C cy0.c/ D 0: (13b)

We assume hereafter that h = 0.
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CASE 1: � D 0. We first consider the possibility of a zero eigenvalue � D 0. If
both � D 0 and n D 0, then Eq. (12) reduces to the equation .xy0/0 D 0 with general
solution

y.x/ D A ln x C B;
and continuity on Œ0; c� requires that A D 0. But then Eq. (13a) implies that B D 0
as well, as does Eq. (13b) unless h D 0, in which case � D 0 is an eigenvalue with
associated eigenfunction y.x/ � 1.

If � D 0 but n > 0, then Eq. (12) is simply the equation

x2y00 C xy0 � n2y D 0

with general solution (substituting the trial solution y D xk as in Section 9.7)

y.x/ D Axn C Bx�n;

and continuity on Œ0; c� requires that B D 0. But it is easy to check that y.x/ D
Axn satisfies neither Eq. (13a) nor Eq. (13b) unless A D 0. Thus � D 0 is not an
eigenvalue if n > 0. We have therefore shown that � D 0 is an eigenvalue of the
problem in (12)–(13) if and only if n D h D 0 and the endpoint condition at x D c
is y0.c/ D 0, in which case an associated eigenfunction is y.x/ � 1. In this case we
write

�0 D 0 and y0.x/ � 1:

CASE 2: � > 0. If � > 0, then � D ˛2 > 0, and in this case the only solution of
Eq. (12) that is continuous on Œ0; c� is, to within a constant multiple,

y.x/ D Jn.˛x/:

Then Eq. (13a) implies that Jn.˛c/ D 0; in other words, ˛c must be a positive root
of the equation

Jn.x/ D 0: (14a)

Recall from Section 8.5 that the graphs of J0.x/ and J1.x/ look as indicated in
Fig. 10.4.2. The graph of Jn.x/ for n > 1 resembles that of J1.x/, even in the detail
that Jn.0/ D 0. In particular, for each n D 1, 2, 3, : : : ; Eq. (14a) has an increasing
infinite sequence f�nkg1kD1

of positive roots such that �nk ! C1 as k ! C1.
These roots for n 5 8 and k 5 20 are given in Table 9.5 of Abramowitz and Stegun’s
Handbook of Mathematical Functions.

x

1

y

–20 –10 10 20

J0(x)

J1(x)

FIGURE 10.4.2. The graphs of the Bessel
functions J0.x/ and J1.x/.
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If y.x/ D Jn.˛x/, so that dy=dx D ˛J 0
n.˛x/, then Eq. (13b) implies that

hJn.˛c/C ˛cJ 0
n.˛c/ D 0

—that is, that ˛c is a positive root of the equation

hJn.x/C xJ 0
n.x/ D 0: (14b)

It is known that this equation also has an increasing infinite sequence f�nkg1kD1
of

positive roots diverging to C1. If h D 0, then Eq. (14b) reduces to the equation
J 0

n.x/D 0; the roots of this equation appear in Table 9.5 of Abramowitz and Stegun.
In the important case n D 0, the first five roots of Eq. (14b) for various values of h
can be found in Table 9.7 of the same reference.

If either of the boundary conditions in Eqs. (13a) and (13b) holds, then the kth
positive eigenvalue is

�k D
�2

k

c2
;

where we write �k for the kth positive root of the appropriate one of Eqs. (14a) and
(14b); the associated eigenfunction is

yk.x/ D Jn

��kx

c

�
:

The table in Fig. 10.4.3 summarizes this situation for ready reference. The excep-
tional case n D h D 0 corresponding to the endpoint condition y0.c/ D 0 is listed
separately. We have discussed only nonnegative eigenvalues, but it can be proved
that the problem in (12)–(13) has no negative eigenvalues. [For a proof, see the
section on orthogonal sets of Bessel functions in R. V. Churchill and J. W. Brown,
Fourier Series and Boundary Value Problems, 8th ed. (New York: McGraw-Hill,
2011).]

Associated
Endpoint Condition Eigenvalues Eigenfunctions

Case 1: y.c/ D 0 �k D �2
k
=c2;

f�kg11 the positive roots yk.x/ D Jn

��kx

c

�
of Jn.x/ D 0

Case 2: hy.c/C cy0.c/ D 0; �k D �2
k
=c2;

h and n not both zero f�kg11 the positive roots yk.x/ D Jn

��kx

c

�
of hJn.x/C xJ 0

n.x/ D 0
Case 3: y0.c/ D 0, �0 D 0, �k D �2

k
=c2; y0.x/ D 1,

n D 0 f�kg11 the positive roots yk.x/ D J0

��kx

c

�
of J 0

0.x/ D 0

FIGURE 10.4.3. Eigenvalues and eigenfunctions of the singular Sturm–Liouville problem

d

dx

�
x

dy

dx

�
� n2

x
y C �xy D 0; ˇ1y.c/ C ˇ2y0.c/ D 0 on Œ0; c�.
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Fourier-Bessel Series
Now that we know that the singular Sturm–Liouville problem in (12)–(13) has an
infinite sequence of eigenvalues and associated eigenfunctions similar to those of
a regular Sturm–Liouville problem, we can discuss eigenfunction expansions. In
either case 1 or case 2 of Fig. 10.4.3, we expect a piecewise smooth function f .x/
on Œ0; c� to have an eigenfunction series of the form

f .x/ D
1X

kD1

ckyk.x/ D
1X

kD1

ckJn

��kx

c

�
; (15)

while in the exceptional case 3, the series will also contain a constant term c0 corre-
sponding to �0 D 0, y0.x/� 1. If the conclusion of Theorem 2 of Section 10.1 is to
hold (despite the fact that its hypotheses are not satisfied), then the eigenfunctions

Jn

��kx

c

�
; k D 1, 2, 3, : : :

must be orthogonal on Œ0; c� with weight function r.x/D x. Indeed, if we substitute
p.x/ D r.x/ D x and

yk.x/ D Jn

��kx

c

�
; y0

k.x/ D
�k

c
J 0

n

��kx

c

�
in Eq. (22) of Section 10.1, the result is

.�i � �j /

Z c

0

xJn

��ix

c

�
Jn

��jx

c

�
dx

D
"
x

�
�j

c
Jn

��ix

c

�
J 0

n

��jx

c

�
� �i

c
Jn

��jx

c

�
J 0

n

��ix

c

� #c

0

D �jJn.�i /J
0
n.�j / � �iJn.�j /J

0
n.�i /: (16)

It is clear that the quantity in Eq. (16) is zero if �i and �j are both roots of Eq. (14a),
Jn.x/ D 0, whereas if both are roots of Eq. (14b) it reduces to

Jn.�i /

�hJn.�j /

� � Jn.�j / Œ�hJn.�i /� D 0:

In either event we thus see that if i ¤ j , thenZ c

0

xJn

��ix

c

�
Jn

��jx

c

�
dx D 0: (17)

This orthogonality with weight function r.x/D x is what we need to determine
the coefficients in the eigenfunction series in Eq. (15). If we multiply each term in
Eq. (15) by xJn.�kx=c/ and then integrate termwise, we get

Z c

0

xf .x/Jn

��kx

c

�
dx D

1X
j D1

cj

Z c

0

xJn

��jx

c

�
Jn

��kx

c

�
dx

D ck

Z c

0

x
h
Jn

��kx

c

� i2

dx
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by Eq. (17). Hence

ck D

Z c

0

xf .x/Jn.�kx=c/ dxZ c

0

x ŒJn.�kx=c/�
2 dx

: (18)

With these coefficients, series of the form in Eq. (15) are often called Fourier–
Bessel series. It is known that a Fourier–Bessel series for a piecewise smooth func-
tion f .x/ satisfies the convergence conclusion of Theorem 3 of Section 10.1. That
is, it converges to the average value 1

2
Œf .xC/C f .x�/� at each point of .0; c/, and

hence to the value f .x/ at each interior point of continuity.

The Fourier–Bessel Coefficients
In spite of their appearance, the denominator integrals in Eq. (18) are not difficult to
evaluate. Suppose that y.x/ D Jn.˛x/, so that y.x/ satisfies the parametric Bessel
equation of order n,

d

dx

�
x
dy

dx

�
C
�
˛2x � n

2

x

�
y D 0: (19)

By multiplying this equation by 2xy0.x/ and integrating by parts (Problem 8), we
can readily derive the formula

2˛2

Z c

0

x ŒJn.˛x/�
2 dx D ˛2c2



J 0

n.˛c/
�2 C .˛2c2 � n2/ ŒJn.˛c/�

2 : (20)

Now suppose that ˛ D �k=c, where �k is a root of the equation Jn.x/D 0. We apply
Eq. (20) as well as the recurrence formula

xJ 0
n.x/ D nJn.x/� xJnC1.x/

of Section 8.5, which implies that J 0
n.�k/ D �JnC1.�k/. The result is

Z c

0

x
h
Jn

��kx

c

�i2

dx D c2

2



J 0

n.�k/
�2 D c2

2
ŒJnC1.�k/�

2 : (21)

The other entries in the table in Fig. 10.4.4 follow similarly from Eq. (20). Fourier–
Bessel series with n D 0 are the most common (Problem 9). The forms they take in
our three cases are listed next.

CASE 1 WITH n D 0: If f�kg1kD1
are the positive roots of the equation J0.x/ D 0,

then

f .x/ D
1X

kD1

ckJ0

��kx

c

�
I

ck D
2

c2 ŒJ1.�k/�
2

Z c

0

xf .x/J0

��kx

c

�
dx: (22)
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f�kg
1

1
the Positive Roots Value of

Z
c

0

x
h
Jn

��kx

c

�i2

dx

of the Equation

Case 1: Jn.x/ D 0
c2

2
ŒJnC1.�k/�

2

Case 2: hJn.x/C xJ 0
n.x/ D 0

c2.�2
k
� n2 C h2/

2�2
k

ŒJn.�k/�
2

(n and h not both zero)

Case 3: J 0
0.x/ D 0

c2

2
ŒJ0.�k/�

2

FIGURE 10.4.4.

CASE 2 WITH n D 0: If f�kg1kD1
are the positive roots of the equation hJ0.x/C

xJ 0
0.x/ D 0 with h > 0, then

f .x/ D
1X

kD1

ckJ0

��kx

c

�
I

ck D
2�2

k

c2.�2
k
C h2/ ŒJ0.�k/�

2

Z c

0

xf .x/J0

��kx

c

�
dx: (23)

CASE 3: If f�kg1kD1
are the positive roots of the equation J 0

0.x/ D 0, then (Prob-
lem 10)

f .x/ D c0 C
1X

kD1

ckJ0

��kx

c

�
I (24a)

c0 D
2

c2

Z c

0

xf .x/ dx; (24b)

ck D
2

c2 ŒJ0.�k/�
2

Z c

0

xf .x/J0

��kx

c

�
dx: (24c)

Applications

Example 1 Suppose that a long circular cylinder of radius c has initial temperature u.r; 0/ D u0, a con-
stant. Find u.r; t/ in each of the following three cases:

(a) u.c; t/ D 0 (zero boundary temperature);

(b) The boundary of the cylinder is insulated, so that ur .c; t/ D 0;
(c) Heat transfer takes place across the boundary of the cylinder, so that

Hu.c; t/CKur .c; t/ D 0; where H > 0, K > 0.

Solution With u.r; t/ D R.r/T .t/, we saw previously that � D ˛2 > 0 in Eq. (7), so

r2R00 C rR0 C ˛2r2R D 0 (25)

and

T 0 D �˛2kT: (26)
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Equation (25) is Bessel’s parametric equation of order zero, and its only continuous nontrivial
solutions on Œ0; c� are of the form

R.r/ D AJ0.˛r/: (27)

But the possible values of ˛ depend on the boundary conditions that are imposed.

CASE (a): Zero Boundary Temperature. The condition u.c; t/D 0 yieldsR.c/DAJ0.˛c/D
0, so ˛c must be one of the roots f�kg1kD1

of the equation J0.x/ D 0. Thus the eigenvalues
and eigenfunctions are

�n D
�2

n

c2
; Rn.r/ D J0

��nr

c

�
(28)

for n D 1, 2, 3, : : : : Then the equation

T 0
n D �

 
�2

n

c2

!
kTn

yields

Tn.t/ D exp

 
��

2
nkt

c2

!
to within a constant factor. Hence the series

u.r; t/ D
1X

nD1

cn exp

 
��

2
nkt

c2

!
J0

��nr

c

�
(29)

satisfies formally the heat equation and the boundary condition u.c; t/ D 0. It remains to
choose the coefficients so that

u.r; 0/ D
1X

nD1

cnJ0

��nr

c

�
D u0:

Because J0.�n/ D 0, Eq. (22) yields

cn D
2u0

c2 ŒJ1.�n/�
2

Z c

0
rJ0

��nr

c

�
dr

D 2u0

�2
n ŒJ1.�n/�

2

Z �n

0
xJ0.x/ dx

�
x D �nr

c

�

D 2u0

�2
n ŒJ1.�n/�

2

�
xJ1.x/

��n

0

D 2u0

�nJ1.�n/
:

Here we have used the integral Z
xJ0.x/ dx D xJ1.x/C C:

On substitution of the coefficients fcng in Eq. (29), we finally obtain

u.r; t/ D 2u0

1X
nD1

1

�nJ1.�n/
exp

 
��2

nkt

c2

!
J0

��nr

c

�
: (30)

Because of the presence of exponential factors, only a few terms are ordinarily needed for
numerical computations. The data required for the first five terms are listed in Fig. 10.4.5.
For instance, suppose that the cylinder has radius c D 10 cm, is made of iron with thermal

n �n J1.�n/

1

2

3

4

5

2.40483

5.52008

8.65373

11.79153

14.93092

+0.51915

--0.34026

+0.27145

--0.23246

+0.20655

FIGURE 10.4.5. Roots of
J0.�/ D 0.

diffusivity k D 0:15, and has initial temperature u0 D 100ıC throughout. Then, because
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J0.0/ D 1, we find from Eq. (30) that the temperature at its axis (r D 0) after two minutes
(t D 120) will be

u.0; 120/ D 200
1X

nD1

1

�nJ1.�n/
exp

�
�0:18�2

n

�
� 200 � .0:28283 � 0:00221C 0:00000 � � � � /I

thus u.0; 120/ will be approximately 56:12ıC.

CASE (b): Insulated Boundary. In this case no heat ever escapes from the heated cylinder,
so we certainly should find that its temperature remains constant: u.r; t/ � u0. Inasmuch as
ur .c; t/ D 0 implies that R0.c/ D 0, we have n D h D 0 in Eq. (14b), and hence case 3 in
Fig. 10.4.3. Therefore, �0 D 0 is an eigenvalue with associated eigenfunction R0.r/ � 1. A
corresponding solution of Eq. (26) is T0.t/ D 1. The positive eigenvalues are again given by
(28), except that now the numbers f�ng11 are the positive roots of J 0

0.x/ D 0. The solution is
therefore of the form

u.r; t/ D c0 C
1X

nD1

cn exp

 
��

2
nkt

c2

!
J0

��nr

c

�
;

and we want

u.r; 0/ D c0 C
1X

nD1

cnJ0

��nr

c

�
D u0:

But now the case 3 coefficient formulas in (24) yield

c0 D
2

c2

Z c

0
ru0 dr D

2u0

c2

�
1

2
r2

�c

0

D u0I

cn D
2u0

c2 ŒJ0.�n/�
2

Z c

0
rJ0

��nr

c

�
dr D 2u0

�2
n ŒJ0.�n/�

2

Z �n

0
xJ0.x/ dx

D 2u0

�2
n ŒJ0.�n/�

2

�
xJ1.x/

��n

0

D 2u0J1.�n/

�n ŒJ0.�n/�
2
D 0

because J1.�n/ D �J 0
0.�n/ D 0. Thus we find that u.r; t/ � u0, as expected.

CASE (c): Heat Transfer at the Boundary. Substitution of R.r/D J0.˛r/ in the boundary
condition HR.c/CKR0.c/ D 0 gives the equation

HJ0.˛c/CK˛J 0
0.˛c/ D 0

that takes the form

hJ0.˛c/C ˛cJ 0
0.˛c/ D 0 (31)

with h D cH=K > 0. Comparing Eq. (31) with Eq. (14b), we see that we have case 2 in
Fig. 10.4.3 with n D 0. Hence the eigenvalues and associated eigenfunctions are given by

�n D
�2

n

c2
; Rn.r/ D J0

��nr

c

�
; (32)

where f�ng11 are the positive roots of the equation hJ0.x/C xJ 0
0.x/ D 0. Now T 0 D ��kT

as before; consequently, the solution is of the form

u.r; t/ D
1X

nD1

cn exp

 
��

2
nkt

c2

!
J0

��nr

c

�
; (33)
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and Eq. (23) yields

cn D
2u0�

2
n

c2.�2
n C h2/ ŒJ0.�n/�

2

Z c

0
rJ0

��nr

c

�
dr

D 2u0

.�2
n C h2/ ŒJ0.�n/�

2

Z �n

0
xJ0.x/ dx D

2u0�nJ1.�n/

.�2
n C h2/ ŒJ0.�n/�

2
:

Hence

u.x; t/ D 2u0

1X
nD1

�nJ1.�n/

.�2
n C h2/ ŒJ0.�n/�

2
exp

 
��

2
nkt

c2

!
J0

��nr

c

�
: (34)

Example 2 Suppose that a flexible circular membrane of radius c vibrates under tension T in such a
way that its (normal) displacement u depends only on time t and the distance r from its
center. (This is the case of radial vibrations.) Then uD u.r; t/ satisfies the partial differential
equation

@2u

@t2
D a2

r
2u D a2

 
@2u

@r2
C 1

r

@u

@r

!
(35)

where a2 D T=�, and u.c; t/ D 0 if the boundary of the membrane is fixed. Find the natural
frequencies and normal modes of radial vibration of the membrane.

Solution We apply the method of Section 10.3: Substitution of the function u.r; t/ D R.r/ sin!t in
Eq. (35) yields

�!2R sin!t D a2

�
R00 sin!t C 1

r
R0 sin!t

�
:

Thus ! and R.r/ must satisfy the equation

r2R00 C rR0 C !2

a2
r2R D 0; (36)

as well as the conditionR.c/D 0 that follows from u.c; t/D 0. Equation (36) is the parametric
Bessel equation of order zero with parameter ˛ D !=a, and its only nontrivial solution is (to
within a constant multiple)

R.r/ D J0

�!r
a

�
I hence R.c/ D J0

�!c
a

�
D 0;

so !c=a must be one of the positive roots f�ng11 of the equation J0.x/ D 0. Thus the nth
natural (circular) frequency and a corresponding natural mode of vibration are

!n D
�na

c
; un.r; t/ D J0

��nr

c

�
sin

�nat

c
: (37)

On inspection of the table of values of f�ng in Fig. 10.4.5, we see that the higher natural
frequencies !n are not integral multiples of !1 D �1a=c; this is why the sound of a vibrating
circular drumhead is not perceived as being harmonious. The vibration of the membrane in
the nth normal mode in (37) is illustrated in Fig. 10.4.6, which shows a vertical cross section
through the center of the drumhead. In addition to the boundary r D c, there are n � 1 fixed
circles, called nodal circles, with radii ri D �i c=�n, i D 1, 2, : : : ; n � 1. The annular regions
of the membrane between consecutive pairs of nodal circles move alternately up and down
between the surfaces u D ˙J0.�nr=c/. Figure 10.4.7 shows how the surface u D J0.�nr=c/

looks for n D 1, 2, 3, and 4.

r 

r1

u

r2 r3

u = J0
nr  
c  

g( ) 

nr  
c  

g( ) u = –J0

FIGURE 10.4.6. Cross section of the
vibrating circular membrane.



10.4 Cylindrical Coordinate Problems 677

(a) n = 1 (b) n = 2

(c) n = 3 (d) n = 4

FIGURE 10.4.7. The surface u D J0.�nr=c/ for n D 1, 2, 3, 4.

10.4 Problems
1. Suppose that the circular membrane of Example 2 has ini-

tial position u.r; 0/D f .r/ and initial velocity ut .r; 0/D 0.
Derive by separation of variables the solution

u.r; t/ D
1X

nD1

cnJ0

��nr

c

�
cos

�nat

c
;

where f�ng11 are the positive roots of J0.x/ D 0 and

cn D
2

c2 ŒJ1.�n/�
2

Z c

0
rf .r/J0

��nr

c

�
dr:

2. Assume that the circular membrane of Example 2 has ini-
tial position u.r; 0/ D 0 and initial velocity ut .r; 0/ D v0

(constant). Derive the solution

u.r; t/ D 2cv0

a

1X
nD1

J0.�nr=c/ sin.�nat=c/

�2
nJ1.�n/

;

where f�ng11 are the positive roots of J0.x/ D 0.
3. (a) Find u.r; t/ in the case in which the circular mem-

brane of Example 2 has initial position u.r; 0/ � 0 and
initial velocity

ur .r; 0/ D

8̂<̂
:

P0

��
2
if 0 5 r 5 
,

0 if 
 < r 5 c.

(b) Use the fact that ŒJ1.x/�=x ! 1
2 as x ! 0 to find the

limiting value of the result in part (a) as 
! 0. You should
obtain

u.r; t/ D aP0

�cT

1X
nD1

J0.�nr=c/ sin.�nat=c/

�n ŒJ1.�n/�
2

;

where f�ng11 are the positive roots of J0.x/ D 0. This
function describes the motion of a drumhead resulting
from an initial momentum impulse P0 at its center.

4. (a) A circular plate of radius c has insulated faces and
heat capacity s calories per degree per square centimeter.
Find u.r; t/ given u.c; t/ D 0 and

u.r; 0/ D

8̂<̂
:

q0

s�
2
if 0 5 r 5 
,

0 if 
 < r 5 c.

(b) Take the limit as 
 ! 0 of the result in part (a) to
obtain

u.r; t/ D q0

s�c2

1X
nD1

1

ŒJ1.�n/�
2

exp

 
��

2
nkt

c2

!
J0

��nr

c

�
;

(where f�ng11 are the positive roots of J0.x/ D 0) for the
temperature resulting from an injection of q0 calories of
heat at the center of the plate.

Problems 5 through 7 deal with the steady-state temperature
u D u.r; ´/ in a solid cylinder of radius r D c with bottom
´ D 0 and top ´ D L, given that u satisfies Laplace’s equation

@2u

@r2
C 1

r

@u

@r
C @2u

@´2
D 0:

5. If u.r; L/ D u0 and the rest of the surface of the cylinder
is held at temperature zero, use separation of variables to
derive the solution

u.r; ´/ D 2u0

1X
nD1

J0.�nr=c/

�nJ1.�n/
� sinh.�n =́c/

sinh.�nL=c/
;

where f�ng11 are the positive roots of J0.x/ D 0.
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6. (a) If u.r; L/ D f .r/, u.r; 0/ D 0, and the cylindrical sur-
face r D c is insulated, derive a solution of the form

u.r; ´/ D c0´C
1X

nD1

cnJ0

��nr

c

�
sinh

�n´

c
;

where f�ng11 are the positive roots of J 0
0.x/D 0. (b) Sup-

pose that f .r/ D u0 (constant). Deduce from the result in
part (a) that u.r; ´/ D u0 =́L.

7. Let c D 1 and L D C1, so that the cylinder is semi-
infinite. If u.r; 0/ D u0, hu.1; ´/ C ur .1; ´/ D 0 (heat
transfer on the cylindrical surface), and u.r; ´/ is bounded
as ´!C1, derive the solution

u.r; ´/ D 2hu0

1X
nD1

exp.��n´/J0.�nr/

.�2
n C h2/J0.�n/

;

where f�ng11 are the positive roots of the equation
hJ0.x/ D xJ1.x/.

8. Begin with the parametric Bessel equation of order n,

d

dx

�
x
dy

dx

�
C
 
˛2x � n

2

x

!
y D 0: (38)

Multiply each term by 2x dy=dx; then write the result as

d

dx

�
x
dy

dx

�2

C .˛2x2 � n2/
d

dx
.y2/ D 0:

Integrate each term, using integration by parts for the sec-
ond term, to obtain"�

x
dy

dx

�2

C .˛2x2 � n2/y2

#c

0

� 2˛2

Z c

0
xy2 dx D 0:

Finally, substitute y.x/ D J0.˛x/, a solution of Eq. (38),
to get the formula in Eq. (20) in the text.

9. This problem provides the coefficient integrals for
Fourier-Bessel series with n D 0. (a) Substitute n D 0 in
the result of Problem 8 to obtain the integral formulaZ c

0
x ŒJ0.˛x/�

2 dx D c2

2

�
ŒJ0.˛c/�

2 C ŒJ1.˛c/�
2
�
:

(39)

(b) Suppose that ˛ D �k=c where �k is a root of the equa-
tion J0.x/ D 0. Deduce thatZ c

0
x
h
J0

��kx

c

�i2
dx D c2

2
ŒJ1.�k/�

2 :

(c) Suppose that ˛ D �k=c where �k is a root of the equa-
tion J 0

0.x/ D 0. Deduce thatZ c

0
x
h
J0

��kx

c

�i2
dx D c2

2
ŒJ0.�k/�

2 :

(d) Suppose that ˛ D �k=c where �k is a root of the equa-
tion hJ0.x/C xJ 0

0.x/ D 0. Deduce thatZ c

0
x
h
J0

��kx

c

�i2
dx D c2.�2

k
C h2/

2�2
k

ŒJ0.�k/�
2 :

10. Suppose that f�mg11 are the positive roots of the equation
J 0

0.x/ D 0 and that

f .x/ D c0 C
1X

mD1

cmJ0

��mx

c

�
: (40)

(a) Multiply each side of Eq. (40) by x and then integrate
termwise from x D 0 to x D c to show that

c0 D
2

c2

Z c

0
xf .x/ dx:

(b) Multiply each side of Eq. (40) by xJ0.�nx=c/ and then
integrate termwise to show that

cm D
2

c2 ŒJ0.�m/�
2

Z c

0
xf .x/J0

��mx

c

�
dx:

11. If a circular membrane with fixed boundary is subjected
to a periodic force F0 sin!t per unit mass uniformly dis-
tributed over the membrane, then its displacement func-
tion u.r; t/ satisfies the equation

@2u

@t2
D a2

 
@2u

@r2
C 1

r

@u

@r

!
C F0 sin!t:

Substitute u.r; t/ D R.r/ sin!t to find a steady periodic
solution.

12. Consider a vertically hanging cable of lengthL and weight
w per unit length, with fixed upper end at x D L and free
lower end at x D 0, as shown in Fig. 10.4.8. When the ca-
ble vibrates transversely, its displacement function y.x; t/
satisfies the equation

w

g

@2y

@t2
D @

@x

�
wx

@y

@x

�
because the tension is T .x/ D wx. Substitute the function
y.x; t/ D X.x/ sin!t , then apply the theorem of Section
8.6 to solve the ordinary differential equation that results.
Deduce from the solution that the natural frequencies of
vibration of the hanging cable are given by

!n D
�n

2

r
g

L
(rad=s);

where f�ng11 are the roots of J0.x/ D 0. Historically, this
problem was the first in which Bessel functions appeared.

x

y

x = 0

x = L

FIGURE 10.4.8. The vertical hanging cable
of Problem 12.



10.4 Cylindrical Coordinate Problems 679

Problems 13 through 15 deal with a canal of length L off the
ocean (see Fig. 10.4.9 for a top view). Its vertical cross section
at x is rectangular with width w.x/ and depth h.x/; the latter
is the equilibrium depth of the water at x. Consider a periodic
canal tide such that the vertical displacement of the water sur-
face is y.x; t/ D X.x/ cos!t at time t . Then y.x; t/ satisfies
the equation

w.x/

g

@2y

@t2
D @

@x

�
w.x/h.x/

@y

@x

�
:

Let y0 D X.L/ be the amplitude of the tide at the mouth of the
canal.

xx = 0

Ocean
mouth

x = L

w(x)

FIGURE 10.4.9. The canal of
Problems 13 through 15.

13. Suppose that w.x/D wx and h.x/D h (a constant). Show
that

y.x; t/ D y0

J0

�
wx=

p
gh
�

J0

�
wL

p
gh
� cos!t:

(Suggestion: Apply the theorem of Section 8.6.)
14. Suppose that w.x/ D w (a constant) and that h.x/ D hx.

Show that

y.x; t/ D y0

J0

�
2w
p
x=gh

�
J0

�
2w
p
L=gh

� cos!t:

15. Suppose thatw.x/Dwx and h.x/D hx withw and h both
constant. Show that

y.x; t/ D y0

r
L

x

J1

�
2w
p
x=gh

�
J1

�
2w
p
L=gh

� cos!t:

16. If 0 < a < b, then the eigenvalue problem

d

dx

�
x
dy

dx

�
C �xy D 0; y.a/ D y.b/ D 0

for the parametric Bessel equation of order zero is a reg-
ular Sturm–Liouville problem. By Problem 1 of Section
10.1, it therefore has an infinite sequence of nonnegative
eigenvalues. (a) Prove that zero is not an eigenvalue.
(b) Show that the nth eigenvalue is �nD �2

n , where f�ng11
are the positive roots of the equation

J0.ax/Y0.bx/ � J0.bx/Y0.ax/ D 0: (41)

The first five roots of Eq. (41) for various values of a=b are
listed in Table 9.7 of Abramowitz and Stegun’s Handbook
of Mathematical Functions. (c) Show that an associated
eigenfunction is

Rn.x/ D Y0.�na/J0.�nx/ � J0.�na/Y0.�nx/: (42)

17. Suppose that an annular membrane with constant density
� (per unit area) is stretched under constant tension T be-
tween the circles r D a and r D b > a. Show that its
nth natural (circular) frequency is !n D �n

p
T=�, where

f�ng11 are the positive roots of Eq. (41).
18. Suppose that the infinite cylindrical shell a 5 r 5 b has

initial temperature u.r; 0/D f .r/, and thereafter u.a; t/D
u.b; t/D 0. By separation of variables, derive the solution

u.r; t/ D
1X

nD1

cn exp
�
��2

nkt
�
Rn.r/;

where Rn.r/ is the function in Eq. (42) and

cn

Z b

a
r ŒRn.r/�

2 dr D
Z b

a
rf .r/Rn.r/ dr:

19. Consider the semi-infinite cylindrical shell

0 < a 5 r 5 b; ´ = 0:

If u.a; ´/ D u.b; ´/ D 0 and u.r; 0/ D f .r/, derive by sep-
aration of variables the steady-state temperature

u.r; ´/ D
1X

nD1

cn exp .��n´/Rn.r/;

where fcng and fRng are as given in Problems 18 and 16.

10.4 Application Bessel Functions and Heated Cylinders
Here we outline a Maple-based numerical investigation of the temperature function

u.r; t/ D
1X

nD1

an exp
�
��

2
nkt

c2

�
J0

��nr

c

�
(1)
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of the heated cylindrical rod of Example 1 in this section. Mathematica and MAT-
LAB versions of this investigation are included in the applications manual that ac-
companies this text.

We assume that the cylindrical rod has radius c D 10 cm, constant initial
temperature u0 D 100ı, and thermal diffusivity k D 0:15 (for iron). The coefficients
fang11 in Eq. (1) depend on the condition imposed at the boundary r D c of the
cylinder. In the case of the zero boundary condition u.c; t/ D 0, Eq. (30) in this
section implies that anD 2u0=.�nJ1.�n//, where the f�ng11 are the positive solutions
of the equation J0.x/ D 0.

Knowing that �1 � 2:4 and that successive roots differ approximately by � ,
we can approximate the first 20 values of �n by using the Maple commands

g := array(1..20): # g for gamma
for n from 1 to 20 do

g[n] := fsolve(BesselJ(0,x)=0, x = 2.4 + (n--1)�Pi):
od:

The table in Fig. 10.4.10 lists the first ten values of �n. Then the first 20 coefficients
in (1) are calculated by the commands

n �n

1

2

3

4

5

6

7

8

9

10

2.4048

5.5201

8.6537

11.7915

14.9309

18.0711

21.2116

24.3525

27.4935

30.6346

FIGURE 10.4.10. The first 10
positive zeros of J0.x/ D 0.

a := array(1..20):
c := 10: u0 := 100: k := 0.15:
for n from 1 to 20 do

a[n] := 2�u0/(g[n]�BesselJ(1, g[n])):
od:

Finally, the following Maple function sums the corresponding terms of the series:

u := (r, t) ��> sum(a[n]�exp(--g[n]^2�k�t/c^2)�
BesselJ(0, g[n]�r/c), n = 1..20);

The graph of u.r; 120/ in Fig. 10.4.11 shows how the temperature within the rod
after two minutes varies with the distance r from its center, and we see that the
centerline temperature has already fallen below 60ı. The graph of u.0; t/ for a five-
minute period shown in Fig. 10.4.12 indicates that the centerline temperature takes
a bit more than 200 seconds to fall to 25ı. Indeed, the computation

fsolve(u(0, t) = 25, t = 200..250);

reveals that this requires about 214 seconds.
For your own cylindrical rod with constant initial temperature u0 D 100ı to

investigate in the manner we illustrate, let c D 2p and k D q=10, where p is the
largest and q the smallest nonzero digit of your student ID number.

INVESTIGATION A: If the cylindrical boundary of the rod is held at zero temper-
ature u.c; t/ D 0, plot graphs like Figs. 10.4.11 and 10.4.12, then determine how
long it will take for the rod’s centerline temperature to fall to 25ı.

INVESTIGATION B: Now suppose that heat transfer occurs at the rod’s cylindrical
boundary, so that the coefficients in the series in (1) are those appearing in Eq. (34)
of the text. Assume that h D 1, so that the f�ng11 are now the positive roots of the
equation

J0.x/C xJ 0
0.x/ D J0.x/� xJ1.x/ D 0 (2)

(because J 0
0.x/ D �J1.x/). Figure 10.4.13 shows the graph of the left-hand side

in Eq. (2) and indicates that �1 � 1:25, with successive roots differing (as usual)
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10
r

u
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0

100

80

60

40

20

u = u (r, 120)

FIGURE 10.4.11. Temperature as a
function of distance r from the rod’s
centerline.
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u = u (0, t)

FIGURE 10.4.12. Centerline
temperature as a function of time t .
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FIGURE 10.4.13. The graph
y D J0.x/ � xJ 0

0
.x/.

by approximately � . Determine in this case both how long it takes the centerline
temperature to fall to 25ı and how long it takes the boundary temperature at r D c
to fall to 25ı.

10.5 Higher-Dimensional Phenomena
In this section we discuss the application of the method of separation of variables
to heat flow and vibration problems in which two or more space variables are in-
volved. The section consists largely of illustrative examples, problems, and projects
grouped according to whether rectangular, cylindrical, or spherical coordinates are
most appropriate for their solutions.

Rectangular Coordinate Applications and Two-Dimensional
Fourier Series
As indicated in Section 9.7, the Laplacian in two dimensions takes the form

r
2u D @2u

@x2
C @2u

@y2
:

For instance, consider a thin plate lying in the xy-plane with its two parallel faces
insulated, so that heat flows within the plate only in the x- and y-directions. If
u.x; y; t/ denotes the temperature at time t at the point .x; y/ within the plate, then
under standard assumptions it follows that u satisfies the two-dimensional heat
equation

@u

@t
D kr

2u D k
�
@2u

@x2
C @2u

@y2

�
: (1)

Here k denotes the thermal diffusivity of the material comprising the plate. The heat
equation in (1) governs the change with time of temperatures within the plate. Note
that if @r=@t � 0, then the heat equation reduces to Laplace’s equation r

2u D 0,
which (as in Section 9.7) determines the steady-state distribution of temperature in
the plate.

If the plate is rectangular and homogeneous boundary conditions are imposed
along its four edges, then the method of separation of variables can be applied in a
straightforward manner.
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Example 1 Suppose that a thin rectangular plate occupies the plane region 0 5 x 5 a, 0 5 y 5 b, that its
top and bottom faces are insulated, and that its four edges are held at temperature zero. If the
plate has the initial temperature function u.x; y; 0/ D f .x; y/, then its temperature function
u.x; y; t/ satisfies the boundary value problem consisting of the heat equation in (1) and the
boundary conditions

u.0; y; t/ D u.a; y; t/ D u.x; 0; t/ D u.x; b; t/ D 0; (2)

u.x; y; 0/ D f .x; y/: (3)

Find u.x; y; t/.
Solution We substitute u.x; y; t/ D X.x/Y.y/T .t/ in Eq. (1). After division by kXY T , we obtain

T 0

kT
D X 00

X
C Y 00

Y
:

This relation can hold for all x, y, and t only if each term is a constant, so we write

X 00

X
D ��; Y 00

Y
D �; T 0

kT
D �.�C /: (4)

Taking into account the boundary conditions in (2), we see that X.x/ and Y.y/ satisfy the
separate Sturm–Liouville problems

X 00 C �XD 0; X.0/D X.a/ D 0 (5)

and

Y 00 C YD 0; Y.0/D Y.b/ D 0: (6)

The eigenvalues and eigenfunctions of the familiar problem in (5) are

�m D
m2�2

a2
; Xm.x/ D sin

m�x

a
(7)

for m D 1, 2, 3, : : : : Similarly, the eigenvalues and eigenfunctions of the problem in (6) are

n D
n2�2

b2
; Yn.y/ D sin

n�y

b
(8)

for n D 1, 2, 3, : : : : We use distinct indices m and n in (7) and (8) because the two problems
in Eqs. (5) and (6) are independent of each other.

For each pair m, n of positive integers, we must solve the third equation in (4),

T 0
mn D �.�m C n/kTmn D �

 
m2

a2
C n2

b2

!
�2kTmn: (9)

To within a multiplicative constant, the solution of Eq. (9) is

Tmn.t/ D exp
�
��2

mnkt
�
; (10)

where

�mn D �
s
m2

a2
C n2

b2
: (11)

Thus we have found a “doubly infinite” collection of building blocks, and it follows that the
“doubly infinite” series

u.x; y; t/ D
1X

mD1

1X
nD1

cmn exp
�
��2

mnkt
�

sin
m�x

a
sin

n�y

b
(12)

formally satisfies the heat equation in (1) and the homogeneous boundary conditions in (2).
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It remains only to determine the coefficients fcmng so that the series satisfies also the
nonhomogeneous condition

u.x; y; 0/ D
1X

mD1

1X
nD1

cmn sin
m�x

a
sin

n�y

b
D f .x; y/: (13)

To do so, we first group the terms in this two-dimensional Fourier series to display the total
coefficient of sin.n�y=b/ and write

f .x; y/ D
1X

nD1

 1X
mD1

cmn sin
m�x

a

!
sin

n�y

b
: (14)

For each fixed x, we want the series in (14) to be the Fourier sine series of f .x; y/ on 0 5

y 5 b. This will be true provided that
1X

mD1

cmn sin
m�x

a
D 2

b

Z b

0
f .x; y/ sin

n�y

b
dy: (15)

The right-hand side in (15) is, for each n, a function Fn.x/; viz.,

Fn.x/ D
1X

mD1

cmn sin
m�x

a
: (16)

This requires that cmn be the mth Fourier sine coefficient of Fn.x/ on 0 5 x 5 a; that is, that

cmn D
2

a

Z a

0
Fn.x/ sin

m�x

a
dx: (17)

Substituting the right-hand side in Eq. (15) for Fn.x/ in Eq. (17), we finally get

cmn D
4

ab

Z a

0

Z b

0
f .x; y/ sin

m�x

a
sin

n�y

b
dy dx (18)

for m, n D 1, 2, 3, : : : : With these coefficients, the series in (13) is the double Fourier sine
series of f .x; y/ on the rectangle 0 5 x 5 a, 0 5 y 5 b, and the series in (12) formally
satisfies the boundary value problem in (1)–(3).

PROBLEM 1 Suppose that f .x; y/ D u0, a constant. Compute the coefficients in (18) to obtain
the solution

u.x; y; t/ D 16u0

�2

X
m odd

X
n odd

exp
���2

mnkt
	

mn
sin

m�x

a
sin

n�y

b
:

PROBLEM 2 Replace the boundary conditions (2) in Example 1 with

u.0; y; t/ D u.x; 0; t/ D 0;
hu.a; y; t/C ux.a; y; t/ D hu.x; b; t/C uy.x; b; t/ D 0:

Thus the edges x D 0 and y D 0 are still held at temperature zero, but now heat
transfer takes place along the edges x D a and y D b. Then derive the solution

u.x; y; t/ D
1X

mD1

1X
nD1

cmn exp
���2

mnkt
	

sin
˛mx

a
sin

ˇny

b

where �2
mn D .˛m=a/

2 C .ˇn=b/
2, f˛mg are the positive roots of ha tan x D �x, fˇng

are the positive roots of hb tan x D �x, and

cmn D
4

AmBn

Z a

0

Z b

0

f .x; y/ sin
˛mx

a
sin

ˇny

b
dy dx;

where Am D .haC cos2 ˛m/=h and Bn D .hb C cos2 ˇn/=h.
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PROJECT A Suppose that the three edges x D 0, y D 0, and y D b of the plate of Example 1 are
held at temperature zero, but the fourth edge x D a is insulated, with corresponding
boundary conditions

u.0; y; t/ D u.x; 0; t/ D u.x; b; t/ D ux.a; y; t/ D 0:

If the plate’s initial temperature is u.x; y; 0/ D f .x; y/, show that its temperature
function is given by

u.x; y; t/ D
1X

mD1

1X
nD1

cmn exp
���2

mnkt
	

sin
.2m � 1/�x

2a
sin

n�y

b
; (19)

where ��mn

�

�2

D
�
2m � 1
a

�2

C
�n
b

�2

and

cmn D
4

ab

Z a

0

Z b

0

f .x; y/ sin
.2m � 1/�x

2a
sin

n�y

b
dy dx:

The result of Problem 21 in Section 9.3 may be useful. If f .x; y/� u0 (a constant),
show that Eq. (19) yields

u.x; y; t/ D 16u0

�2

1X
mD1

X
n odd

exp
���2

mnkt
	

.2m � 1/n sin
.2m � 1/�x

2a
sin

n�y

b
: (20)

For your personal plate to investigate numerically, take u0 D 100, a D 10p,
b D 10q, and k D r=10, where p and q are the two largest digits and r is the smallest
nonzero digit in your student ID number. Plot ´ D u.x; y; t/ for typical values of t
to verify that each such graph is symmetric with respect to the midline y D b=2, so it
follows (why?) that the maximum temperature in the plate occurs at a point of this
midline. Then determine (perhaps using the method of the Section 10.2 project)

� How long it takes for the maximum temperature on the edge x D a to fall
to 25ı;

� What is then the maximum interior temperature in the plate.

Vibrations of Rectangular Membranes
Now let’s consider a two-dimensional flexible membrane whose equilibrium po-
sition occupies a region in the horizontal xy-plane. Suppose that this membrane
vibrates up and down, with u.x; y; t/ denoting the vertical (normal) displacement
of the point .x; y/ of the membrane at time t . If T and � denote the membrane’s
tension and density (per unit area), respectively, then under standard assumptions it
follows that its displacement function u.x; y; t/ satisfies the two-dimensional wave
equation

@2u

@t2
D c2

r
2u D c2

�
@2u

@x2
C @2u

@y2

�
; (21)

where c2 D T=�.



10.5 Higher-Dimensional Phenomena 685

PROBLEM 3 Suppose that the rectangular membrane 0 5 x 5 a, 0 5 y 5 b is released from
rest with given initial displacement u.x; y; 0/ D f .x; y/. If the four edges of the
membrane are held fixed thereafter with zero displacement, then the displacement
function u.x; y; t/ satisfies the boundary value problem consisting of the wave equa-
tion in (21) and the boundary conditions

u.0; y; t/ D u.a; y; t/ D u.x; 0; t/ D u.x; b; t/ D 0;
u.x; y; 0/ D f .x; y/ (initial position); (22)

ut .x; y; 0/ D 0 (initial velocity):

Derive the solution

u.x; y; t/ D
1X

mD1

1X
nD1

cmn cos �mnct sin
m�x

a
sin

n�y

b
; (23)

where the numbers f�mng and the coefficients fcmng are given by the formulas in
(11) and (18), respectively.

The mnth term in Eq. (23) defines the rectangular membrane’s mnth natural
mode of oscillation, with displacement function

umn.x; y; t/ D sin
m�x

a
sin

n�y

b
cos �mnct: (24)

In this mode the membrane travels up and down between the (imaginary) surfaces

u D ˙ sin
m�x

a
sin

n�y

b

with circular frequency !mn D �mnc of oscillation. Figure 10.5.1 illustrates how
these surfaces look for typical small values of m and n. If c D 1 and a D b D � (for
instance), then the successive frequencies

!12 D !21 D
p
5 � 2:24; !22 D

p
8 � 2:83;

!13 D !31 D
p
10 � 3:16; !23 D !32 D

p
13 � 3:61;

!33 D
p
18 � 4:24; : : :

are not integral multiples of the fundamental frequency !11 D
p
2 � 1:41. This

correctly suggests that the sound of a vibrating rectangular membrane is not harmo-
nious, and therefore is usually perceived as noise rather than music.
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(a)  m = 2, n = 1

x

y

(b)  m = 2, n = 2

x

y

(c)  m = 3, n = 2

x

y

(d)  m = 3, n = 3

x

y

FIGURE 10.5.1. Surfaces of the form u D sin
m�x

a
sin

n�y

b
.

PROBLEM 4 Suppose that the membrane in Problem 3 is a square tambourine lying upright and
crosswise in a pickup truck that hits a brick wall at time t D 0. Then the membrane
is set in motion with zero initial displacement and constant initial velocity, so the
initial conditions are

u.x; y; 0/ D 0; ut .x; y; 0/ D v0 (a constant).

Then derive the solution

u.x; y; t/ D 16v0

�2c

X
m odd

X
n odd

sin �mnct

mn�mn

sin
m�x

a
sin

n�y

b
:

PROJECT B Suppose that the square membrane 0 5 x 5 � , 0 5 y 5 � is plucked at its center
point and set in motion from rest with the initial position function

π

π

x

y

(0, 0)

f (x, y) = y

( , )π π

y =
 x

y = 
– x

π

f (x, y) = x

f (x, y) = – yπ

f (x, y) = – x  π

FIGURE 10.5.2. Piecewise
definition of the tent function.

u.x; y; 0/ D f .x; y/ D minfx; y; � � x; � � yg; (25)

whose graph over the square 0 5 x 5 � , 0 5 y 5 � resembles a square-based tent
or pyramid with height �=2 at its center. Thus the “tent function” f .x; y/ is the
two-dimensional analog of the familiar one-dimensional triangle function. It can be
defined piecewise as indicated in Fig. 10.5.2.

Use a computer algebra system such as Maple or Mathematica to show that
the double integral formula in (18) yields cmn D 0 if m ¤ n and

cnn D
2Œ1 � .�1/n�

�n2
D

8̂<̂
:

4

�n2
for n odd,

0 for n even.
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It therefore follows from (23) that the membrane’s resulting displacement function
is given by

u.x; y; t/ D 4

�

X
n odd

sinnx sinny cosnt
p
2

n2
: (26)

Is it clear that—because the summand in (26) contains no terms with m ¤ n—the
function u.x; y; t/ is periodic (in t) with period �

p
2? The fact that the tent function

in (25) thus yields a “musical” vibration of a square membrane was first pointed out
to us by John Polking. Figure 10.5.3 shows some typical snapshots of this vibration.

(a) t = 0 (b) t =  π/16π

(c) t = π/8π (d) t = 3π/16π

FIGURE 10.5.3. Vibrations of the square membrane with period P D �
p

2.

Polar Coordinate Applications
In problems involving regions that enjoy circular symmetry around the origin in
the plane (or the vertical ´-axis in space), the use of polar (or cylindrical) coor-
dinates is advantageous. In Section 9.7 we discussed the expression of the two-
dimensional Laplacian in terms of the familiar plane polar coordinates .r; �/ for
which x D r cos � and y D r sin � . Recall from Eq. (1) in Section 10.4 that the
three-dimensional Laplacian for a function u.r; �; t/ expressed in cylindrical coor-
dinates is given by

r
2u D @2u

@r2
C 1

r

@u

@r
C 1

r2

@2u

@�2
C @2u

@´2
: (27)
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If u is independent of either � or ´, then the corresponding second derivative is
absent from the right-hand side in Eq. (27).

Example 2 Suppose that the solid cylinder 0 5 r 5 c, 0 5 ´ 5 h of Fig. 10.5.4 is made of a uni-
form material with thermal diffusivity k and has an axially symmetric initial temperature
u.r; ´; 0/ D f .r; ´/ that is independent of � . If the cylinder’s boundary—consisting of the

h

c

FIGURE 10.5.4. The solid cylinder
of Example 2.

vertical cylindrical surface r D c and its circular top and bottom—is thereafter held at temper-
ature zero (perhaps because the cylinder is embedded in ice at time t D 0), then the resulting
axially symmetric temperature function u.r; ´; t/ satisfies the boundary value problem

@u

@t
D kr

2u Dk
 
@2u

@r2
C 1

r

@u

@r
C @2u

@´2

!
; (28)

u.c; ´; t/ Du.r; 0; t/ D u.r; h; t/ D 0; (29)
(boundary temperature zero)

u.r; ´; 0/ Df .r; ´/: (30)

(given initial temperature)

The following two problems outline a solution of this heat problem for the case of
constant initial temperature.

PROBLEM 5 Show that the substitution

u.r; ´; t/ D R.r/Z.´/T .t/

in Eq. (28) yields the separation of variables

r2R00 C rR0 C ˛2r2R D 0; R.c/ D 0I (31)

Z00 C ˇ2Z D 0; Z.0/ D Z.h/ D 0I (32)

T 0 D �.˛2 C ˇ2/kT: (33)

Note that the differential equation in (31) is the parametric Bessel equation of order
zero for R.r/, and so (31) has the eigenvalues and eigenfunctions given in case 1 of
the table in Fig. 10.4.2. Of course, the differential equations in (32) and (33) have
familiar trigonometric and exponential solutions. Hence derive the formal series
solution

u.r; ´; t/ D
1X

mD1

1X
nD1

cmn exp .��mnkt/ J0

��mr

c

�
sin

n�´

h
; (34)

where the f�mg11 are the positive solutions of the equation J0.x/ D 0 (as listed in
the Section 10.4 project),

�mn D
�2

m

c2
C n2�2

h2
; (35)

and the coefficients in Eq. (34) are given by the formula

cmn D
4

hc2 ŒJ1.�m/�
2

Z c

0

Z h

0

rf .r; ´/J0

��mr

c

�
sin

n�´

h
d´dr: (36)

The derivation of Eq. (36) is similar to that of the double Fourier series coefficient
formula in (18).
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PROBLEM 6 If the initial temperature function is constant, f .r; ´/ � u0, deduce from Eqs. (34)
and (36) that

u.r; ´; t/ D 8u0

�

1X
mD1

X
n odd

exp .��mnkt/ J0

��mr

c

�
sin

n�´

h
n�mJ1.�m/

; (37)

where �mn is defined in Eq. (35).

PROJECT C For your personal heated cylinder to investigate numerically, take u0 D 100, h D
10p, c D 5q, and k D r=10, where p and q are the two largest digits and r is the
smallest nonzero digit in your student ID number. Assume zero boundary temper-
atures as in Problems 5 and 6. Plot the surface ´ D u.r; ´; t/ for typical values of t
to substantiate the physically plausible conjecture that, at any time t , the maximum
temperature within the cylinder occurs at its center point, where r D 0 and ´ D h=2.
It may help to also plot graphs of

1. u as a function of r with ´ D h=2 and t constant; and
2. u as a function of ´ with r D 0 and t constant.

Then determine how long it takes for the maximum temperature within the cylinder
to fall to 25ı.

Repeat this investigation with the temperature held at zero on the cylinder’s
bottom and curved surface, but with its top now insulated, so that the boundary
conditions in (29) are replaced with

u.c; ´; t/ D u.r; 0; t/ D u´.r; h; t/ D 0:

Using (as in Project A) the result of Problem 21 in Section 9.3, you should find that
(37) is replaced with

u.r; ´; t/ D 8u0

�

1X
mD1

1X
nD1

exp .��mnkt/ J0

��mr

c

�
sin

.2n � 1/�´
2h

.2n � 1/�mJ1.�m/
; (38)

where

�mn D
�2

m

c2
C .2n � 1/2�2

4h2
:

Is it plausible that the cylinder’s maximum temperature now always occurs at the
center of its top? Substantiate this conjecture with appropriate graphical investiga-
tions. Also determine how long it takes for this maximum temperature to fall to
25ı.

PROJECT D This project deals with a vibrating uniform circular membrane of radius a. If the
membrane’s initial displacement and velocity functions depend on both polar coor-
dinates r and � , then the wave equation in (19) takes the polar coordinate form

@2u

@t2
D c2

r
2u D c2

�
@2u

@r2
C 1

r

@u

@r
C 1

r2

@2u

@�2

�
: (39)

If the membrane is released from rest at time t D 0 and thereafter its boundary
is held fixed (so on the circle r D a we have the displacement u always zero),
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then the membrane’s displacement function u.r; �; t/ satisfies both Eq. (39) and the
boundary conditions

u.a; �; t/ D 0 (fixed boundary), (40)

u.r; �; 0/ D f .r; �/ (given initial displacement), (41)

ut .r; �; 0/ D 0 (zero initial velocity). (42)

Fill in the details in the following outline of a solution. Show first that the
substitution

u.r; �; t/ D R.t/‚.�/T .t/
in Eq. (39) yields the separation of variables

T 00

c2T
D
R00 C 1

r
R0

R
C ‚00

r2‚
D �˛2 (constant). (43)

Then

T 00 C ˛2c2T D 0; T 0.0/ D 0 (44)

implies that, to within a constant multiple,

T .t/ D cos˛ct: (45)

Next, the right-hand equality in (43) yields the equation

r2R00 C rR0

R
C ˛2r2 C ‚00

‚
D 0; (46)

from which it follows that

‚00

‚
D �ˇ2 (constant). (47)

In order that a solution ‚.�/ of ‚00 C ˇ2‚ D 0 have the necessary periodicity of
period 2� , the parameter ˇ must be an integer, so we have the �-solutions

‚n.�/ D
(

cosn�;
sinn�

(48)

for n D 0, 1, 2, 3, : : : :
Substitution of ‚00=‚ D �n2 in (46) now yields the parametric Bessel

equation

r2R00 C rR0 C .˛2r2 � n2/R D 0 (49)

of order n, with bounded solution Jn.˛r/. Because the zero boundary condition in
(40) yields Jn.˛a/D 0, case 1 in the table in Fig. 10.4.2 yields the r-eigenfunctions

Rmn.r/ D Jn

��mnr

a

�
(m D 1, 2, 3, : : : ; n D 0, 1, 2, : : : ), (50)

where �mn denotes themth positive solution of the equation Jn.x/D 0 (Fig. 10.5.5).

γ10

γ12

γ11

γ 13

15
x

y

0 105
–0.5

1.0

0.5

0.0

y = J0(x)

y = J1(x)

y = J3(x)
y = J2(x)

FIGURE 10.5.5. The graphs and
initial zeros of the first several Bessel
functions.

Computer systems such as Mathematica can be used to approximate the numerical
value of �mn; for example, the command

N[BesselJZero[3, 1]]
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returns the value 6.38016 for the first positive solution �13 of J3.x/ D 0. Finally,
substitution of ˛mn D .�mn/=a in (45) yields the t-function

Tmn.t/ D cos
�mnct

a
: (51)

Combining (48), (50), and (51), we see that our boundary value problem for
the circular membrane released from rest has the formal series solution

u.r; �; t/ D
1X

mD1

1X
nD0

Jn

��mnr

a

�
.amn cos n� C bmn sinn�/ cos

�mnct

a
: (52)

Thus the vibrating circular membrane’s typical natural mode of oscillation with zero
initial velocity is of the form

umn.r; �; t/ D Jn

��mnr

a

�
cosn� cos

�mnct

a
(53)

or the analogous form with sinn� in place of cosn� . In this mode the membrane
vibrates with m� 1 fixed nodal circles (in addition to its boundary r D a) with radii

rjn D
�jna

�mn

for j D 1; 2; : : : ; m � 1.

It also has 2n fixed nodal radii spaced at angles of �=n starting with � D �=.2n/.
Figure 10.5.6 shows some typical configurations of these nodal circles and radii,
which divide the circle into annular sectors that move alternately up and down as
the membrane vibrates.

Formulas for the coefficients in (52) often are not required for practical ap-
plications involving vibrating circular membranes. We suggest that you explore

(a)  m = 2, n = 1 (b)  m = 1, n = 2 

(c)  m = 2, n = 3 (d)  m = 3, n = 2 

FIGURE 10.5.6. Typical nodal
circles and radii for a vibrating circular
membrane.

vibrating membrane possibilities by graphing convenient linear combinations of
eigenfunctions defined as in (53). For instance, Fig. 10.5.7 shows snapshots of
the oscillation defined by

u.r; �; t/ D J1.�21r/ cos � cos �21t C J2.�32r/ cos 2� cos �32t (54)

for a circular membrane with c D 1 and radius a D 1. The following Maple com-
mands animate these snapshots by producing a display, controlled by play button or
slider, illustrating the motion of the membrane from t D 0 to t D 1:

g21 := BesselJZeros(1, 2)
g32 := BesselJZeros(2, 3)
u := (r, theta, t) -->

BesselJ(1, g21�r)�cos(theta)�cos(g21�t) +
BesselJ(2, g32�r)�cos(2�theta)�cos(g32�t)

plots:-animate(plot3d, [[r, theta, u(r, theta, t)],
r = 0..1, theta = 0..2�Pi, coords = cylindrical],
t = 0..1)
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(a) t = 0.0 (b) t = 0.2

(c) t = 0.4 (d) t = 0.6

FIGURE 10.5.7. Snapshots of the circular membrane vibration defined by Eq. (54).

Spherical Coordinate Applications
In problems involving regions that enjoy spherical symmetry around the origin in
space, it is appropriate to use the spherical coordinates indicated in Fig. 10.5.8.
The three-dimensional Laplacian for a function u.�; �; �/ expressed in spherical
coordinates is given by

r
2u D 1

�2

�
@

@�

�
�2 @u

@�

�
C 1

sin�
@

@�

�
@u

@�
sin�

�
C 1

sin2 �

@2u

@�2

�
: (55)

Note that � D
p
x2 C y2 C ´2 denotes the distance of the point P from the origin

O , � is the angle down from the positive ´-axis to OP , and � is the ordinary polar
coordinate angle in the xy-plane (although some texts reverse the roles of � and �).

y

z

x

O

Q

θ

φ

φ

r

P (  ,  ,  )φρ θ

ρ

FIGURE 10.5.8. Finding the
spherical coordinates of the point P .

Observe also that if u is independent of either �, �, or � , then the corresponding
second derivative term is missing on the right-hand side in Eq. (55).

Example 3 Suppose that a given axially symmetric temperature function g.�/ is imposed on the bound-
ary sphere � D a of the solid ball 0 5 � 5 a, and we seek the resulting axially symmetric
steady-state temperature function u.�; �/ within the sphere. Because u is independent of � ,
Laplace’s equation r

2u D 0 takes (after multiplication by �2 in Eq. (55)) the form

@

@�

�
�2 @u

@�

�
C 1

sin�
@

@�

�
@u

@�
sin�

�
D 0; (56)

and we have the single boundary condition

u.a; �/ D g.�/ (given boundary temperature). (57)
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The following problems outline a solution of this boundary value problem to find
the temperature function u.�; �/.

PROBLEM 7 Show that the substitution u.�; �/ D R.�/ˆ.�/ in Eq. (56) yields the separation of
variables

�2R00 C 2�R0 � �R D 0; (58)

Œ.sin�/ˆ0�0 C �.sin�/ˆ D 0; (59)

where � is the usual separation constant. We have no homogeneous boundary con-
ditions to impose, but we do seek continuous functions R.�/ for 05 � 5 a and ˆ.�/
for 0 5 � 5 � . Equation (58) is one for which the trial solution R.�/ D �k suggests
itself, but Eq. (59) appears to be completely unfamiliar.

PROBLEM 8 Show that the substitution

x D cos�; y.x/ D ˆ.cos�1 x/ D ˆ.�/ .�1 5 x 5 1/

in Eq. (59) yields the Legendre equation

.1 � x2/y00 � 2xy C �y D 0
that we discussed in Section 8.2. This equation has a solution y.x/ that is continuous
for �1 5 x 5 1 only if � D n.nC 1/, where n is a nonnegative integer. In this case
y.x/ is a constant multiple of the nth Legendre polynomial Pn.x/. Thus we have
eigenvalues and eigenfunctions of Eq. (59) given by

�n D n.nC 1/; ˆn.�/ D Pn.cos�/ (60)

for n D 1, 2, 3, : : : : Recall from Section 8.2 that the first several Legendre polyno-
mials are

P0.x/ � 1; P1.x/ D x;

P2.x/ D 1
2
.3x2 � 1/; P3.x/ D 1

2
.5x3 � 3x/;

P4.x/ D 1
8
.35x4 � 30x2 C 3/; : : : :

PROBLEM 9 With � D n.nC 1/, Eq. (58) takes the form

�2R00 C 2�R0 � n.nC 1/R D 0:
Show that the trial solution R.�/ D �k yields the general solution

R.�/ D A�n C B

�nC1
:

But continuity at � D 0 implies that B D 0 here, so it follows that the eigenfunction
of Eq. (58) corresponding to �n D n.nC 1/ is (a constant multiple of) Rn.�/ D �n.
Thus we have found the building-block solutions

un.�; �/ D �nPn.cos�/ .n D 0; 1; 2; : : :/
of Laplace’s equation in (56). In the usual fashion our next step is to write the formal
series solution

u.�; �/ D
1X

nD0

bn�
nPn.cos�/: (61)
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PROBLEM 10 It remains only to discuss the choice of coefficients in Eq. (61) to satisfy the nonho-
mogeneous condition

u.a; �/ D g.�/ D
1X

nD0

bna
nPn.cos�/:

With x D cos�, f .x/ D g.�/ D g.cos�1 x/, and cn D bna
n, this equation takes the

form of the Fourier–Legendre series

f .x/ D
1X

nD0

cnPn.x/; (62)

expressing the function f .x/ on Œ�1; 1� in terms of Legendre polynomials. Given
that the Legendre polynomials fPn.x/g10 are mutually orthogonal on Œ�1; 1� with
weight function r.x/ � 1, apply the formal eigenfunction series method of Section
10.1—multiplying each side in Eq. (62) by Pk.x/ and integrating termwise—to
derive the Fourier–Legendre coefficient formula

cn D

Z 1

�1

f .x/Pn.x/ dxZ 1

�1

ŒPn.x/�
2 dx

:

But then the known integralZ 1

�1

ŒPn.x/�
2 dx D 2

2nC 1
gives

cn D
2nC 1
2

Z 1

�1

f .x/Pn.x/ dx: (63)

Show, finally, that this choice of coefficients yields the formal series solution

u.�; �/ D
1X

nD0

cn

��
a

�n

Pn.cos�/ (64)

of the boundary value problem in Eqs. (56) and (57).

PROBLEM 11 Recall the notation
kŠŠ D k.k � 2/.k � 4/ � � � 4 � 2

for k even and
kŠŠ D k.k � 2/.k � 4/ � � � 3 � 1

for k odd. Use the integral

Z 1

0

Pn.x/ dx D

8̂̂̂̂
ˆ̂̂̂<̂
ˆ̂̂̂̂̂̂
:

1 if n D 0,
1
2

if n D 1,

0 if n D 2, 4, 6, : : : ,

.�1/.n�1/=2
.n � 2/ŠŠ
.nC 1/ŠŠ if n D 3, 5, 7, : : :

(65)
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to derive the Fourier–Legendre series

s.x/ D 3
2
P1.x/ � 7

8
P3.x/C 11

16
P5.x/ � 75

128
P7.x/C � � �

D 3
2
P1.x/C

X
n odd
n=3

.�1/.n�1/=2.2nC 1/ .n � 2/ŠŠ
.nC 1/ŠŠPn.x/ (66)

of the square-wave function

s.x/ D
(
�1 if �1 < x < 0,
C1 if 0 < x < 1.

Figure 10.5.9 shows the graph of the partial sum with 25 terms of the series in
Eq. (66), exhibiting a characteristic Gibbs phenomenon near x D 0.

–1.0 –0.5 0.0 0.5 1.0

0.5

–0.5

–1.0

0.0

1.0

x

y

FIGURE 10.5.9. The graph of the
25-term partial sum of the rectangular
wave series in Eq. (66).

PROJECT E Figure 10.5.10 shows a solid spherical buoy of radius a D 1 meter floating in water.
If the buoy has uniform specific gravity ı D 0:5 (density half that of water), then it
sinks to a depth h D 1 meter as shown. Suppose that the temperature of the water is

Waterline a = 1

h = 1 u = 10°

u = 20°

FIGURE 10.5.10. A floating
spherical buoy with specific gravity
ı D 0:5.

10ı and that of the air is 20ı. Then we want to find the temperature function u.�; �/
within the buoy subject to the boundary condition

u.1; �/ D g.�/ D
(
20 if 0 < � < �=2,
10 if �=2 < � < � .

Then

f .x/ D g.cos�1 x/ D
�
10 if �1 < x < 0
20 if 0 < x < 1


D 15C 5s.x/

in terms of the step function s.x/ of Problem 11. Hence use Eqs. (64) and (66) to
show that

u.�; �/ D 15C 15
2
�P1.cos�/

C
X
n odd
n=3

5 � .�1/.n�1/=2.2nC 1/ .n � 2/ŠŠ
.nC 1/ŠŠ�

nPn.cos�/: (67)

Because the odd-degree Legendre polynomials have only terms of odd degree, it
follows from Eq. (67) that the buoy has a constant average temperature of 15ı on its
water-level cross section (where � D �=2). As a first step in using the series in (67)
to investigate the temperature distribution within the buoy, sum enough terms to plot
u as a function u.´/ of height x (�1 5 ´ 5 1) on the vertical axis of symmetry of the
buoy. Knowing that u.0/ D 15, find the numerical values of ´ for which u D 12:5ı

and u D 17:5ı.
The buoy problem is more interesting if the specific gravity of the buoy is

less than half that of water, 0 < ı < 0:5, so the buoy lies higher in the water as in
Fig. 10.5.11. Archimedes’ law of buoyancy implies that the buoy floats with the
fraction ı of its total volume 4�=3 submerged. Hence the part of the buoy lying
beneath the waterline has volume V D 4�ı=3. But this volume also is given by the

Waterline

h

1 – h
r
1

FIGURE 10.5.11. The floating buoy
with ı < 0:5.

sphere–segment volume formula

V D �h

6
.3r2 C h2/:
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Equate the two expressions for V to show that the depth h to which the buoy sinks
in the water is a solution of the cubic equation

h3 � 3h2 C 4ı D 0: (68)

With your own choice of ı—perhaps one-tenth the smallest nonzero digit in your

u = 10

u = 20

0.0 1.00.5
z

u

–1.0 –0.5
5

10

25

20

15
u = u(z)

FIGURE 10.5.12. The temperature
u.´/ at the point ´ on the vertical axis
of the buoy with h D 0:5.

student ID number—graph this equation to see that it has a single root in the interval
0 < h < 1. Approximate this root h accurate to at least two decimal places. Then
the boundary condition (water temperature 10ı, air temperature 20ı) corresponds to

f .x/ D
(
10 if �1 < x < h � 1,
20 if h � 1 < x < C1,

so (63) gives the formula

cn D
Z h�1

�1

10Pn.x/ dx C
Z 1

h�1

20Pn.x/ dx (69)

for the coefficients fcng10 in the series

u.�; �/ D
1X

nD0

cn�
nPn.cos�/: (70)

Now the questions—as to the temperature at the waterline level within the

Waterline
x-axis

z-axis

φ

ρh = 0.5

x

FIGURE 10.5.13. The waterline
cross section with ´ D �0:5,

�
p

3
2

5 x 5

p

3
2

.

buoy, and as to where within the buoy the temperature is exactly 12:5ı, 15ı, and
17:5ı—are more interesting. If h ¤ 0 then numerical integration is necessary to
evaluate the integrals in (69). For instance, the Mathematica command

c[n ] = ((2�n + 1)/2)�
(10�NIntegrate[LegendreP[n,x], {x, --1, h -- 1}] +
20�NIntegrate[LegendreP[n,x], {x, h -- 1, 1}])

can be used. Explain why Eq. (70) implies that the temperature u.´/ at the point
.0; 0; ´/ (on the buoy’s vertical axis of symmetry with �1 5 ´ 5 1) is then given by

u.´/ D
1X

nD0

cn´
n: (71)

With ı chosen so that h D 0:5, the partial sum consisting of 50 terms in (71) was
used to plot the graph of u.´/ shown in Fig. 10.5.12, where we see the temperature
increasing nonlinearly from u.�1/ D 10 to u.1/ D 20. Using the Mathematica
FindRoot function we find that u.�0:6335/ � 12:5, u.�0:3473/ � 15, and u.0/ D
17:5.

Now the temperature at the center point of the buoy’s cross section at the
waterline is u.�0:5/ � 13:6603 (rather than the average temperature of 15ı that one
might naively expect). In Fig. 10.5.13 we see that

� D
p
x2 C 0:25 and � D � � arctan j2xj

at a point of the waterline cross section at distance x from the buoy’s vertical axis.
The graph of u (now as a function of x) shown in Fig. 10.5.14 was plotted by
substituting these expressions for � and � in a 50-term partial sum of the series
in (67). Can you see intuitively why, as x increases starting at zero, the temperature
u.x/ first decreases and then rises rapidly to u D 15ı at the boundary circle of the
waterline cross section?

0.0 1.00.5
x

u

–1.0 –0.5
13.0

13.5

15.0

14.5

14.0

u = 13.6603

FIGURE 10.5.14. The temperature
u.x/ in the waterline cross section of
the buoy with h D 0:5.
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Spherical Harmonics and Ocean Waves
Equation (55) gives the three-dimensional Laplacian in spherical coordinates. For
instance, consider radial vibrations of the surface of an elastic spherical planet of
radius c. If u.�; �; t/ denotes the radial displacement at time t of the point .�; �/ of
the surface � D c of the planet, then the wave equation ut t D a2

r
2u (with � D c

and u� � 0) takes the form

@2u

@t2
D b2

r
2
�u (72)

where b D a=c and

r
2
�u D

1

sin�
@

@�

�
.sin�/

@u

@�

�
C 1

sin2 �

@2u

@�2
: (73)

Alternatively, Eq. (72) models the oscillations of tidal waves on the surface of
a spherical planet of radius c. In this case, u.�; �; t/ denotes the radial displacement
(from equilibrium) of the water surface at the point .�; �/ at time t and b2 D gh=c2,
where h is the average depth of the water and g denotes gravitational acceleration
at the surface of the planet.

In the applications manual that accompanies this text, we show that the sepa-
ration of variables

u.�; �; t/ D Y.�; �/T .t/
in Eq. (72) leads to eigenfunctions of the typical form

FIGURE 10.5.15. With m D 3 and
n D 9.

umn.�; �; t/ D Ymn.�; �/ cos!nt (74)

for 0 5 m 5 n D 1, 2, 3, : : : : The frequency of this oscillation is !n D b
p
n.nC 1/

and Ymn denotes the spherical harmonic defined by

Ymn.�; �/ D Pm
n .cos�/ cosm� (75)

in terms of the so-called associated Legendre function

Pm
n .x/ D .1 � x2/m=2P .m/

n .x/; (76)

where themth derivative of the ordinary Legendre polynomial Pn.x/ appears on the
right.

For instance, let us consider water waves with a (quite unrealistic) average
depth of h D 1:25 sloshing about on the surface of a small spherical planet of radius
c D 5. In Figs. 10.5.15 and 10.5.16 we show a couple of typical water surface shapes
of the form � D c C hYmn.�; �/.

FIGURE 10.5.16. With m D 5 and
n D 13.
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and 4 include proofs of the theorems on power series and Frobenius series
solutions stated in Chapter 8 of this book.

7. CODDINGTON, E. A. and N. LEVINSON, Theory of Ordinary Differential
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10. HUBBARD, J. H. and B. H. WEST, Differential Equations: A Dynamical Sys-
tems Approach. New York: Springer-Verlag, 1992 (Part I) and 1995 (Higher-
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balanced combination of computational and theoretical viewpoints.
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15. MCLACHLAN, N. W., Ordinary Non-Linear Differential Equations in Engi-
neering and Physical Sciences. London: Oxford University Press, 1956. A
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the MATLAB programs dfield and pplane that are used and referenced in
this text.
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CCC, as well as C, FORTRAN, Pascal, and other languages can be downloaded
from the accompanying web site www.nr.com.

18. RAINVILLE, E., Intermediate Differential Equations, 2nd edition. New York:
Macmillan, 1964. Chapters 3 and 4 include proofs of the theorems on power
series and Frobenius series solutions stated in Chapter 8 of this book.
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New York: John Wiley, 1961. Discusses the classical boundary value prob-
lems and the variational approach to Sturm–Liouville problems, eigenvalues,
and eigenfunctions.

20. SIMMONS, G. F., Differential Equations, 2nd ed. New York: McGraw-Hill,
1991. An introductory text with interesting historical notes and fascinating
applications and with the most eloquent preface in any mathematics book
currently in print.

21. TOLSTOV, G. P., Fourier Series. New York: Dover, 1976. An introductory text
including detailed discussion of both convergence and applications of Fourier
series.

22. THOMPSON, J. M. T. and H. B. STEWART, Nonlinear Dynamics and Chaos,
2nd ed. New York: John Wiley, 2002. Includes more detailed discussions of
the forced Duffing, Lorenz, and Rössler systems (among others that exhibit
nonlinear chaos phenomena).

23. WEINBERGER, H. F., A First Course in Partial Differential Equations. New
York: Blaisdell, 1965. Includes separation of variables, Sturm–Liouville
methods, and applications of Laplace transform methods to partial differential
equations.
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variational derivations of the partial differential equations of vibrating strings,
membranes, rods, and bars.



A P P E N D I XA P P E N D I X

Existence and Uniqueness
of Solutions

In Chapter 1 we saw that an initial value problem of the form

dy

dx
D f .x; y/; y.a/ D b (1)

can fail (on a given interval containing the point x D a) to have a unique solution.
For instance, the answer to Problem 33 in Section 1.3 says that the initial value
problem

x2 dy

dx
C y2 D 0; y.0/ D b (2)

has no solutions at all unless bD 0, in which case there are infinitely many solutions.
According to Problem 31 of Section 1.3, the initial value problem

dy

dx
D �

p
1 � y2; y.0/ D 1 (3)

has the two distinct solutions y1.x/� 1 and y2.x/D cos x on the interval 05 x 5 � .
In this appendix we investigate conditions on the function f .x; y/ that suffice to
guarantee that the initial value problem in (1) has one and only one solution, and
then proceed to establish appropriate versions of the existence-uniqueness theorems
that were stated without proof in Sections 1.3, 3.1, 3.2, and 4.1.

A.1 Existence of Solutions
The approach we employ is the method of successive approximations, which was
developed by the French mathematician Emile Picard (1856–1941). This method is
based on the fact that the function y.x/ satisfies the initial value problem in (1) on
the open interval I containing x D a if and only if it satisfies the integral equation

y.x/ D b C
Z x

a

f .t; y.t// dt (4)

for all x in I . In particular, if y.x/ satisfies Eq. (4), then clearly y.a/ D b, and
differentiation of both sides in (4)—using the fundamental theorem of calculus—
yields the differential equation y0.x/ D f .x; y.x//.
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To attempt to solve Eq. (4), we begin with the initial function

y0.x/ � b (5)

and then define iteratively a sequence y1, y2, y3, : : : of functions that we hope will
converge to the solution. Specifically, we let

y1.x/ D b C
Z x

a

f .t; y0.t// dt and y2.x/ D b C
Z x

a

f .t; y1.t// dt: (6)

In general, ynC1 is obtained by substitution of yn for y in the right-hand side in
Eq. (4):

ynC1.x/ D b C
Z x

a

f .t; yn.t// dt: (7)

Suppose we know that each of these functions fyn.x/g1
0 is defined on some open

interval (the same for each n) containing x D a, and that the limit

y.x/ D lim
n!1 yn.x/ (8)

exists at each point of this interval. Then it will follow that

y.x/ D lim
n!1 ynC1.x/ D lim

n!1

�
b C

Z x

a

f .t; yn.t// dt

�

D b C lim
n!1

Z x

a

f .t; yn.t// dt (9)

D b C
Z x

a

f
�
t; lim

n!1 yn.t/
�
dt (10)

and hence that

y.x/ D b C
Z x

a

f .t; y.t// dt;

provided that we can validate the interchange of limit operations involved in passing
from (9) to (10). It is therefore reasonable to expect that, under favorable conditions,
the sequence fyn.x/g defined iteratively in Eqs. (5) and (7) will converge to a so-
lution y.x/ of the integral equation in (4), and hence to a solution of the original
initial value problem in (1).

Example 1 To apply the method of successive approximations to the initial value problem

dy

dx
D y; y.0/ D 1; (11)

we write Eqs. (5) and (7), thereby obtaining

y0.x/ � 1; ynC1.x/ D 1C
Z x

0
yn.t/ dt: (12)

The iteration formula in (12) yields

y1.x/ D 1C
Z x

0
1 dt D 1C x;

y2.x/ D 1C
Z x

0
.1C t / dt D 1C x C 1

2x
2;

y3.x/ D 1C
Z x

0

�
1C t C 1

2 t
2
�
dt D 1C x C 1

2x
2 C 1

6x
3;
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and

y4.x/ D 1C
Z x

0

�
1C t C 1

2 t
2 C 1

6 t
3
�
dt

D 1C x C 1
2x

2 C 1
6x

3 C 1
24x

4:

It is clear that we are generating the sequence of partial sums of a power series solution;
indeed, we immediately recognize the series as that of y.x/ D ex . There is no difficulty in
demonstrating that the exponential function is indeed the solution of the initial value problem
in (11); moreover, a diligent student can verify (using a proof by induction on n) that yn.x/,
obtained in the aforementioned manner, is indeed the nth partial sum for the Taylor series
with center zero for y.x/ D ex .

Example 2 To apply the method of successive approximations to the initial value problem

dy

dx
D 4xy; y.0/ D 3; (13)

we write Eqs. (5) and (7) as in Example 1. Now we obtain

y0.x/ � 3; ynC1.x/ D 3C
Z x

0
4tyn.t/ dt: (14)

The iteration formula in (14) yields

y1.x/ D 3C
Z x

0
.4t/.3/ dt D 3C 6x2;

y2.x/ D 3C
Z x

0
.4t/.3C 6t2/ dt D 3C 6x2 C 6x4;

y3.x/ D 3C
Z x

0
.4t/.3C 6t2 C 6t4/ dt D 3C 6x2 C 6x4 C 4x6;

and

y4.x/ D 3C
Z x

0
.4t/.3C 6t2 C 6t4 C 4t6/ dt

D 3C 6x2 C 6x4 C 4x6 C 2x8:

It is again clear that we are generating partial sums of a power series solution. It is not quite
so obvious what function has such a power series representation, but the initial value problem
in (13) is readily solved by separation of variables:

y.x/ D 3 exp
�
2x2

�
D 3

1X
nD0

.2x2/n

nŠ

D 3C 6x2 C 6x4 C 4x6 C 2x8 C 4
5x

10 C � � � :

In some cases it may be necessary to compute a much large number of terms,
either in order to identify the solution or to use a partial sum of its series with large
subscript to approximate the solution accurately for x near its initial value. Fortu-
nately, computer algebra systems such as Maple and Mathematica can perform the
symbolic integrations (as opposed to numerical integrations) of the sort in Examples
1 and 2. If necessary, you could generate the first hundred terms in Example 2 in a
matter of minutes.

In general, of course, we apply Picard’s method because we cannot find a
solution by elementary methods. Suppose that we have produced a large number of
terms of what we believe to be the correct power series expansion of the solution.
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We must have conditions under which the sequence fyn.x/g provided by the method
of successive approximations is guaranteed in advance to converge to a solution. It
is just as convenient to discuss the initial value problem

dx
dt

D f.x; t /; x.a/ D b (15)

for a system of m first-order equations, where

x D

2666664
x1

x2

x3

:::

xm

3777775 ; f D

2666664
f1

f2

f3

:::

fm

3777775 ; and b D

2666664
b1

b2

b3

:::

bm

3777775 :

It turns out that with the aid of this vector notation (which we introduced in Sec-
tion 5.1), most results concerning a single [scalar] equation x0 D f .x; t/ can be
generalized readily to analogous results for a system of m first-order equations, as
abbreviated in (15). Consequently, the effort of using vector notation is amply jus-
tified by the generality it provides.

The method of successive approximations for the system in (15) calls for us
to compute the sequence fxn.t/g1

0 of vector-valued functions of t ,

xn.t/ D

2666664
x1n.t/

x2n.t/

x3n.t/
:::

xmn.t/

3777775 ;

defined iteratively by

x0.a/ � b; xnC1.t/ D b C
Z t

a

f.xn.s/; s/ ds: (16)

Recall that vector-valued functions are integrated componentwise.

Example 3 Consider the m-dimensional initial value problem

dx
dt

D Ax; x.0/ D b (17)

for a homogeneous linear system with m�m constant coefficient matrix A. The equations in
(16) take the form

x0.t/ D b; xnC1 D b C
Z x

0
Axn.s/ ds: (18)

Thus

x1.t/ D b C
Z t

0
Ab ds D b C Abt D .I C At /bI

x2.t/ D b C
Z t

0
A.b C Abs/ ds D b C Abt C 1

2 A2bt2 D .I C At C 1
2 A2t2/b

and

x3.t/ D b C
Z t

0
A.b C Abs C 1

2 A2bs2/ ds D .I C At C 1
2 A2t2 C 1

6 A3t3/b:
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We have therefore obtained the first several partial sums of the exponential series solution

x.t/ D eAt b D
 1X

nD0

.At /n

nŠ

!
b (19)

of (17), which was derived earlier in Section 5.6.

The key to establishing convergence in the method of successive approxima-
tions is an appropriate condition on the rate at which f.x; t / changes when x varies
but t is held fixed. If R is a region in .m C 1/-dimensional .x; t /-space, then the
function f.x; t / is said to be Lipschitz continuous on R if there exists a constant
k > 0 such that

jf.x1; t / � f.x2; t /j 5 kjx1 � x2j (20)

if .x1; t / and .x2; t / are points of R. Recall that the norm of anm-dimensional point
or vector x is defined to be

jxj D
q
x2

1 C x2
2 C x2

3 C � � � C x2
m: (21)

Then jx1 � x2j is simply the Euclidean distance between the points x1 and x2.

Example 4 Let f .x; t/ D x2 exp
��t2	 sin t and let R be the strip 0 5 x 5 2 in the xy-plane. If .x1; t /

and .x2; t / are both points of R, then

jf .x1; t / � f .x2; t /j D j exp
�
�t2

�
sin t j � jx1 C x2j � jx1 � x2j 5 4jx1 � x2j;

because
ˇ̌
exp

��t2	 sin t
ˇ̌

5 1 for all t and jx1 C x2j 5 4 if x1 and x2 are both in the interval
Œ0; 2�. Thus f satisfies the Lipschitz condition in (20) with k D 4 and is therefore Lipschitz
continuous in the strip R.

Example 5 Let f .x; t/ D t
p
x on the rectangle R consisting of the points .x; t/ in the xt-plane for which

0 5 x 5 1 and 0 5 t 5 1. Then, taking x1 D x, x2 D 0, and t D 1, we find that

jf .x; 1/ � f .0; 1/j D p
x D 1p

x
jx � 0j:

Because x�1=2 ! C1 as x ! 0C, we see that the Lipschitz condition in (20) cannot be
satisfied by any (finite) constant k > 0. Thus the function f , though obviously continuous on
R, is not Lipschitz continuous on R.

Suppose, however, that the function f .x; t/ has a continuous partial derivative
fx.x; t/ on the closed rectangle R in the xt-plane, and denote by k the maximum
value of jfx.x; t/j on R. Then the mean value theorem of differential calculus yields

jf .x1; t / � f .x2; t /j D jfx.x; t/ � .x1 � x2/j

for some x in .x1; x2/, so it follows that

jf .x1; t / � f .x2; t /j 5 kjx1 � x2j

because jfx.x; t/j 5 k. Thus a continuously differentiable function f .x; t/ defined
on a closed rectangle is Lipschitz continuous there. More generally, the multivari-
able mean value theorem of advanced calculus can be used similarly to prove that a
vector-valued function f.x; t / with continuously differentiable component functions
on a closed rectangular region R in .x; t /-space is Lipschitz continuous on R.
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Example 6 The function f .x; t/ D x2 is Lipschitz continuous on any closed [bounded] region in the
xt-plane. But consider this function on the infinite strip R consisting of the points .x; t/ for
which 0 5 t 5 1 and x is arbitrary. Then

t
l

x

FIGURE A.1. An infinite slab in
.mC 1/-space.

jf .x1; t / � f .x2; t /j D jx2
1 � x2

2 j D jx1 C x2j � jx1 � x2j:

Because jx1 C x2j can be made arbitrarily large, it follows that f is not Lipschitz continuous
on the infinite strip R.

If I is an interval on the t-axis, then the set of all points .x; t / with t in I is an
infinite strip or slab in .mC 1/-space (as indicated in Fig. A.1). Example 6 shows
that Lipschitz continuity of f.x; t / on such an infinite slab is a very strong condition.
Nevertheless, the existence of a solution of the initial value problem

dx
dt

D f.x; t /; x.a/ D b (15)

under the hypothesis of Lipschitz continuity of f in such a slab is of considerable
importance.

THEOREM 1 Global Existence of Solutions

Let f be a vector-valued function (with m components) of mC 1 real variables,
and let I be a [bounded or unbounded] open interval containing t D a. If f.x; t /
is continuous and satisfies the Lipschitz condition in (20) for all t in I and for
all x1 and x2, then the initial value problem in (15) has a solution on the [entire]
interval I .

Proof: We want to show that the sequence fxn.t/g1
0 of successive approxi-

mations determined iteratively by

x0.a/ D b; xnC1.t/ D b C
Z t

0

f.xn.s/; s/ ds (16)

converges to a solution x.t/ of (15). We see that each of these functions in turn is
continuous on I , as each is an [indefinite] integral of a continuous function.

We may assume that a D 0, because the transformation t ! t C a converts
(15) into an equivalent problem with initial point t D 0. Also, we will consider only
the portion t = 0 of the interval I ; the details for the case t 5 0 are very similar.

The main part of the proof consists in showing that if Œ0; T � is a closed (and
bounded) interval contained in I , then the sequence fxn.t/g converges uniformly on
Œ0; T � to a limit function x.t/. This means that, given 
 > 0, there exists an integer
N such that

jxn.t/ � x.t/j < 
 (22)

for all n = N and all t in Œ0; T �. For ordinary (perhaps nonuniform) convergence
the integer N , for which (22) holds for all n = N , may depend on t , with no single
value of N working for all t in I . Once this uniform convergence of the sequence
fxn.t/g has been established, the following conclusions will follow from standard
theorems of advanced calculus (see pages 620–622 of A. E. Taylor and W. R. Mann,
Advanced Calculus, 3rd ed. (New York: John Wiley, 1983)):

1. The limit function x.t/ is continuous on Œ0; T �.
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2. IfN is so chosen that the inequality in (22) holds for n=N , then the Lipschitz
continuity of f implies that

jf.xn.t/; t/ � f.x.t/; t/j 5 kjxn.t/ � x.t/j < k

for all t in Œ0; T � and n = N , so it follows that the sequence ff.xn.t/; t/g1

0

converges uniformly to f.x.t/; t/ on Œ0; T �.
3. But a uniformly convergent sequence or series can be integrated termwise, so

it follows that, on taking limits in the iterative formula in (16),

x.t/ D lim
n!1 xnC1.t/ D b C lim

n!1

Z t

0

f.xn.s/; s/ ds

D b C
Z t

0

lim
n!1 f.xn.s/; s/ dsI

thus

x.t/ D b C
Z t

0

f.x.s/; s/ ds: (23)

4. Because the function x.t/ is continuous on Œ0; T �, the integral equation in (23)
(analogous to the one-dimensional case in (4)) implies that x0.t/ D f.x.t/; t/
on Œ0; T �. But if this is true on every closed subinterval of the open interval I ,
then it is true on the entire interval I as well.

It therefore remains only to prove that the sequence fxn.t/g1
0 converges uni-

formly on the closed interval Œ0; T �. Let M be the maximum value of jf.b; t /j for t
in Œ0; T �. Then

jx1.t/ � x0.t/j D
ˇ̌̌̌Z t

0

f.x0.s/; s/ ds

ˇ̌̌̌
5

Z t

0

jf.b; s/j ds 5 Mt: (24)

Next,

jx2.t/ � x1.t/j D
ˇ̌̌̌Z t

0

Œf.x1.s/; s/ � f.x0.s/; s/� ds

ˇ̌̌̌
5 k

Z t

0

jx1.s/ � x0.s/j ds;

and hence

jx2.t/ � x1.t/j 5 k

Z t

0

Ms ds D 1
2
kMt2: (25)

We now proceed by induction. Assume that

jxn.t/ � xn�1.t/j 5
M

k
� .kt/

n

nŠ
: (26)

It then follows that

jxnC1.t/ � xn.t/j D
ˇ̌̌̌Z t

0

f.xn.s/; s/ � f.xn�1.s/; s/� ds

ˇ̌̌̌

5 k

Z t

0

jxn.s/ � xn�1.s/j dsI

consequently,

jxnC1.t/ � xn.t/j 5 k

Z t

0

M

k
� .ks/

n

nŠ
ds:



708 Appendix

It follows upon evaluating this integral that

jxnC1.t/ � xn.t/j 5
M

k
� .kt/

nC1

.nC 1/Š
:

Thus (26) holds on Œ0; T � for all n = 1.
Hence the terms of the infinite series

x0.t/C
1X

nD1

Œxn.t/ � xn�1.t/� (27)

are dominated (in magnitude on the interval Œ0; T �) by the terms of the convergent
series

1X
nD1

M

k
� .kT /

nC1

.nC 1/Š
D M

k
.ekT � 1/; (28)

which is a series of positive constants. It therefore follows (from the Weierstrass
M -test on pages 618–619 of Taylor and Mann) that the series in (27) converges
uniformly on Œ0; T �. But the sequence of partial sums of this series is simply our
original sequence fxn.t/g1

0 of successive approximations, so the proof of Theorem
1 is finally complete.

A.2 Linear Systems
An important application of the global existence theorem just given is to the initial
value problem

dx
dt

D A.t/x C g.t/; x.a/ D b (29)

for a linear system, where the m � m matrix-valued function A.t/ and the vector-
valued function g.t/ are continuous on a [bounded or unbounded] open interval I
containing the point t D a. In order to apply Theorem 1 to the linear system in (29),
we note first that the proof of Theorem 1 requires only that, for each closed and
bounded subinterval J of I , there exists a Lipschitz constant k such that

jf.x1; t / � f.x2; t /j 5 kjx1 � x2j (20)

for all t in J (and all x1 and x2). Thus we do not need a single Lipschitz constant
for the entire open interval I .

In (29) we have f.x; t / D A.t/x C g, so

f.x1; t / � f.x2; t / D A.t/.x1 � x2/: (30)

It therefore suffices to show that, if A.t/ is continuous on the closed and bounded
interval J , then there is a constant k such that

jA.t/xj 5 kjxj (31)

for all t in J . But this follows from the fact (Problem 17) that

jAxj 5 kAk � jxj; (32)
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where the norm kAk of the matrix A is defined to be

kAk D
0@ mX

i;j D1

.aij /
2

1A1=2

: (33)

Because A.t/ is continuous on the closed and bounded interval J , the norm kAk is
bounded on J , so Eq. (31) follows, as desired. Thus we have the following global
existence theorem for the linear initial value problem in (29).

THEOREM 2 Existence for Linear Systems

Let them�mmatrix-valued function A.t/ and the vector-valued function g.t/ be
continuous on the [bounded or unbounded] open interval I containing the point
t D a. Then the initial value problem

dx
dt

D A.t/x C g.t/; x.a/ D b (29)

has a solution on the [entire] interval I .

As we saw in Section 4.1, the mth-order initial value problem

x.m/ C a1.t/x
.m�1/ C � � � C am�1.t/x

0 C am.t/x D p.t/;

x.a/ D b0; x0.a/ D b1; : : : ; x.m�1/.a/ D bm�1

(34)

is readily transformed into an equivalent m�m system of the form in (29). It there-
fore follows from Theorem 2 that if the functions a1.t/; a2.t/; : : : ; am.t/ and p.t/ in
(34) are all continuous on the [bounded or unbounded] open interval I containing
t D a, then the initial value problem in (34) has a solution on the [entire] interval I .

A.3 Local Existence
In the case of a nonlinear initial value problem

dx
dt

D f.x; t /; x.a/ D b; (35)

the hypothesis in Theorem 1 that f satisfies a Lipschitz condition on a slab .x; t / (t in
I , all x) is unrealistic and rarely satisfied. This is illustrated by the following simple
example.

Example 1 Consider the initial value problem

dy

dx
D x2; x.0/ D b > 0: (36)

As we saw in Example 6, the equation x0 D x2 does not satisfy a “strip Lipschitz condition.”
When we solve (36) by separation of variables, we get

x.t/ D b

1 � bt : (37)

Because the denominator vanishes for t D 1=b, Eq. (37) provides a solution of the initial
value problem in (36) only for t < 1=b, despite the fact that the differential equation x0 D x2

“looks nice” on the entire real line—certainly the function appearing on the right-hand side
of the equation is continuous everywhere. In particular, if b is large, then we have a solution
only on a very small interval to the right of t D 0.
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Although Theorem 2 assures us that linear equations have global solutions,
Example 7 shows that, in general, even a “nice” nonlinear differential equation
can be expected to have a solution only on a small interval around the initial point
t D a, and that the length of this interval of existence can depend on the initial
value x.a/ D b, as well as on the differential equation itself. The reason is this: If
f.x; t / is continuously differentiable in a neighborhood of the point .b; a/ in .mC1/-
dimensional space, then—as indicated in the discussion preceding Example 6—we
can conclude that f.x; t / satisfies a Lipschitz condition on some rectangular region
R centered at .b; a/, of the form

jt � aj < A; jxi � bi j < Bi (38)

.i D 1; 2; : : : ; m). In the proof of Theorem 1, we need to apply the Lipschitz condi-
tion on the function f in analyzing the iterative formula

xnC1.t/ D b C
Z t

a

f.xn.s/; s/ ds: (39)

The potential difficulty is that unless the values of t are suitably restricted, then the
point .xn.t/; t/ appearing in the integrand in (39) may not lie in the region R where f
is known to satisfy a Lipschitz condition. On the other hand, it can be shown that—
on a sufficiently small open interval J containing the point t D a—the graphs of the
functions fxn.t/g given iteratively by the formula in (39) remain within the region
R, so the proof of convergence can then be carried out as in the proof of Theorem
1. A proof of the following local existence theorem can be found in Chapter 6 of
G. Birkhoff and G.-C. Rota, Ordinary Differential Equations, 2nd ed. (New York:
John Wiley, 1969).

THEOREM 3 Local Existence of Solutions

Let f be a vector-valued function (withm components) of themC 1 real variables
x1; x2; : : : ; xm, and t . If the first-order partial derivatives of f all exist and are
continuous in some neighborhood of the point x D b, t D a, then the initial value
problem

dx
dt

D f.x; t /; x.a/ D b; (35)

has a solution on some open interval containing the point t D a.

A.4 Uniqueness of Solutions

It is possible to establish the existence of solutions of the initial value problem in
(35) under the much weaker hypothesis that f.x; t / is merely continuous; techniques
other than those used in this section are required. By contrast, the Lipschitz con-
dition that we used in proving Theorem 1 is the key to uniqueness of solutions. In
particular, the solution provided by Theorem 3 is unique near the point t D a.
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THEOREM 4 Uniqueness of Solutions

Suppose that on some region R in (mC 1/-space, the function f in (35) is contin-
uous and satisfies the Lipschitz condition

jf.x1; t / � f.x2; t /j 5 k � jx1 � x2j: (20)

If x1.t/ and x2.t/ are two solutions of the initial problem in (35) on some open
interval I containing x D a, such that the solution curves .x1.t/; t/ and .x2.t/; t/

both lie in R for all t in I , then x1.t/ D x2.t/ for all t in I .

We will outline the proof of Theorem 4 for the one-dimensional case in which
x is a real variable. A generalization of this proof to the multivariable case can be
found in Chapter 6 of Birkhoff and Rota.

Let us consider the function

�.t/ D Œx1.t/ � x2.t/�
2 (40)

for which �.a/ D 0, because x1.a/ D x2.a/ D b. We want to show that �.t/ � 0, so
that x1.t/ � x2.t/. We will consider only the case t = a; the details are similar for
the case t 5 a.

If we differentiate each side in Eq. (40), we find that

j�0.t/
ˇ̌

D j2Œx1.t/ � x2.t/� � Œx0
1.t/ � x0

2.t/�
ˇ̌

D
ˇ̌
2Œx1.t/ � x2.t/� � Œf .x1.t/; t/ � f .x2.t/; t/�

ˇ̌
5 2kjx1.t/ � x2.t/j2 D 2k�.t/;

using the Lipschitz condition on f . Hence

�0.t/ 5 2k�.t/: (41)

Now let us temporarily ignore the fact that �.a/ D 0 and compare �.t/ with the
solution of the differential equation

ˆ0.t/ D 2kˆ.t/ (42)

such that ˆ.a/ D �.a/; clearly

ˆ.t/ D ˆ.a/e2k.t�a/: (43)

In comparing (41) with (42), it seems inevitable that

�.t/ 5 ˆ.t/ for t = a, (44)

and this is easily proved (Problem 18). Hence

0 5 Œx1.t/ � x2.t/�
2 5 Œx1.a/ � x2.a/�

2e2k.t�a/:

On taking square roots, we get

0 5 jx1.t/ � x2.t/j 5 jx1.a/ � x2.a/jek.t�a/: (45)

But x1.a/ � x2.a/ D 0, so (45) implies that x1.t/ � x2.t/.
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Example 1 The initial value problem

dx

dt
D 3x2=3; x.0/ D 0 (46)

has both the obvious solution x1.t/ � 0 and the solution x2.t/ D t3 that is readily found by
separation of variables. Hence the function f .x; t/ must fail to satisfy a Lipschitz condition
near .0; 0/. Indeed, the mean value theorem yields

jf .x; 0/ � f .0; 0/j D jfx.x; 0/j � jx � 0j

for some x between 0 and x. But fx.x; 0/ D 2x�1=3 is unbounded as x ! 0, so no Lipschitz
condition can be satisfied.

A.5 Well-Posed Problems and Mathematical Models
In addition to uniqueness, another consequence of the inequality in (45) is the fact
that solutions of the differential equation

dx

dt
D f .x; t/ (47)

depend continuously on the initial value x.a/; that is, if x1.t/ and x2.t/ are two
solutions of (47) on the interval a 5 t 5 T such that the initial values x1.a/ and
x2.a/ are sufficiently close to one another, then the values of x1.t/ and x2.t/ remain
close to one another. In particular, if jx1.a/ � x2.a/j 5 ı, then (45) implies that

jx1.t/ � x2.t/j 5 ıek.T �a/ D 
 (48)

for all t with a 5 t 5 T . Obviously, we can make 
 as small as we wish by choosing
ı sufficiently close to zero.

This continuity of solutions of (47) with respect to initial values is important
in practical applications where we are unlikely to know the initial value x0 D x.a/

with absolute precision. For example, suppose that the initial value problem

dx

dt
D f .x; t/; x.a/ D x0 (49)

models a population for which we know only that the initial population is within
ı > 0 of the assumed value x0. Then even if the function f .x; t/ is accurate, the so-
lution x.t/ of (49) will be only an approximation to the actual population. But (45)
implies that the actual population at time t will be within ıek.T �a/ of the approxi-
mate population x.t/. Thus, on a given closed interval Œa; T �, x.t/ will be a close
approximation to the actual population provided that ı > 0 is sufficiently small.

An initial value problem is usually considered well posed as a mathematical
model for a real-world situation only if the differential equation has unique solutions
that are continuous with respect to initial values. Otherwise it is unlikely that the
initial value problem adequately mirrors the real-world situation.

An even stronger “continuous dependence” of solutions is often desirable. In
addition to possible inaccuracy in the initial value, the function f .x; t/ may not
model precisely the physical situation. For instance, it may involve physical pa-
rameters (such as resistance coefficients) whose values cannot be measured with
absolute precision. Birkhoff and Rota generalize the proof of Theorem 4 to estab-
lish the following result.
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THEOREM 5 Continuous Dependence of Solutions

Let x.t/ and y.t/ be solutions of the equations

dx
dt

D f.x; t / and
dy
dt

D g.y; t / (50)

on the closed interval Œa; T �. Let f and g be continuous for a 5 t 5 T and for x
and y in a common region D of n-space and assume that f satisfies the Lipschitz
condition in (20) on the region D. If

jf.z; t / � g.z; t /j 5  (51)

for all t in the interval Œa; T � and all z in D, it then follows that

jx.t/ � y.t/j 5 jx.a/ � y.a/j � ek.t�a/ C 

k

h
ek.t�a/ � 1

i
(52)

on the interval Œa; T �.

If  > 0 is small, then (51) implies that the functions f and g appearing in the
two differential equations, though different, are “close” to each other. If 
 > 0 is
given, then it is apparent from (52) that

jx.t/ � y.t/j 5 
 (53)

for all t in Œa; T � if both jx.a/ � y.a/j and  are sufficiently small. Thus Theorem
5 says (roughly) that if both the two initial values and the two differential equations
in (50) are close to each other, then the two solutions remain close to each other for
a 5 t 5 T .

For example, suppose that a falling body is subject both to constant gravita-
tional acceleration g and to resistance proportional to some power of its velocity,
so (with the positive axis directed downward) its velocity v satisfies the differential
equation

dv

dt
D g � cv�: (54)

Assume, however, that only an approximation c to the actual resistance c and an
approximation � to the actual exponent � are known. Then our mathematical model
is based on the differential equation

du

dt
D g � cu� (55)

instead of the actual equation in (54). Thus if we solve Eq. (55), we obtain only
an approximation u.t/ to the actual velocity v.t/. But if the parameters c and � are
sufficiently close to the actual values c and �, then the right-hand sides in (54) and
(55) will be close to each other. If so, then Theorem 5 implies that the actual and
approximate velocity functions v.t/ and u.t/ are close to each other. In this case the
approximation in (55) will be a good model of the actual physical situation.
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Problems
In Problems 1 through 8, apply the successive approximation
formula to compute yn.x/ for n 5 4. Then write the expo-
nential series for which these approximations are partial sums
(perhaps with the first term or two missing; for example,

ex � 1 D x C 1
2x

2 C 1
6x

3 C 1
24x

4 C � � � /:

1.
dy

dx
D y, y.0/ D 3 2.

dy

dx
D �2y, y.0/ D 4

3.
dy

dx
D �2xy, y.0/ D 1 4.

dy

dx
D 3x2y, y.0/ D 2

5.
dy

dx
D 2y C 2, y.0/ D 0 6.

dy

dx
D x C y, y.0/ D 0

7.
dy

dx
D 2x.1C y/, y.0/ D 0

8.
dy

dx
D 4x.y C 2x2/, y.0/ D 0

In Problems 9 through 12, compute the successive approxima-
tions yn.x/ for n 5 3; then compare them with the appropriate
partial sums of the Taylor series of the exact solution.

9.
dy

dx
D x C y, y.0/ D 1 10.

dy

dx
D y C ex , y.0/ D 0

11.
dy

dx
D y2, y.0/ D 1 12.

dy

dx
D 1

2y
3, y.0/ D 1

13. Apply the iterative formula in (16) to compute the first
three successive approximations to the solution of the ini-
tial value problem

dx

dt
D 2x � y; x.0/ D 1I

dy

dt
D 3x � 2y; y.0/ D �1:

14. Apply the matrix exponential series in (19) to solve (in
closed form) the initial value problem

x0.t/ D
�
1 1

0 1

�
x; x.0/ D

�
1

1

�
:

(Suggestion: Show first that�
1 1

0 1

�n

D
�
1 n

0 1

�

for each positive integer n.)

15. For the initial value problem dy=dx D 1C y3, y.1/ D 1,
show that the second Picard approximation is

y2.x/D 1C 2.x� 1/C 3.x � 1/2 C 4.x� 1/3 C 2.x� 1/4:

Then compute y2.1:1/ and y2.1:2/. The fourth-order
Runge-Kutta method with step size h D 0:005 yields
y.1:1/ � 1:2391 and y.1:2/ � 1:6269.

16. For the initial value problem dy=dx D x2 C y2, y.0/ D 0,
show that the third Picard approximation is

y3.x/ D 1

3
x3 C 1

63
x7 C 2

2079
x11 C 1

59535
x15:

Compute y3.1/. The fourth-order Runge–Kutta method
yields y.1/ � 0:350232, both with step size h D 0:05 and
with step size h D 0:025.

17. Prove as follows the inequality jAxj 5 kAk � jxj, where A is
an m�m matrix with row vectors a1; a2; : : : ; am, and x is
an m-dimensional vector. First note that the components
of the vector Ax are a1 � x; a2 � x; : : : ; am � x, so

jAxj D
"

mX
nD1

.ai � x/2
#1=2

:

Then use the Cauchy–Schwarz inequality .a � x/2 5

jaj2jxj2 for the dot product.

18. Suppose that �.t/ is a differentiable function with

�0.t/ 5 k�.t/ .k > 0/

for t = a. Multiply both sides by e�kt , then transpose to
show that

d

dt

h
�.t/e�kt

i
5 0

for t = a. Then apply the mean value theorem to conclude
that

�.t/ 5 �.a/ek.t�a/

for t = a.
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Chapter 1

Section 1.1

11. If y D y1 D x�2, then y0.x/ D �2x�3 and y00.x/ D 6x�4, so
x2y00 C 5xy0 C 4y D x2.6x�4/ C 5x.�2x�3/ C 4.x�2/ D
6x�2 � 10x�2 C 4x�2 D 0. If y D y2 D x�2 ln x, then
y0.x/ D x�3 � 2x�3 ln x and y00.x/ D �5x�4 C 6x�4 ln x,
so x2y00 C 5xy0 C 4y D x2.�5x�4 C 6x�4 ln x/ C
5x.x�3 � 2x�3 ln x/ C 4.x�2 ln x/ D 0.

13. r D 2
3

14. r D ˙ 1
2

15. r D �2, 1

16. r D 1
6

.�3 ˙ p
57/

17. C D 2

0 5
–5

0

5

x

y

(0,2)

–5

18. C D 3

0 5

0

5

x

y

(0,3)

–5
–5

19. C D 6

0 5

0

5

10

x
y

(0,5)

–5
–10

–5

20. C D 11

0 5 10

0

20

x

y

(0,10)

–20
–10 –5

21. C D 7

0 1 2

0

5

10

x

y

(0,7)

–1–2
–10

–5

715
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22. C D 1

0 10 20

0

5

x

y

(0,0)

–10–20
–5

23. C D �56

0 1 2 3

0

10

20

30

x

y

(2,1)

–20

–10

–30

24. C D 17

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

0

10

20

30

x

y

(1,1)

–20

–10

–30

25. C D �=4

0 1 2

0

2

4

x

y

(0,1)

–2

–4
–1–2

26. C D ��

0 5 10

0

5

10

x

y

(π ,0)

–5

–10

27. y0 D x C y 28. y0 D 2y=x

29. y0 D x=.1 � y/ 31. y0 D .y � x/=.y C x/

32. dP=dt D k
p

P 33. dv=dt D kv2

35. dN=dt D k.P � N / 37. y � 1 or y D x

39. y D x2 41. y D 1
2

ex

42. y D cos x or y D sin x

43. (b) The identically zero function x.0/ � 0

44. (a) The graphs (figure below) of typical solutions with k D 1
2

suggest that (for each) the value x.t/ increases without bound as
t increases.

0 1 2 3 4
0

1

2

3

4

5

t

x

(b) The graphs (figure below) of typical solutions with k D � 1
2

suggest that now the value x.t/ approaches 0 as t increases
without bound.

0 1 2 3 4
0

1

2

3

4

5

6

t

x

45. P.t/ D 100=.50 � t/; P D 100 when t D 49, and P D 1000
when t D 49:9. Thus it appears that P.t/ grows without bound
as t approaches 50.

46. v.t/ D 50=.5 C 2t/; v D 1 when t D 22:5, and v D 1
10

when
t D 247:5. Thus it appears that v.t/ approaches 0 as t increases
without bound.
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47. (a) C D 10:1; (b) No such C , but the constant function
y.x/ � 0 satisfies the conditions y0 D y2 and y.0/ D 0.

Section 1.2

1. y.x/ D x2 C x C 3 2. y.x/ D 1
3

.x � 2/3 C 1

3. y.x/ D 1
3

.2x3=2 � 16/ 4. y.x/ D �1=x C 6

5. y.x/ D 2
p

x C 2 � 5 6. y.x/ D 1
3

Œ.x2 C 9/3=2 � 125�

7. y.x/ D 10 tan�1 x 8. y.x/ D 1
2

sin 2x C 1

9. y.x/ D sin�1 x 10. y.x/ D �.x C 1/e�x C 2

11. x.t/ D 25t2 C 10t C 20 12. x.t/ D �10t2 � 15t C 5

13. x.t/ D 1
2

t3 C 5t 14. x.t/ D 1
3

t3 C 1
2

t2 � 7t C 4

15. x.t/ D 1
3

.t C 3/4 � 37t � 26

16. x.t/ D 4
3

.t C 4/3=2 � 5t � 29
3

17. x.t/ D 1
2



.t C 1/�1 C t � 1

�
19. x.t/ D

(
5t if 0 � t � 5,
10t � 1

2
t2 � 25

2
if 5 � t � 10.

0 2 4 6 8 10
0

10

20

30

40

(5,25)

t

x

20. x.t/ D
(

1
2

t2 if 0 � t � 5,
5t � 25

2
if 5 � t � 10.

0 2 4 6 8 10
0

10

20

30

40

(5,12.5)

t

x

21. x.t/ D
(

1
2

t2 if 0 � t � 5,
10t � 1

2
t2 � 25 if 5 � t � 10.

0 2 4 6 8 10
0

10

20

30

40

(5,12.5)

t

x

22. x.t/ D

8̂<̂
:

5
6

t2 if 0 � t � 3,
5t � 15

2
if 3 � t � 7,

1
6

.�5t2 C 100t � 290/ if 7 � t � 10.

0 2 4 6 8 10
0

10

20

30

40

(3,7.5)

(7,27.5)

t

x

23. v.t/ D �.9:8/t C 49, so the ball reaches its maximum height
(v D 0) after t D 5 seconds. Its maximum height then is
y.5/ D 122:5 (m).

24. v.5/ D �160 ft/s

25. The car stops when t � 2:78 (s), so the distance traveled before
stopping is approximately x.2:78/ � 38:58 (m).

26. (a) y � 530 m (b) t � 20:41 s (c) t � 20:61 s

27. y0 � 178:57 (m)

28. v.4:77/ � �192:64 ft/s

29. After 10 seconds the car has traveled 200 ft and is traveling at
70 ft=s.

30. a D 22 ft/s2; it skids for 4 seconds.

31. v0 D 10
p

30 (m=s), about 197:18 km=h

32. 60 m 33. 20
p

10 � 63:25 (ft=s)

34. 460.8 ft 36. About 13.6 ft

37. 25 (mi) 38. 1:10 pm

39. 6 mph 40. 2.4 mi

41. 544
3

� 181:33 ft/s 42. 25 mi

43. Time: 6:12245 � 109 s � 194 years;
Distance: 1:8367 � 1017 m � 19:4 light-years

44. About 54 mi/h
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Section 1.3

1.

–3

–2

–1

0

1

2

3

–3 –2 –1 0 1 2 3
x

y

2.

–3

–2

–1

0

1

2

3

–3 –2 –1 0 1 2 3
x

y

3.

–3

–2

–1

0

1

2

3

–3 –2 –1 0 1 2 3
x

y

4.

–3

–2

–1

0

1

2

3

–3 –2 –1 0 1 2 3
x

y

5.

–3

–2

–1

0

1

2

3

–3 –2 –1 0 1 2 3
x

y

6.

–3

–2

–1

0

1

2

3

–3 –2 –1 0 1 2 3
x

y

7.

–3

–2

–1

0

1

2

3

–3 –2 –1 0 1 2 3
x

y

8.

–3

–2

–1

0

1

2

3

–3 –2 –1 0 1 2 3
x

y
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9.

–3

–2

–1

0

1

2

3

–3 –2 –1 0 1 2 3
x

y

10.

–3

–2

–1

0

1

2

3

–3 –2 –1 0 1 2 3
x

y

11. A unique solution exists in some neighborhood of x D 1.

12. A unique solution exists in some neighborhood of x D 1.

13. A unique solution exists in some neighborhood of x D 0.

14. Existence but not uniqueness is guaranteed in some
neighborhood of x D 0.

15. Neither existence nor uniqueness is guaranteed in any
neighborhood of x D 2.

16. A unique solution exists in some neighborhood of x D 2.

17. A unique solution exists in some neighborhood of x D 0.

18. Neither existence nor uniqueness is guaranteed.

19. A unique solution exists in some neighborhood of x D 0.

20. A unique solution exists in some neighborhood of x D 0.

21. Your figure should suggest that y.�4/ � 3; an exact solution of
the differential equation gives y.�4/ D 3 C e�4 � 3:0183.

0 1 2 3 4 5

0

1

2

3

4

5

x

y

(0,0)

(−4,?)

–1

–2

–3

–4

–5
–1–2–3–4–5

22. y.�4/ � �3

23. Your figure should suggest that y.2/ � 1; the actual value is
closer to 1.004.

0 1 2

0

1

2

x

y

(0, 0)

(2, ?)

–1–2

–1

–2

24. y.2/ � 1:5

25. Your figure should suggest that the limiting velocity is about 20
ft/sec (quite survivable) and that the time required to reach
19 ft/sec is a little less than 2 seconds. An exact solution gives
v.t/ D 19 when t D 5

8
ln 20 � 1:8723.

0 1 2 3 4 5
0
5

10

15

20

25
30

35

40

t

v

26. A figure suggests that there are 40 deer after about 60 months; a
more accurate value is t � 61:61. The limiting population is 75
deer.

27. The initial value problem y0 D 2
p

y, y.0/ D b has no solution
if b < 0; a unique solution if b > 0; infinitely many solutions if
b D 0.

x

y

(0,0) 

28. The initial value problem xy0 D y, y.a/ D b has a unique
solution if a 6D 0; infinitely many solutions if a D b D 0; no
solution if a D 0 but b 6D 0.

29. The initial value problem y0 D 3y2=3, y.a/ D b always has
infinitely many solutions defined for all x. However, if b 6D 0
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then it has a unique solution near x D a.

x

y

30. The initial value problem y0 D �
p

1 � y2, y.a/ D b has a
unique solution if jbj < 1; no solution if jbj > 1, and infinitely
many solutions (defined for all x) if b D ˙1.

31. The initial value problem y0 D
p

1 � y2, y.a/ D b has a
unique solution if jbj < 1; no solution if jbj > 1, and infinitely
many solutions (defined for all x) if b D ˙1.

1

x

y

–1

π/2–π/2

32. The initial value problem y0 D 4x
p

y, y.a/ D b has infinitely
many solutions (defined for all x) if b = 0; no solutions if b < 0.
However, if b > 0 then it has a unique solution near x D a.

33. The initial value problem x2y0 C y2 D 0, y.a/ D b has a
unique solution with initial point .a; b/ if a 6D 0, no solution if
a D 0 but b 6D 0, infinitely many solutions if a D b D 0.

x
0 4 62

0y

–2

–4 –2

–4

–6
–6

2

4

6

34. (a) If y.�1/ D �1:2 then y.1/ � �0:48. If y.�1/ D �0:8
then y.1/ � 2:48. (b) If y.�3/ D �3:01 then
y.3/ � �1:0343.
If y.�3/ D �2:99 then y.3/ � 7:0343.

35. (a) If y.�3/ D �0:2 then y.2/ � 2:019. If y.�3/ D C0:2
then y.2/ � 2:022. In either case, y.2/ � 2:02.
(b) If y.�3/ � �0:5 then y.2/ � 2:017. If y.�3/ � C0:5
then y.2/ � 2:024. In either case, y.2/ � 2:02.

Section 1.4

1. y.x/ D C exp.�x2/ 2. y.x/ D 1=.x2 C C /

3. y.x/ D C exp.� cos x/ 4. y.x/ D C.1 C x/4

5. y.x/ D sin
�
C C p

x
	

6. y.x/ D .x3=2 C C /2

7. y.x/ D .2x4=3 C C /3=2 8. y.x/ D sin�1.x2 C C /

9. y.x/ D C.1 C x/=.1 � x/

10. y.x/ D .1 C x/=Œ1 C C.1 C x/� � 1

11. y.x/ D .C � x2/�1=2

12. y2 C 1 D Cex2

13. ln.y4 C 1/ D C C 4 sin x

14. 3y C 2y3=2 D 3x C 2x3=2 C C

15. 1=.3y3/ � 2=y D 1=x C ln jxj C C

16. y.x/ D sec�1.C
p

1 C x2 /

17. ln j1 C yj D x C 1
2

x2 C C

18. y.x/ D tan
�

C � 1

x
� x

�
19. y.x/ D 2 exp.ex/ 20. y.x/ D tan.x3 C �=4/

21. y2 D 1 C
p

x2 � 16 22. y.x/ D �3 exp.x4 � x/

23. y.x/ D 1
2

.1 C e2x�2/ 24. y.x/ D �
2

sin x

25. y.x/ D x exp.x2 � 1/ 26. y.x/ D 1=.1 � x2 � x3/

27. y D ln.3e2x � 2/ 28. y.x/ D tan�1.
p

x � 1/

29. (a) General solution y.x/ D �1=.x � C /; (b) The singular
solution y.x/ � 0. (c) In the following figure we see that there
is a unique solution through every point of the xy- plane.

0 2 4 6

0

2

4

6

x

y

–2

– 4

–6
–6 –4 –2

30. General solution y.x/ D .x � C /2; singular solution y.x/ � 0.
(a) No solution if b < 0; (b) Infinitely many solutions (for all
x) if b = 0; (c) Two solutions near .a; b/ if b > 0.

31. Separation of variables gives the same general solution
y D .x � C /2 as in Problem 30, but the restriction that
y0 D 2

p
y = 0 implies that only the right halves of the

parabolas qualify as solution curves. In the figure below we see
that through the point .a; b/ there passes (a) No solution curve if
b < 0, (b) a unique solution curve if b > 0, (c) Infinitely many
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solution curves if b D 0.

0 5 10 15

0

25

50

75

x

y

–5–10–15

32. General solution y.x/ D ˙ sec.x � C /; singular solutions
y.x/ � ˙1.
(a) No solution if jbj < 1; (b) A unique solution if jbj > 1;
(c) Infinitely many solutions if b D ˙1.

33. About 51840 persons 34. t � 3:87 hr
35. About 14735 years 36. Age about 686 years
37. $21103:48 38. $44.52
39. 2585 mg 40. About 35 years
41. About 4:86 � 109 years ago
42. About 1.25 billion years
43. After a total of about 63 min have elapsed
44. About 2.41 minutes
45. (a) 0:495 m; (b .8:32 � 10�7/I0; (c) 3:29 m
46. (a) About 9.60 inches; (b) About 18,200 ft
47. After about 46 days
48. About 6 billion years
49. After about 66 min 40 s
50. (a) A.t/ D 10 � 32t=15; (b) About 20.80 pu; (c) About 15.72

years
51. (a) A.t/ D 15 � . 2

3
/t=5; (b) approximately 7.84 su; (c) After

about 33.4 months
52. About 120 thousand years ago
53. About 74 thousand years ago
54. 3 hours 55. 972 s
56. At time t D 2048=1562 � 1:31 (in hours)
58. 1:20 P.M.
59. (a) y.t/ D .8 � 7t/2=3; (b) at 1:08:34 P.M.;

(c) r D 1
60

q
7

12
� 0:15 (in.)

60. About 6 min 3 sec
61. Approximately 14 min 29 s
62. The tank is empty about 14 seconds after 2:00 P.M.
63. (a) 1:53:34 P.M.; (b) r � 0:04442 ft � 0:53 in.
64. r D 1

720

p
3 ft, about 1

35
in.

65. At approximately 10:29 A.M.

Section 1.5

1. y.x/ D 2.1 � e�x/ 2. y.x/ D .3x C C /e2x

3. y.x/ D e�3x.x2 C C / 4. y.x/ D .x C C /ex2

5. y.x/ D x C 4x�2 6. y.x/ D x2 C 32=x5

7. y.x/ D 5x1=2 C Cx�1=2 8. y.x/ D 3x C Cx�1=3

9. y.x/ D x.7 C ln x/ 10. y.x/ D 3x3 C Cx3=2

11. y.x/ � 0 12. y.x/ D 1
4

x5 � 56x�3

13. y.x/ D .ex C e�x/=2 14. y.x/ D x3 ln x C 10x3

15. y.x/ D Œ1 � 5 exp.�x2/�=2

16. y.x/ D 1 C e� sin x

17. y.x/ D .1 C sin x/=.1 C x/

18. y.x/ D x2.sin x C C /

19. y.x/ D 1
2

sin x C C csc x

20. y.x/ D �1 C exp
�
x C 1

2
x2
	

21. y.x/ D x3 sin x

22. y.x/ D .x3 C 5/ex2

23. y.x/ D x3.2 C Ce�2x/

24. y.x/ D 1
3

Œ1 C 16.x2 C 4/�3=2�

25. y.x/ D 

exp

�� 3
2

x2
	� 


3.x2 C 1/3=2 � 2
�

26. x.y/ D 1=2y2 C C=y4

27. x.y/ D ey
�
C C 1

2
y2
	

28. x.y/ D 1
2

Œy C .1 C y2/.tan�1 y C C /�

30. y.x/ D x1=2
R x

1 t�1=2 cos t dt

29. y.x/ D 

exp.x2/

� 

C C 1

2

p
� erf.x/

�
32. (a) y.x/ D sin x � cos x; (b) y.x/ D Ce�x C sin x � cos x;

(c) y.x/ D 2e�x C sin x � cos x

33. After about 7 min 41 s
34. About 22:2 days
35. About 5:5452 years
36. (a) x.t/ D .60 � t/ � .60 � t/3=3600; (b) About 23.09 lb
37. 393:75 lb
38. (a) x.t/ D 50e�t=20; (b) y.t/ D 150e�t=40 � 100e�t=20;

(c) 56.25 lb
39. (b) ymax D 100e�1 � 36:79 (gal)
41. (b) Approximately $1,308,283
43. �50:0529, �28:0265, �6:0000, 16:0265, 38:0529

44. 3:99982, 4:00005, 4:00027, 4:00050, 4:00073

45. x.t/ D 20.1 � e�t=10/; x D 10 after t D 10 ln 2 � 6:93
months.

46. x.t/ D 20
101

.101 � 102e�t=10 C cos t C 10 sin t/; x D 10
after t D 6:47 months.

Section 1.6

1. x2 � 2xy � y2 D C 2. y2 D x2.ln x C C /

3. y.x/ D x .C C ln jxj/2

4. 2 tan�1.y=x/ � ln.y2=x2 C 1/ D 2 ln x C C

5. ln jxyj D C C xy�1 6. 2y ln y D x C Cy

7. y3 D 3x3 .C C ln jxj/ 8. y D �x ln.C � ln x/

9. y.x/ D x= .C � ln jxj/ 10. x2 C 2y2 D Cx6

11. y D C.x2 C y2/

12. 4x2 C y2 D x2.ln x C C /2

13. y C
p

x2 C y2 D Cx2 14. x �
p

x2 C y2 D C

15. x2.2xy C y2/ D C

16. x D 2
p

x C y C 1 � 2 ln
�
1 C p

x C y C 1
	C C

17. y.x/ D �4x C 2 tan.2x C C /

18. y D ln.x C y C 1/ C C

19. y2 D x=.2 C Cx5/ 20. y3 D 3 C Ce�3x2

21. y2 D 1=.Ce�2x � 1/ 22. y3 D 7x=.7Cx7 C 15/

23. y.x/ D .x C Cx2/�3 24. y2 D e2x=.C C ln x/

25. 2x3y3 D 3
p

1 C x4 C C 26. y3 D e�x.x C C /

27. y.x/ D .x4 C Cx/1=3 28. y D ln.Cx2 C x2e2x/

29. sin2 y D 4x2 C Cx 30. x2 � 2xey � e2y D C

31. x2 C 3xy C y2 D C 32. 2x2 � xy C 3y2 D C

33. x3 C 2xy2 C 2y3 D C 34. x3 C x2y2 C y4 D C

35. 3x4 C 4y3 C 12y ln x D C 36. x C exy C y2 D C

37. sin x C x ln y C ey D C

38. x2 C 2x tan�1 y C ln.1 C y2/ D C
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39. 5x3y3 C 5xy4 C y5 D C

40. ex sin y C x tan y D C

41. x2y�1 C y2x�3 C 2y1=2 D C

42. xy�2=3 C x�3=2y D C

43. y.x/ D Ax2 C B 44. x.y/ D Ay2 C B

45. y.x/ D A cos 2x C B sin 2x 46. y.x/ D x2 C A ln x C B

47. y.x/ D A � ln jx C Bj 48. y.x/ D ln x CAx�2 CB

49. y.x/ D ˙.A C Bex/1=2

50. y.x/ D ln j sec.x C A/j � 1
2

x2 C B

51. x.y/ D � 1
3

.y3 C Ay C B/ 52. Ay2 � .Ax C B/2 D 1

53. y.x/ D A tan.Ax C B/ 54. Ay2.B � x/ D 1

58. y D exp.x2 C C=x2/

59. x2 � 2xy � y2 � 2x � 6y D C

60. .x C 3y C 3/5 D C.y � x � 5/

61. x D tan.x � y/ C sec.x � y/ C C

64. y.x/ D x C e�x2 

C C 1

2

p
� erf.x/

��1

65. y.x/ D x C .C � x/�1

69. Approximately 3:68 mi

Chapter 1 Review Problems

1. Linear: y.x/ D x3.C C ln x/

2. Separable: y.x/ D x=.3 � Cx � x ln x/

3. Homogeneous: y.x/ D x=.C � ln x/

4. Exact: x2y3 C ex � cos y D C

5. Separable: y.x/ D C exp.x�3 � x�2/

6. Separable: y.x/ D x=.1 C Cx C 2x ln x/

7. Linear: y.x/ D x�2.C C ln x/

8. Homogeneous: y.x/ D 3Cx=.C � x3/ D 3x=.1 C Kx3/

9. Bernoulli: y.x/ D .x2 C Cx�1/2

10. Separable: y.x/ D tan
�
C C x C 1

3
x3
	

11. Homogeneous: y.x/ D x=.C � 3 ln x/

12. Exact: 3x2y3 C 2xy4 D C

13. Separable: y.x/ D 1=.C C 2x2 � x5/

14. Homogeneous: y2 D x2=.C C 2 ln x/

15. Linear: y.x/ D .x3 C C /e�3x

16. Substitution: v D y � x; solution:
y � x � 1 D Ce2x.y � x C 1/

17. Exact: ex C ey C exy D C

18. Homogeneous: y2 D Cx2.x2 � y2/

19. Separable: y.x/ D x2=.x5 C Cx2 C 1/

20. Linear: y.x/ D 2x�3=2 C Cx�3

21. Linear: y.x/ D ŒC C ln.x � 1/�=.x C 1/

22. Bernoulli: y.x/ D .2x4 C Cx2/3

23. Exact: xey C y sin x D C

24. Separable: y.x/ D x1=2=.6x2 C Cx1=2 C 2/

25. Linear: y.x/ D .x C 1/�2.x3 C 3x2 C 3x C C /
D x C 1 C K.x C 1/�2

26. Exact: 3x3=2y4=3 � 5x6=5y3=2 D C

27. Bernoulli: y.x/ D x�1.C C ln x/�1=3

28. Linear: y.x/ D x�1.C C e2x/

29. Linear: y.x/ D .x2 C x C C /.2x C 1/�1=2

30. Substitution: v D x C y; solution:
x D 2.x C y/1=2 � 2 lnŒ1 C .x C y/1=2� C C

31. Separable and linear 32. Separable and Bernoulli
33. Exact and homogeneous 34. Exact and homogeneous
35. Separable and linear 36. Separable and Bernoulli

Chapter 2

Section 2.1

1. x.t/ D 2

2 � e�t

0 1 2 3 4 5

0

1

2

3

t

x

–1

2. x.t/ D 10

1 C 9e�10t

0 1

0

5

10

15

t

x

–5

3. x.t/ D 2 C e�2t

2 � e�2t

1 2 3

0

1

2

3

4

t

x

–1

–2
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4. x.t/ D 3.1 � e�12t /

2.1 C e�12t /

1

0

1

2

3

t

x

–1

–2

–3

5. x.t/ D 40

8 � 3e�15t

0 0.25 0.5

0

5

10

t

x

–5

6. x.t/ D 10

2 C 3e15t

0 0.25 0.5

0

5

10

t

x

–5

7. x.t/ D 77

11 � 4e�28t

0 0.1

0

5

10

15

t

x

–5

8. x.t/ D 221

17 � 4e91t

0 0.01 0.02

0

10

20

30

t

x

–10

9. 484 10. 20 weeks

11. (b) P.t/ D �
1
2

t C 10
	2

12. P.t/ D 240

20 � t

13. P.t/ D 180

30 � t

14. P.t/ D P0

1 C kP0t
16. About 27:69 months 17. About 44:22 months
19. About 24:41 months
20. About 42:12 months

21.
200

1 C e�6=5
� 153:7 million

22. About 34:66 days
23. (a) lim

t!1

x.t/ D 200 grams (b) 5
4

ln 3 � 1:37 seconds

24. About 9:24 days
25. (a) M D 100 and k D 0:0002; (b) In the year 2035

26. 50 ln 9
8

� 5:89 months

27. (a) 100 ln 9
5

� 58:78 months; (b) 100 ln 2 � 69:31 months
28. (a) The alligators eventually die out. (b) Doomsday occurs after

about 9 years 2 months.
29. (a) P.140/ � 127:008 million; (b) About 210.544 million;

(c) In 2000 we get P � 196:169, whereas the actual 2000
population was about 281.422 million.

31. ˛ � 0:3915; 2:15 � 106 cells
37. k � 0:0000668717, M � 338:027

38. k � 0:000146679, M � 208:250

39. P.t/ D P0 exp
�

kt C b

2�
sin 2�t

�
; the colored curve in the

figure below shows the graph with P0 D 100, k D 0:03, and
b D 0:06. It oscillates about the black curve which represents
natural growth with P0 D 100 and k D 0:03. We see that the
two agree at the end of each full year.

1 2 3 4 5
t

105

110

115

120
P
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Section 2.2

1. Unstable critical point: x D 4;

x.t/ D 4 C .x0 � 4/et

0 1 2 3 4 5
0

4

8

t

x

2. Stable critical point: x D 3;

x.t/ D 3 C .x0 � 3/e�t

0 1 2 3 4 5
0

3

6

t

x

3. Stable critical point: x D 0; unstable critical point: x D 4;

x.t/ D 4x0

x0 C .4 � x0/e4t

0 1 2 3 4 5

0

4

8

t

x

–4

4. Stable critical point: x D 3; unstable critical point: x D 0;

x.t/ D 3x0

x0 C .3 � x0/e�3t

0 1 2 3 4 5

0

3

6

t

x

–3

5. Stable critical point: x D �2; unstable critical point: x D 2;

x.t/ D 2Œx0 C 2 C .x0 � 2/e4t �

x0 C 2 � .x0 � 2/e4t

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

0

2

t

x

–2

6. Stable critical point: x D 3; unstable critical point: x D �3;

x.t/ D 3Œx0 � 3 C .x0 C 3/e6t �

3 � x0 C .x0 C 3/e6t

0 1 2 3 4 5

0

3

t

x

–3
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7. Semi-stable (see Problem 18) critical point: x D 2;

x.t/ D .2t � 1/x0 � 4t

tx0 � 2t � 1

0 1 2 3 4 5

0

2

4

t

x

8. Semi-stable critical point: x D 3;

x.t/ D .3t C 1/x0 � 9t

tx0 � 3t C 1

0 1 2 3 4 5

0

3

6

t

x

9. Stable critical point: x D 1; unstable critical point: x D 4;

x.t/ D 4.1 � x0/ C .x0 � 4/e3t

1 � x0 C .x0 � 4/e3t

0 1 2 3 4 5

1

4

7

t

x

–2

10. Stable critical point: x D 5; unstable critical point: x D 2;

x.t/ D 2.5 � x0/ C 5.x0 � 2/e3t

5 � x0 C .x0 � 2/e3t

0 1 2 3 4 5

2

5

8

t

x

–1

11. Unstable critical point: x D 1;

1

.x.t/ � 1/2
D 1

.x0 � 1/2
� 2t

0 1 2 3 4 5

0

2

4

t

x

–2

12. Stable critical point: x D 2;

1

.2 � x.t//2
D 1

.2 � x0/2
C 2t

0 1 2 3 4 5

0

2

4

6

t

x

–2
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For each of Problems 13 through 18 we show a plot of slope field and
typical solution curves. The equilibrium solutions of the given
differential equation are labeled, and the stability or instability of
each should be clear from the picture.

13.

0 1 2 3 4

0

2

4

t

x

–2

–4

x' = (x + 2)(x–2)2

x = –2

x = 2

14.

0 1 2 3 4

0

2

4

t

x

–2

–4

x = 2

x = 0

x = –2

x' = x(x2 – 4)

15.

0 1 2 3 4

0

2

4

t

x

–2

–4

x = 2

x = –2

x' = (x2 – 4)2

16.

0 1 2 3 4

0

2

4

t

x

–2

–4

x = 2

x = –2

x' = (x2 – 4)3

17.

0 1 2 3 4

0

2

4

t

x

–2

–4

x = 2

x = –2

x' = x2 (x2 – 4)

x = 0

18.

0 1 2 3

0

2

t

x
–2

x = 2

x = –2

x' = x3 (x2 – 4)

x = 0

19. There are two critical points if h < 2 1
2

, one critical point if
h D 2 1

2
, and no critical points if h > 2 1

2
. The bifurcation

diagram is the parabola .c � 5/2 D 25 � 10h in the hc-plane.
20. There are two critical points if s < 1

16
, one critical point if

s D 1
16

, and no critical points if s > 1
16

. The bifurcation diagram
is the parabola .2c � 5/2 D 25.1 � 16s/ in the sc-plane.

Section 2.3

1. Approximately 31:5 s
3. 400=.ln 2/ � 577 ft
5. 400 ln 7 � 778 ft
7. (a) 100 ft/sec; (b) about 23 sec and 1403 ft to reach 90 ft/sec
8. (a) 100 ft/sec; (b) about 14.7 sec and 830 ft to reach 90 ft/sec
9. 50 ft=s

10. About 5 min 47 s
11. Time of fall: about 12:5 s
12. Approximately 648 ft
19. Approximately 30:46 ft=s; exactly 40 ft=s
20. Approximately 277:26 ft
22. Approximately 20:67 ft=s; about 484:57 s
23. Approximately 259:304 s
24. (a) About 0:88 cm; (b) about 2:91 km
25. (b) About 1.389 km/sec; (c) rmax D 100R=19 � 5:26R

26. Yes
28. (b) After about 8 1

2
minutes it hits the surface at about 4.116

km/sec.
29. About 51.427 km
30. Approximately 11.11 km/sec (as compared with the earth’s

escape velocity of about 11.18 km/sec).



Answers to Selected Problems 727

Section 2.4

In Problems 1 through 10 we round off the indicated values to 3
decimal places.

1. Approximate values 1.125 and 1.181; true value 1.213
2. Approximate values 1.125 and 1.244; true value 1.359
3. Approximate values 2.125 and 2.221; true value 2.297
4. Approximate values 0.625 and 0.681; true value 0.713
5. Approximate values 0.938 and 0.889; true value 0.851
6. Approximate values 1.750 and 1.627; true value 1.558
7. Approximate values 2.859 and 2.737; true value 2.647
8. Approximate values 0.445 and 0.420; true value 0.405
9. Approximate values 1.267 and 1.278; true value 1.287

10. Approximate values 1.125 and 1.231; true value 1.333

Problems 11 through 24 call for tables of values that would occupy
too much space for inclusion here. In Problems 11 through 16 we give
first the final x-value, next the corresponding approximate y-values
obtained with step sizes h D 0:01 and h D 0:005, and then the final
true y-value. (All y-values rounded off accurate to 4 decimal places.)

11. 1:0; �0:7048; �0:7115; �0:7183

12. 1:0; 2:9864; 2:9931; 3:0000

13. 2:0; 4:8890; 4:8940; 4:8990

14. 2:0; 3:2031; 3:2304; 3:2589

15. 3:0; 3:4422; 3:4433; 3:4444

16. 3:0; 8:8440; 8:8445; 8:8451

In Problems 17 through 24 we give first the final x-value and then the
corresponding approximate y-values obtained with step sizes
h D 0:1, h D 0:02, h D 0:004, and h D 0:0008 respectively. (All
y-values rounded off accurate to 4 decimal places.)

17. 1:0; 0:2925; 0:3379; 0:3477; 0:3497

18. 2:0; 1:6680; 1:6771; 1:6790; 1:6794

19. 2:0; 6:1831; 6:3653; 6:4022; 6:4096

20. 2:0; �1:3792; �1:2843; �1:2649; �1:2610

21. 2:0; 2:8508; 2:8681; 2:8716; 2:8723

22. 2:0; 6:9879; 7:2601; 7:3154; 7:3264

23. 1:0; 1:2262; 1:2300; 1:2306; 1:2307

24. 1:0; 0:9585; 0:9918; 0:9984; 0:9997

25. With both step sizes h D 0:01 and h D 0:005, the approximate
velocity after 1 second is 16.0 ft/sec (80% of the limiting
velocity of 20 ft/sec); after 2 seconds it is 19.2 ft/sec (96% of the
limiting velocity).

26. With both step sizes h D 1 and h D 0:5, the approximate
population after 5 years is 49 deer (65% of the limiting
population of 75 deer); after 10 years it is 66 deer (88% of the
limiting population).

27. With successive step sizes h D 0:1; 0:01; 0:001; : : : the first
four approximations to y.2/ we obtain are 0.7772, 0.9777,
1.0017, and 1.0042. It therefore seems likely that y.2/ � 1:00.

28. With successive step sizes h D 0:1; 0:01; 0:001; : : : the first
four approximations to y.2/ we obtain are 1.2900, 1.4435,
1.4613, and 1.4631. It therefore seems likely that y.2/ � 1:46.

29.
h D 0:15 h D 0:03 h D 0:006

x y y y

�1:0

�0:7

�0:4

�0:1

0.2
0.5

1.0000
1.0472
1.1213
1.2826
0.8900
0.7460

1.0000
1.0512
1.1358
1.3612
1.4711
1.2808

1.0000
1.0521
1.1390
1.3835
0.8210
0.7192

30.
h D 0:1 h D 0:01

x y y

1.8
1.9
2.0

2.8200
3.9393
5.8521

4.3308
7.9425

28.3926

31.
h D 0:1 h D 0:01

x y y

0.7
0.8
0.9

4.3460
5.8670
8.3349

6.4643
11.8425
39.5010

Section 2.5

1.
Improved Actual

x Euler y y

0.1
0.2
0.3
0.4
0.5

1.8100
1.6381
1.4824
1.3416
1.2142

1.8097
1.6375
1.4816
1.3406
1.2131

Note: In Problems 2 through 10, we give the value of x, the
corresponding improved Euler value of y, and the true value of y.

2. 0:5; 1:3514; 1:3191 3. 0:5; 2:2949; 2:2974

4. 0:5; 0:7142; 0:7131 5. 0:5; 0:8526; 0:8513

6. 0:5; 1:5575; 1:5576 7. 0:5; 2:6405; 2:6475

8. 0:5; 0:4053; 0:4055 9. 0:5; 1:2873; 1:2874

10. 0:5; 1:3309; 1:3333

In Problems 11 through 16 we give the final value of x, the
corresponding values of y with h D 0:01 and with h D 0:005, and
the true value of y.

11. 1:0; �0:71824; �0:71827; �0:71828

12. 1:0; 2:99995; 2:99999; 3:00000

13. 2:0; 4:89901; 4:89899; 4:89898

14. 2:0; 3:25847; 3:25878; 3:25889

15. 3:0; 3:44445; 3:44445; 3:44444

16. 3:0; 8:84511; 8:84509; 8:84509

In Problems 17 through 24 we give the final value of x and the
corresponding values of y for h D 0:1, 0:02, 0:004, and 0:0008.

17. 1:0; 0:35183; 0:35030; 0:35023; 0:35023

18. 2:0; 1:68043; 1:67949; 1:67946; 1:67946

19. 2:0; 6:40834; 6:41134; 6:41147; 6:41147

20. 2:0; �1:26092; �1:26003; �1:25999; �1:25999

21. 2:0; 2:87204; 2:87245; 2:87247; 2:87247

22. 2:0; 7:31578; 7:32841; 7:32916; 7:32920

23. 1:0; 1:22967; 1:23069; 1:23073; 1:23073

24. 1:0; 1:00006; 1:00000; 1:00000; 1:00000

25. With both step sizes h D 0:01 and h D 0:005 the approximate
velocity after 1 second is 15.962 ft/sec (80% of the limiting
velocity of 20 ft/sec); after 2 seconds it is 19.185 ft/sec (96% of
the limiting velocity).
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26. With both step sizes h D 1 and h D 0:5 the approximate
population after 5 years is 49.391 deer (65% of the limiting
population of 75 deer); after 10 seconds it is 66.113 deer (88% of
the limiting population).

27. With successive step sizes h D 0:1; 0:01; 0:001; : : : the first
three approximations to y.2/ we obtain are 1.0109, 1.0045, and
1.0045. It therefore seems likely that y.2/ � 1:0045.

28. With successive step sizes h D 0:1; 0:01; 0:001; : : : the first
four approximations to y.2/ we obtain are 1.4662, 1.4634,
1.4633, and 1.4633. It therefore seems likely that
y.2/ � 1:4633.

29. Impact speed approximately 43.22 m/s
30. Impact speed approximately 43.48 m/s

Section 2.6

1. y.0:25/ � 1:55762; y.0:25/ D 1:55760.
y.0:5/ � 1:21309; y.0:5/ D 1:21306.
Solution: y D 2e�x

In Problems 2 through 10 we give the approximation to y.0:5/, its
true value, and the solution.

2. 1:35867; 1:35914I y D 1
2

e2x

3. 2:29740; 2:29744I y D 2ex � 1

4. 0:71309; 0:71306I y D 2e�x C x � 1

5. 0:85130; 0:85128I y D �ex C x C 2

6. 1:55759; 1:55760I u D 2 exp
��x2

	
7. 2:64745; 2:64749I y D 3 exp

��x3
	

8. 0:40547; 0:40547I y D ln.x C 1/

9. 1:28743; 1:28743I y D tan 1
4

.x C �/

10. 1:33337; 1:33333I y D .1 � x2/�1

11. Solution: y.x/ D 2 � ex .

h D 0:2 h D 0:1 Exact
x y y y

0.0
0.2
0.4
0.6
0.8
1.0

1.00000
0.77860
0.50818
0.17789

�0:22552

�0:71825

1.00000
0.77860
0.50818
0.17788

�0:22554

�0:71828

1.00000
0.77860
0.50818
0.17788

�0:22554

�0:71828

In Problems 12 through 16 we give the final value of x, the
corresponding Runge-Kutta approximations with h D 0:2 and with
h D 0:1, the exact value of y, and the solution.

12. 1:0; 2:99996; 3:00000; 3:00000;
y D 1 C 2=.2 � x/

13. 2:0; 4:89900; 4:89898; 4:89898;
y D

p
8 C x4

14. 2:0; 3:25795; 3:25882; 3:25889;
y D 1=.1 � ln x/

15. 3:0; 3:44445; 3:44444; 3:44444;
y D x C 4x�2

16. 3:0; 8:84515; 8:84509; 8:84509;
y D .x6 � 37/1=3

In Problems 17 through 24 we give the final value of x and the
corresponding values of y with h D 0:2, 0:1, 0:05, and 0:025.

17. 1:0; 0:350258; 0:350234; 0:350232; 0:350232

18. 2:0; 1:679513; 1:679461; 1:679459; 1:679459

19. 2:0; 6:411464; 6:411474; 6:411474; 6:411474

20. 2:0; �1:259990; �1:259992; �1:259993,
�1:259993

21. 2:0; 2:872467; 2:872468; 2:872468; 2:872468

22. 2:0; 7:326761; 7:328452; 7:328971; 7:329134

23. 1:0; 1:230735; 1:230731; 1:230731; 1:230731

24. 1:0; 1:000000; 1:000000; 1:000000; 1:000000

25. With both step sizes h D 0:1 and h D 0:05, the approximate
velocity after 1 second is 15.962 ft/sec (80% of the limiting
velocity of 20 ft/sec); after 2 seconds it is 19.185 ft/sec (96% of
the limiting velocity).

26. With both step sizes h D 6 and h D 3, the approximate
population after 5 years is 49.3915 deer (65% of the limiting
population of 75 deer); after 10 years it is 66.1136 deer (88% of
the limiting population).

27. With successive step sizes h D 1; 0:1; 0:01; : : : the first four
approximations to y.2/ we obtain are 1.05722, 1.00447,
1.00445and 1.00445. Thus it seems likely that y.2/ � 1:00445
accurate to 5 decimal places.

28. With successive step sizes h D 1; 0:1; 0:01; : : : the first four
approximations to y.2/ we obtain are 1.48990, 1.46332,
1.46331, and 1.46331. Thus it seems likely that y.2/ � 1:4633
accurate to 5 decimal places.

29. Time aloft: approximately 9.41 seconds
30. Time aloft: approximately 9.41 seconds

Chapter 3
Section 3.1

1. y.x/ D 5
2

ex � 5
2

e�x

2. y.x/ D 2e3x � 3e�3x

3. y.x/ D 3 cos 2x C 4 sin 2x

4. y.x/ D 10 cos 5x � 2 sin 5x

5. y.x/ D 2ex � e2x

6. y.x/ D 4e2x C 3e�3x

7. y.x/ D 6 � 8e�x

8. y.x/ D 1
3

.14 � 2e3x/

9. y.x/ D 2e�x C xe�x

10. y.x/ D 3e5x � 2xe5x

11. y.x/ D 5ex sin x

12. y.x/ D e�3x.2 cos 2x C 3 sin 2x/

13. y.x/ D 5x � 2x2

14. y.x/ D 3x2 � 16=x3

15. y.x/ D 7x � 5x ln x

16. y.x/ D 2 cos.ln x/ C 3 sin.ln x/

21. Linearly independent 22. Linearly independent
23. Linearly independent 24. Linearly dependent
25. Linearly independent 26. Linearly independent
28. y.x/ D 1 � 2 cos x � sin x

29. There is no contradiction because if the given differential
equation is divided by x2 to get the form in Eq. (8), then the
resulting coefficient functions p.x/ D �4=x and q.x/ D 6=x2

are not continuous at x D 0.
33. y.x/ D c1ex C c2e2x 34. y.x/ D c1e�5x C c2e3x

35. y.x/ D c1 C c2e�5x 36. y.x/ D c1 C c2e�3x=2

37. y.x/ D c1e�x=2 C c2ex

38. y.x/ D c1e�x=2 C c2e�3x=2

39. y.x/ D .c1 C c2x/e�x=2 40. y.x/ D .c1 C c2x/e2x=3

41. y.x/ D c1e�4x=3 C c2e5x=2

42. y.x/ D c1e�4x=7 C c2e3x=5

43. y00 C 10y0 D 0 44. y00 � 100y D 0

45. y00 C 20y0 C 100y D 0 46. y00 � 110y0 C 1000y D 0
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47. y00 D 0 48. y00 � 2y0 � y D 0

49. The high point is
�
ln 7

4
; 16

7

	
.

50. .� ln 2; �2/ 52. y.x/ D c1x C c2=x

53. y.x/ D c1x�4 C c2x3

54. y.x/ D c1x�3=2 C c2x1=2

55. y.x/ D c1 C c2 ln x 56. y.x/ D x2.c1 C c2 ln x/

Section 3.2

1. 15 � .2x/ � 16 � .3x2/ � 6 � .5x � 8x2/ � 0

2. .�4/.5/ C .5/.2 � 3x2/ C .1/.10 C 15x2/ � 0

3. 1 � 0 C 0 � sin x C 0 � ex � 0

4. .6/.17/ C .�51/.2 sin2 x/ C .�34/.3 cos2 x/ � 0

5. 1 � 17 � 34 � cos2 x C 17 � cos 2x � 0

6. .�1/.ex/ C .1/.cosh x/ C .1/.sinh x/ � 0

13. y.x/ D 4
3

ex � 1
3

e�2x

14. y.x/ D 1
2

.3ex � 6e2x C 3e3x/

15. y.x/ D .2 � 2x C x2/ex

16. y.x/ D �12ex C 13e2x � 10xe2x

17. y.x/ D 1
9

.29 � 2 cos 3x � 3 sin 3x/

18. y.x/ D ex.2 � cos x � sin x/

19. y.x/ D x C 2x2 C 3x3

20. y.x/ D 2x � x�2 C x�2 ln x

21. y.x/ D 2 cos x � 5 sin x C 3x

22. y.x/ D 4e2x � e�2x � 3

23. y.x/ D e�x C 4e3x � 2

24. y.x/ D ex.3 cos x C 4 sin x/ C x C 1

38. y2.x/ D 1

x3
39. y2.x/ D xex=2

40. y2.x/ D xex 41. y2.x/ D x C 2

42. y2.x/ D 1 C x2

Section 3.3

1. y.x/ D c1e2x C c2e�2x

2. y.x/ D c1 C c2e3x=2

3. y.x/ D c1e2x C c2e�5x

4. y.x/ D c1ex=2 C c2e3x

5. y.x/ D c1e�3x C c2xe�3x

6. y.x/ D e�5x=2
h
c1 exp

�
1
2

x
p

5
�

C c2 exp
�
� 1

2
x

p
5
�i

7. y.x/ D c1e3x=2 C c2xe3x=2

8. y.x/ D e3x.c1 cos 2x C c2 sin 2x/

9. y.x/ D e�4x.c1 cos 3x C c2 sin 3x/

10. y.x/ D c1 C c2x C c3x2 C c4e�3x=5

11. y.x/ D c1 C c2x C c3e4x C c4xe4x

12. y.x/ D c1 C c2ex C c3xex C c4x2ex

13. y.x/ D c1 C c2e�2x=3 C c3xe�2x=3

14. y.x/ D c1ex C c2e�x C c3 cos 2x C c4 sin 2x

15. y.x/ D c1e2x C c2xe2x C c3e�2x C c4xe�2x

16. y.x/ D .c1 C c2x/ cos 3x C .c3 C c4x/ sin 3x

17. y.x/ D c1 cos
�
x=

p
2
�

C c2 sin
�
x=

p
2
�

C
c3 cos

�
2x=

p
3
�

C c4 sin
�
2x=

p
3
�

18. y.x/ D c1e2x C c2e�2x C c3 cos 2x C c4 sin 2x

19. y.x/ D c1ex C c2e�x C c3xe�x

20. y.x/ D
e�x=2

h
.c1 C c2x/ cos

�
1
2

x
p

3
�

C .c3 C c3x/ sin
�

1
2

x
p

3
�i

21. y.x/ D 5ex C 2e3x

22. y.x/ D e�x=3
h
3 cos

�
x=

p
3
�

C 5
p

3 sin
�
x=

p
3
�i

23. y.x/ D e3x.3 cos 4x � 2 sin 4x/

24. y.x/ D 1
2

.�7 C e2x C 8e�x=2/

25. y.x/ D 1
4

.�13 C 6x C 9e�2x=3/

26. y.x/ D 1
5

.24 � 9e�5x � 25xe�5x/

27. y.x/ D c1ex C c2e�2x C c3xe�2x

28. y.x/ D c1e2x C c2e�x C c3e�x=2

29. y.x/ D c1e�3x C e3x=2
h
c2 cos

�
3
2

x
p

3
�

C c3 sin
�

3
2

x
p

3
�i

30. y.x/ D c1e�x C c2e2x C c3 cos.x
p

3/ C c4 sin.x
p

3/

31. y.x/ D c1ex C e�2x.c2 cos 2x C c3 sin 2x/

32. y.x/ D c1e2x C .c2 C c3x C c4x2/e�x

33. y.x/ D c1e3x C e�3x.c2 cos 3x C c3 sin 3x/

34. y.x/ D c1e2x=3 C c2 cos 2x C c3 sin 2x

35. y.x/ D c1e�x=2 C c2e�x=3 C c3 cos 2x C c4 sin 2x

36. y.x/ D c1e7x=9 C e�x.c2 cos x C c3 sin x/

37. y.x/ D 11 C 5x C 3x2 C 7ex

38. y.x/ D 2e5x � 2 cos 10x

39. y.3/ � 6y00 C 12y0 � 8y D 0

40. y.3/ � 2y00 C 4y0 � 8y D 0

41. y.4/ � 16y D 0

42. y.6/ C 12y.4/ C 48y00 C 64y D 0

44. (a) x D i , �2i (b) x D �i , 3i

45. y.x/ D c1e�ix C c2e3ix

46. y.x/ D c1e3ix C c2e�2ix

47. y.x/ D c1 exp
�h

1 C i
p

3
i

x
�

C c2 exp
�
�
h
1 C i

p
3
i

x
�

48. y.x/ D
1
3

�
ex C exp

h
1
2

�
�1 C i

p
3
�

x
i

C exp
h

1
2

�
�1 � i

p
3
�

x
i�

49. y.x/ D 2e2x � 5e�x C 3 cos x � 9 sin x

52. y.x/ D c1 cos.3 ln x/ C c2 sin.3 ln x/

53. y.x/ D x�3Œc1 cos.4 ln x/ C c2 sin.4 ln x/�

54. y.x/ D c1 C c2 ln x C c3x�3

55. y.x/ D c1 C x2.c2 C c3 ln x/

56. y.x/ D c1 C c2 ln x C c3.ln x/2

57. y.x/ D c1 C x3
�
c2x�

p

3 C c3xC

p

3
�

58. y.x/ D x�1Œc1 C c2 ln x C c3.ln x/2�

Section 3.4

1. Frequency: 2 rad=s (1=� Hz); period: � s
2. Frequency: 8 rad/sec (4=� Hz); period: �=4 sec
3. Amplitude: 2 m; frequency: 5 rad=s;

period: 2�=5 s
4. (a) x.t/ D 13

12
cos.12t � ˛/ with

˛ D 2� � tan�1.5=12/ � 5:8884;
(b) Amplitude: 13

12
m; period: �=6 sec

6. About 7.33 mi
7. About 10450 ft
8. 29.59 in.

10. Amplitude: 100 cm; period: about 2.01 sec
11. About 3:8 in.
13. (a) x.t/ D 50.e�2t=5 � e�t=2/; (b) 4:096 exactly
14. (a) x.t/ D 25e�t=5 cos.3t � ˛/ with

˛ D tan�1.3=4/ � 0:6435;
(b) envelope curves x D ˙25e�t=5; pseudoperiod 2�=3

15. x.t/ D 4e�2t � 2e�4t , overdamped; u.t/ D 2 cos.2
p

2 t/

1 2 3
t

2

x

u

–2
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16. x.t/ D 4e�3t � 2e�7t , overdamped;

u.t/ � 2

q
22
21

cos.
p

21 t � 0:2149/

2
t

2

x

u

–2

1

17. x.t/ D 5e�4t .2t C 1/, critically damped;
u.t/ � 5

2

p
5 cos.4t � 5:8195/

2
t

5

x

u

1

–5

18. x.t/ D 2e�3t cos
�
4t � 3�

2

	
, underdamped;

u.t/ D 8
5

cos
�
5t � 3�

2

	

1 2
t

1

x

u
–1

19. x.t/ � 1
3

p
313 e�5t=2 cos.6t � 0:8254/, underdamped;

u.t/ � 4
13

p
233 cos

�
13
2

t � 0:5517
	

1 2
t

4

x

u–4

20. x.t/ � 13e�4t cos.2t � 1:1760/, underdamped;

u.t/ �
q

129
5

cos.2
p

5 t � 0:1770/

1 2
t

5

x

u
–5

21. x.t/ � 10e�5t cos.10t � 0:9273/, underdamped;
u.t/ � 2

p
14 cos.5

p
5 t � 0:6405/

1
t

6

x

u–6

22. (b) The time-varying amplitude is 2
3

p
3, the frequency is 4

p
3

rad=s, and the phase angle is �=6.
23. (a) k � 7018 lb=ft; (b) After about 2:47 s
34. Damping constant: c � 11:51 lb=ft=s; spring constant:

k � 189:68 lb=ft

Section 3.5

1. yp.x/ D 1
25

e3x 2. yp.x/ D � 1
4

.5 C 6x/

3. yp.x/ D 1
39

.cos 3x � 5 sin 3x/

4. yp.x/ D 1
9

.�4ex C 3xex/

5. yp.x/ D 1
26

.13 C 3 cos 2x � 2 sin 2x/

6. yp.x/ D 1
343

.4 � 56x C 49x2/

7. yp.x/ D � 1
6

.ex � e�x/ D � 1
3

sinh x

8. yp.x/ D 1
4

x sinh 2x

9. yp.x/ D � 1
3

C 1
16

.2x2 � x/ex

10. yp.x/ D 1
6

.2x sin 3x � 3x cos 3x/

11. yp.x/ D 1
8

.3x2 � 2x/ 12. yp.x/ D 2x C 1
2

x sin x

13. yp.x/ D 1
65

ex.7 sin x � 4 cos x/

14. yp.x/ D 1
24

.�3x2ex C x3ex/ 15. yp.x/ � �17

16. yp.x/ D 1
81

.45 C e3x � 6xe3x C 9x2e3x/

17. yp.x/ D 1
4

.x2 sin x � x cos x/

18. yp.x/ D � 1
144

.24xex � 19xe2x C 6x2e2x/

19. yp.x/ D 1
8

.10x2 � 4x3 C x4/

20. yp.x/ D �7 C 1
3

xex

21. yp.x/ D xex.A cos x C B sin x/

22. yp.x/ D Ax3 C Bx4 C Cx5 C Dxex

23. yp.x/ D Ax cos 2x C Bx sin 2x C Cx2 cos 2x C Dx2 sin 2x

24. yp.x/ D Ax C Bx2 C .Cx C Dx2/e�3x

25. yp.x/ D Axe�x C Bx2e�x C Cxe�2x C Dx2e�2x

26. yp.x/ D .Ax C Bx2/e3x cos 2x C .Cx C Dx2/e3x sin 2x

27. yp.x/ D Ax cos x C Bx sin x C Cx cos 2x C Dx sin 2x

28. yp.x/ D
.Ax C Bx2 C Cx3/ cos 3x C .Dx C Ex2 C F x3/ sin 3x

29. yp.x/ D Ax3ex C Bx4ex C Cxe2x C Dxe�2x

30. yp.x/ D .A C Bx C Cx2/ cos x C .D C Ex C F x2/ sin x

31. y.x/ D cos 2x C 3
4

sin 2x C 1
2

x

32. y.x/ D 1
6

.15e�x � 16e�2x C ex/

33. y.x/ D cos 3x � 2
15

sin 3x C 1
5

sin 2x

34. y.x/ D cos x � sin x C 1
2

x sin x

35. y.x/ D ex.2 cos x � 5
2

sin x/ C 1
2

x C 1

36. y.x/ D 1
192

.234 C 240x � 9e�2x � 33e2x � 12x2 � 4x4/

37. y.x/ D 4 � 4ex C 3xex C x � 1
2

x2ex C 1
6

x3ex

38. y.x/ D 1
85

Œe�x.176 cos x C197 sin x/�.6 cos 3x C7 sin 3x/�

39. y.x/ D �3 C 3x � 1
2

x2 C 1
6

x3 C 4e�x C xe�x

40. y.x/ D 1
4

.5e�x C 5ex C 10 cos x � 20/
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41. yp.x/ D 255 � 450x C 30x2 C 20x3 C 10x4 � 4x5

42. y.x/ D 10e�x C 35e2x C 210 cos x C 390 sin x C yp.x/
where yp.x/ is the particular solution of Problem 41.

43. (b) y.x/ D c1 cos 2x C c2 sin 2x
C 1

4
cos x � 1

20
cos 3x

44. y.x/ D e�x=2
h
c1 cos

�
1
2

x
p

3
�

C c2 sin
�

1
2

x
p

3
�i

C
1

26
.�3 cos 2x C 2 sin 2x/ C 1

482
.15 cos 4x C 4 sin 4x/

45. y.x/ D c1 cos 3x C c2 sin 3x C 1
24

� 1
10

cos 2x � 1
56

cos 4x

46. y.x/ D c1 cos x C c2 sin x C 1
16

.3x cos x C 3x2 sin x/ C
1

128
.3 sin 3x � 4x cos 3x/

47. yp.x/ D 2
3

ex 48. yp.x/ D � 1
12

.6x C 1/e�2x

49. yp.x/ D x2e2x

50. yp.x/ D 1
16

.4x cosh 2x � sinh 2x/

51. yp.x/ D � 1
4

.cos 2x cos x � sin 2x sin x/ C
1

20
.cos 5x cos 2x C sin 5x sin 2x/ D � 1

5
cos 3x (!)

52. yp.x/ D � 1
6

x cos 3x

53. yp.x/ D 2
3

x sin 3x C 2
9

.cos 3x/ ln j cos 3xj
54. yp.x/ D �1 � .cos x/ ln j csc x � cot xj
55. yp.x/ D 1

8
.1 � x sin 2x/ 56. yp.x/ D � 1

9
ex.3x C 2/

58. yp.x/ D x3.ln x � 1/ 59. yp.x/ D 1
4

x4

60. yp.x/ D � 72
5

x4=3

61. yp.x/ D ln x

62. yp.x/ D �x2 C x ln

ˇ̌̌̌
1 C x

1 � x

ˇ̌̌̌
C 1

2
.1 C x2/ ln j1 � x2j

Section 3.6

1. x.t/ D 2 cos 2t � 2 cos 3t

π
t

3

2π

3π 5π

–3

2. x.t/ D 3
2

sin 2t � sin 3t

t

2

2π

π 3π 5π

–2

3. x.t/ D p
138388 cos.10t � ˛/ C 5 cos.5t � ˇ/ with

˛ D 2� � tan�1.1=186/ � 6:2778 and
ˇ D tan�1.4=3/ � 0:9273.

π
t

375

–375

π

5

4. x.t/ D 2
p

106 cos.5t � ˛/ C 10 cos 4t with
˛ D � � tan�1.9=5/ � 2:0779

t

30
2π

π 3π 5π

–30

5. x.t/ D .x0 � C / cos !0t C C cos !t , where
C D F0=.k � m!2/

7. xsp.t/ D 10
13

cos.3t � ˛/ with ˛ D � � tan�1.12=5/ � 1:9656

t

3 xsp

F1
–3

2π

8. xsp.t/ D 4
25

cos.5t � ˛/ with ˛ D 2� � tan�1.3=4/ � 5:6397

2π
t

1 xsp

F1–1

9. xsp.t/ D 3
p

40001
cos.10t � ˛/ with

˛ D � C tan�1.199=20/ � 4:6122

2π
t

0.1

xsp

F1

–0.1

10. xsp.t/ D 10
793

p
61 cos.10t � ˛/ with

˛ D � C tan�1.171=478/ � 3:4851

t

1
xsp

F1

2π

–1
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11. xsp.t/ D
p

10
4

cos.3t � ˛/ with ˛ D � � tan�1.3/ � 1:8925

xtr.t/ D 5
4

p
2e�2t cos.t � ˇ/ with

ˇ D 2� � tan�1.7/ � 4:8543

π
t

0.5

xsp

x–0.5

12. xsp.t/ D 5

3
p

29
cos.3t � ˛/ with

˛ D � C tan�1.2=5/ � 3:5221

xtr.t/ D 25

6
p

29
e�3t cos.2t � ˇ/ with

ˇ D tan�1.5=2/ � 1:1903

π
t

0.5

xsp

x

–0.5

13. xsp.t/ D 300
p

1469
cos.10t � ˛/ with

˛ D � � tan�1.10=37/ � 2:8776

xtr.t/ D 2

q
113314

1469
e�t cos.5t � ˇ/ with

ˇ D 2� � tan�1.421=12895/ � 6:2505

t

10

xsp

x

π

–10

14. xsp.t/ D p
485 cos.t � ˛/ with ˛ D tan�1.22/ � 1:5254

xtr.t/ D p
3665 e�4t cos.3t � ˇ/ with

ˇ D � C tan�1.52=31/ � 4:1748

t

30 xsp

x

2ππ

–30

15. C.!/ D 2=
p

4 C !4; there is no practical resonance frequency.

5 10

1

C

ω

16. C.!/ D 10=
p

25 C 6!2 C !4; there is no practical resonance
frequency.

5 10

1

2

C

ω

17. C.!/ D 50=
p

2025 � 54!2 C !4; there is practical resonance
at frequency ! D 3

p
3.

10 20

1

C

ω

18. C.!/ D 100=
p

422500 � 1200!2 C !4; there is practical
resonance at frequency ! D 10

p
6.

25 50

0.4

C

ω

19. ! D p
384 rad/sec (approximately 3.12 Hz)

20. ! � 44:27 rad/sec (approximately 422.75 rpm)
21. !0 D p

.g=L/ C .k=m/

22. !0 D
p

k=.m C I=a2/

23. (a) Natural frequency:
p

10 rad=s (approximately 0:50 Hz);
(b) amplitude: approximately 10:625 in.

Section 3.7

1. I.t/ D 4e�5t

2. I.t/ D 4.1 � e�5t /

3. I.t/ D 4
145

.cos 60t C 12 sin 60t � e�5t /

4. I.t/ D 5.e�10t � e�20t /; Imax D I. 1
10

ln 2/ D 5=4.

5. I.t/ D 5
6

e�10t sin 60t

6. Isp.t/ D 1
37

.�21 cos 60t C 22 sin 60t/ D
.5=

p
37/ cos.60t � ˛/, where

˛ D � � tan�1.22=21/ � 2:3329.
7. (a) Q.t/ D E0C.1 � e�t=RC /; I.t/ D .E0=R/e�t=RC

8. (a) Q.t/ D 10te�5t ; I.t/ D 10.1 � 5t/e�5t ;
(b) Qmax D Q.1=5/ D 2e�1.

9. (a) Q.t/ D .cos 120t C 6 sin 120t � e�20t /=1480
I.t/ D .36 cos 120t � 6 sin 120t C e�20t /=74
(b) Isp D 6

74
.6 cos 120t � sin 120t/ D 3

p

37
cos.120t � ˛/

with ˛ D 2� � tan�1 1
6

.
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11. Isp.t/ D 10
p

37
sin.2t � ı/ with

ı D 2� � tan�1.1=6/ � 6:1180

12. Isp.t/ D 2
p

17
sin.10t � ı/ with

ı D 2� � tan�1.1=4/ � 6:0382

13. Isp.t/ D 20
p

13
sin.5t � ı/ with

ı D 2� � tan�1.2=3/ � 5:6952

14. Isp.t/ � 0:9990 sin.100t � 0:8272/

15. Isp.t/ � 0:1591 sin.60�t � 4:8576/

16. Isp.t/ � 1:6125 sin.377t � 1:2282/

17. I.t/ D �25e�4t sin 3t

18. I.t/ D 50
171

.19e�10t � 18e�20t � e�t /

19. I.t/ D 10e�20t � 10e�10t � 50te�10t

20. I.t/ D � 10

37
p

11
e�3t=2.

p
11 cos t

p
11=2 C

27 sin t
p

11=2/ C 10
37

.cos 2t C 6 sin 2t/

π 2π
t

1
I

Isp

–5

I = Isp + Itr

21. I.t/ D � 10
39

e�t .12 cos 3t C47 sin 3t/C 20
13

.2 cos 5t C3 sin 5t/

t

5

I

Isp

π

–5

I = Isp + Itr

π

2

22. I.t/ � �e�25t .0:1574 cos 25t
p

159 C
0:0262 sin 25t

p
159/ C .0:1574 cos 60�t C 0:0230 sin 60�t/

0.1
t

0.2

I

Isp–0.2

I = Isp + Itr

Section 3.8

1. Only positive eigenvalues fn2�2=4g and associated
eigenfunctions fcos.n�x=2/g for n D 1; 3; 5; : : : .

2. Eigenvalue �0 D 0 with eigenfunction y0.x/ � 1, and positive
eigenvalues fn2g with associated eigenfunctions fcos nxg for
n D 1; 2; 3; : : : .

3. Only positive eigenvalues fn2=4g for n D 1; 2; 3; : : : . The nth
eigenfunction yn.x/ is cos.nx=2/ if n is odd, sin.nx=2/ if n is
even.

4. Eigenvalue �0 D 0 with eigenfunction y0.x/ � 1, and positive
eigenvalues fn2=4g for n D 1; 2; 3; : : : . The nth eigenfunction
yn.x/ is sin.nx=2/ if n is odd, cos.nx=2/ if n is even.

5. Only positive eigenvalues fn2�2=64g for n D 1; 2; 3; : : : . The
nth eigenfunction yn.x/ is cos.n�x=8/ C sin.n�x=8/ if n is
odd, cos.n�x=8/ � sin.n�x=8/ if n is even.

7–8. In the figure below, points of intersection of the curve y D tan ´
with the lines y D ˙´ are labeled with their ´-coordinates. We
see that ˛n lies just to the right of the vertical line
´ D .2n � 1/�=2, while ˇn lies just to the left of the line
´ D .2n C 1/�=2.

z

10

y

α1
α2

α3 α4

β1

β2

β3

–10

y = z

y = –z

π

2
π

2
3 π

2
5 π

2
7

Chapter 4
Section 4.1

1. x0

1
D x2, x0

2
D �7x1 � 3x2 C t2

2. x0

1
D x2, x0

2
D �4x1 C x3

1

3. x0

1
D x2, x0

2
D �26x1 � 2x2 C 82 cos 4t

4. x0

1
D x2, x0

2
D x3, x0

3
D �x2 C 2x3 C 1 C tet

5. x0

1
D x2, x0

2
D x3, x0

3
D x4, x0

4
D �x1 � 3x3 C et sin 2t

6. x0

1
D x2, x0

2
D x3, x0

3
D x4,

x0

4
D �x1 C 3x2 � 6x3 C cos 3t

7. x0

1
D x2, t2x0

2
D .1 � t2/x1 � tx2

8. x0

1
D x2, x0

2
D x3, t3x0

3
D �5x1 � 3tx2 C 2t2x3 C ln t

9. x0

1
D x2, x0

2
D x3, x0

3
D x2

2
C cos x1

10. x0

1
D x2, x0

2
D 5x1 � 4y1, y0

1
D y2, y0

2
D �4x1 C 5y1

11. x0

1
D x2, x0

2
D �kx1 � .x2

1
C y2

1
/�3=2,

y0

1
D y2, y0

2
D �ky1 � .x2

1
C y2

1
/�3=2

12. x0

1
D x2, x0

2
D 2

3
y2, y0

1
D y2, y0

2
D � 2

3
x2

13. x0

1
D x2, x0

2
D �75x1 C 25y1, y0

1
D y2,

y0

2
D 50x1 � 50y1 C 50 cos 5t

14. x0

1
D x2, x0

2
D �4x1 C 2y1 � 3x2

y0

1
D y2, y0

2
D 3x1 � y1 � 2y2 C cos t

15. x0

1
D x2, x0

2
D 3x1 � y1 C 2´1, y0

1
D y2,

y0

2
D x1 C y1 � 4´1, ´0

1
D ´2, ´0

2
D 5x1 � y1 � ´1

16. x0

1
D x2, x0

2
D x1.1 � y1/

y0

1
D y2, y0

2
D y1.1 � x1/

17. x.t/ D A cos t C B sin t , y.t/ D B cos t � A sin t

0 1 2 3 4 5

0
1
2
3
4
5

x

y

–1
–2
–3
–4
–5

–1–2–3–4–5
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18. x.t/ D Aet C Be�t , y.t/ D Aet � Be�t

x

y

0 1 2 3 4 5

0
1

3
4
5

–1
–2
–3
–4
–5

–1–2–3–4–5

2

19. x.t/ D A cos 2t C B sin 2t , y.t/ D �B cos 2t C A sin 2t ;
x.t/ D cos 2t , y.t/ D sin 2t

x

y

0 1 2 3 4 5

0
1

3
4
5

–1
–2
–3
–4
–5

–1–2–3–4–5

2

20. x.t/ D A cos 10t C B sin 10t , y.t/ D B cos 10t � A sin 10t ;
x.t/ D 3 cos 10t C 4 sin 10t , y.t/ D 4 cos 10t � 3 sin 10t

x

y

0 1 2 3 4 5

0
1

3
4
5

–1
–2
–3
–4
–5

–1–2–3–4–5

2

21. x.t/ D A cos 2t C B sin 2t , y.t/ D 4B cos 2t � 4A sin 2t

x

y

0 1 2 3 4 5

0
1

3
4
5

–1
–2
–3
–4
–5

–1–2–3–4–5

2

22. x.t/ D A cos 4t C B sin 4t , y.t/ D 1
2

B cos 4t � 1
2

A sin 4t

x

y

0 1 2 3 4 5

0
1

3
4
5

–1
–2
–3
–4
–5

–1–2–3–4–5

2

23. x.t/ D Ae�3t C Be2t , y.t/ D �3Ae�3t C 2Be2t ;
x.t/ D e2t , y.t/ D 2e2t

x

y

0 1 2 3 4 5

0
1

3
4
5

–1
–2
–3
–4
–5

–1–2–3–4–5

2

24. x.t/ D Ae�2t C Be�5t , y.t/ D 2Ae�2t C 5Be�5t ;
A D 17

3
and B D � 11

3
in the particular solution.

x

y

0 1 2 3 4 5

0
1

3
4
5

–1
–2
–3
–4
–5

–1–2–3–4–5

2

25. x.t/ D �e2t sin 3t , y.t/ D e2t .3 cos 3t C 2 sin 3t/

x

y

0 1 2 3 4 5

0
1

3
4
5

–1
–2
–3
–4
–5

–1–2–3–4–5

2
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26. x.t/ D .A C Bt/e3t , y.t/ D .3A C B C 3Bt/e3t

x

y

0 1 2 3 4 5

0
1

3
4
5

–1
–2
–3
–4
–5

–1–2–3–4–5

2

33. 2.I 0

1
� I 0

2
/ C 50I1 D 100 sin 60t , 2.I 0

2
� I 0

1
/ C 25I2 D 0

34. I 0

1
D �20.I1 � I2/, I 0

2
D 40.I1 � I2/

Section 4.2

1. x.t/ D a1e�t C a2e2t , y.t/ D a2e2t

x

y

0 1 2 3 4 5

0
1

3
4
5

–1
–2
–3
–4
–5

–1–2–3–4–5

2

2. x.t/ D .c1 C c2t/e�t , y.t/ D .c1 � 1
2

c2 C c2t/e�t

x

y

0 1 2 3 4 5

0
1

3
4
5

–1
–2
–3
–4
–5

–1–2–3–4–5

2

3. x.t/ D 4
5

.e3t � e�2t /, y.t/ D 2
5

.6e3t � e�2t /

x

y

0 1 2 3 4 5

0
1

3
4
5

–1
–2
–3
–4
–5

–1–2–3–4–5

2

4. x.t/ D 1
2

.3e2t � e�2t /, y.t/ D 1
2

.3e2t � 5e�2t /

x

y
0 1 2 3 4 5

0
1

3
4
5

–1
–2
–3
–4
–5

–1–2–3–4–5

2

5. x.t/ D e�t .a1 cos 2t C a2 sin 2t/,
y.t/ D � 1

2
e�t Œ.a1 C a2/ cos 2t C .a2 � a1/ sin 2t�

x

y

0 1 2 3 4 5

0
1

3
4
5

–1
–2
–3
–4
–5

–1–2–3–4–5

2

6. x.t/ D e�2t .3 cos 3t C 9 sin 3t/,
y.t/ D e�2t .2 cos 3t � 4 sin 3t/

x

y

0 1 2 3 4 5

0
1

3
4
5

–1
–2
–3
–4
–5

–1–2–3–4–5

2
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7. x.t/ D a1e2t C a2e3t � 1
3

t C 1
18

,
y.t/ D �2a1e2t � a2e3t � 2

3
t � 5

9

8. x.t/ D c1et C c2e3t C e2t , y.t/ D �c1et C c2e3t

9. x.t/ D 3a1et C a2e�t � 1
5

.7 cos 2t C 4 sin 2t/,
y.t/ D a1et C a2e�t � 1

5
.2 cos 2t C 4 sin 2t/

10. x.t/ D et , y.t/ D �et

11. x.t/ D a1 cos 3t C a2 sin 3t � 11
20

et � 1
4

e�t ,
y.t/ D 1

3
Œ.a1 � a2/ cos 3t C .a1 C a2/ sin 3t� C 1

10
et

12. x.t/ D c1e2t C c2e�2t C c3e3t C c4e�3t ,
y.t/ D �c1e2t � c2e�2t C 3

2
c3e3t C 3

2
c4e�3t

13. x.t/ D a1 cos 2t C a2 sin 2t C b1 cos 3t C b2 sin 3t ,
y.t/ D 1

2
.a1 cos 2t C a2 sin 2t/ � 2.b1 cos 3t C b2 sin 3t/

14. x.t/ D c1 cos 2t C c2 sin 2t C 1
3

sin t ,
y.t/ D c1 cos 2t C c2 sin 2t C c3 cos 2t

p
2 C

c4 sin 2t
p

2 C 4
21

sin t

15. x.t/ D a1 cos t C a2 sin t C b1 cos 2t C b2 sin 2t ,
y.t/ D a2 cos t � a1 sin t C b2 cos 2t � b1 sin 2t

17. x.t/ D a1 cos t C a2 sin t C b1e2t C b2e�2t ,
y.t/ D 3a2 cos t � 3a1 sin t C b1e2t � b2e�2t

18. x.t/ D 1
6

.4c1e3t � 3c2e�4t /, y.t/ D c1e3t C c2e�4t ,
´.t/ D 1

6
.�4c1e3t C 3c2e�4t /

19. x.t/ D a1 C a2e4t C a3e8t , y.t/ D 2a1 � 2a3e8t ,
´.t/ D 2a1 � 2a2e4t C 2a3e8t

20. x.t/ D a1e2t C a2e�t C 2
3

te�t ,
y.t/ D a1e2t C b2e�t � 1

3
te�t ,

´.t/ D a1e2t � �
a2 C b2 C 1

3

	
e�t � 1

3
te�t

23. Infinitely many solutions

24. No solution

25. Infinitely many solutions

26. Two arbitrary constants

27. No arbitrary constants

28. No solution

29. Four arbitrary constants

31. I1.t/ D 2 C e�5t
h
�2 cos

�
10t=

p
6
�

C 4
p

6 sin
�
10t=

p
6
�i

,

I2.t/ D
�
20=

p
6
�

e�5t sin
�
10t=

p
6
�

32. I1.t/ D 1
1321

.120e�25t=3 � 120 cos 60t C 1778 sin 60t/,
I2.t/ D 1

1321
.�240e�25t=3 C 240 cos 60t C 1728 sin 60t/

33. I1.t/ D 2
3

.2 C e�60t /, I2.t/ D 4
3

.1 � e�60t /

37. (a) x.t/ D a1 cos 5t C a2 sin 5t C b1 cos 5t
p

3 C
b2 sin 5t

p
3, y.t/ D 2a1 cos 5t C 2a2 sin 5t �

2b1 cos 5t
p

3 � 2b2 sin 5t
p

3; (b) In the natural mode with
frequency !1 D 5, the masses move in the same direction,
whereas in the natural mode with frequency !2 D 5

p
3 they

move in opposite directions. In each case the amplitude of the
motion of m2 is twice that of m1.

39. x.t/ D a1 cos t C a2 sin t C b1 cos 2t C b2 sin 2t ,
y.t/ D 2a1 cos t C 2a2 sin t � b1 cos 2t � b2 sin 2t .
In the natural mode with frequency !1 D 1 the masses move in
the same direction, with the amplitude of motion of the second
mass twice that of the first mass. In the natural mode with
frequency !2 D 2 they move in opposite directions with the
same amplitude of motion.

0

0

1

2

3

t

x,
 y

–1

–2

–3
π 2π 3π

y1 = 2 cos(t)

x1 = cos(t)

0

1

2

3

t
0

–1

–2

–3
π 2π 3π

x,
 y

y2 = – cos(2t)

x2 = cos(2t)

40. x.t/ D a1 cos 5t C a2 sin 5t C b1 cos 10t C b2 sin 10t ,
y.t/ D 2a1 cos 5t C 2a2 sin 5t � b1 cos 10t � b2 sin 10t .

41. x.t/ D a1 cos t C a2 sin t C b1 cos 3t C b2 sin 3t ,
y.t/ D a1 cos t C a2 sin t � b1 cos 3t � b2 sin 3t .
In the natural mode with frequency !1 D 1 the masses move in
the same direction, while in the natural mode with frequency
!2 D 3 they move in opposite directions. In each case the
amplitudes of motion of the two masses are equal.

0

0

1

2

t

–1

–2
π 2π

x,
 y

x1 = y1 = cos(t)
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0

1

2

0
t

π 2π

x,
 y

y2 = – cos(3t)

x2 = cos(3t)

–1

–2

42. x.t/ D a1 cos t C a2 sin t C b1 cos 2t C b2 sin 2t ,
y.t/ D a1 cos t C a2 sin t � 1

2
b1 cos 2t � 1

2
b2 sin 2t .

43. x.t/ D a1 cos t C a2 sin t C b1 cos t
p

5 C b2 sin t
p

5,
y.t/ D a1 cos t C a2 sin t � b1 cos t

p
5 � b2 sin t

p
5.

In the natural mode with frequency !1 D 1 the masses move in
the same direction, while in the natural mode with frequency
!2 D p

5 they move in opposite directions. In each case the
amplitudes of motion of the two masses are equal.

0

1

2

0
t

–1

–2
π 2π

x,
 y

x1 = y1 = cos(t)

0

1

2

0
t

–1

–2
π 2π

x,
 y

5y2 = – cos(t      )

x2 = cos(t      )5

44. x.t/ D a1 cos t
p

2 C a2 sin t
p

2 C b1 cos 2t C b2 sin 2t ,
y.t/ D a1 cos t

p
2 C a2 sin t

p
2 � b1 cos 2t � b2 sin 2t .

45. x.t/ D a1 cos t
p

2 C a2 sin t
p

2 C b1 cos t
p

8 C b2 sin t
p

8,
y.t/ D a1 cos t

p
2 C a2 sin t

p
2 �

1
2

b1 cos t
p

8 � 1
2

b2 sin t
p

8.
In the natural mode with frequency !1 D p

2 the two masses
move in the same direction with equal amplitudes of oscillation.
In the natural mode with frequency !2 D p

8 D 2
p

2 the two
masses move in opposite directions with the amplitude of m2

being half that of m1.

0

1

2

0
t

–1

–2
π 2π

x,
 y

x1 = y1 = cos(t      )2

0

1

2

0
t

–1

–2
π 2π

x,
 y

x2 = y2 = cos(t      )8

46. x.t/ D a1 cos 2t C a2 sin 2t C b1 cos 4t C b2 sin 4t ,
y.t/ D a1 cos 2t C a2 sin 2t � b1 cos 4t � b2 sin 4t .

Section 4.3

The format for the first eight answers is this: .x.t/; y.t// at t D 0:2
by the Euler method, by the improved Euler method, by the
Runge-Kutta method, and finally the actual values.

1. .0:8800; 2:5000/, .0:9600; 2:6000/, .1:0027; 2:6401/,
.1:0034; 2:6408/

2. .0:8100; �0:8100/, .0:8200; �0:8200/, .0:8187; �0:8187/,
.0:8187; �0:8187/

3. .2:8100; 2:3100/, .3:2200; 2:6200/, .3:6481; 2:9407/,
.3:6775; 2:9628/

4. .3:3100; �1:6200/, .3:8200; �2:0400/,
.4:2274; �2:4060/, .4:2427; �2:4205/

5. .�0:5200; 2:9200/, .�0:8400; 2:4400/,
.�0:5712; 2:4485/, .�0:5793; 2:4488/

6. .�1:7600; 4:6800/, .�1:9200; 4:5600/, .�1:9029; 4:4995/,
.�1:9025; 4:4999/

7. .3:1200; 1:6800/, .3:2400; 1:7600/, .3:2816; 1:7899/,
.3:2820; 1:7902/

8. .2:1600; �0:6300/, .2:5200; �0:4600/, .2:5320; �0:3867/,
.2:5270; �0:3889/

9. At t D 1 we obtain .x; y/ D .3:99261; 6:21770/ (h D 0:1)
and .3:99234; 6:21768/ (h D 0:05); the actual value is
.3:99232; 6:21768/.

10. At t D 1 we obtain .x; y/ D .1:31498; 1:02537/ (h D 0:1)
and .1:31501; 1:02538/ (h D 0:05); the actual value is
.1:31501; 1:02538/.

11. At t D 1 we obtain .x; y/ D .�0:05832; 0:56664/ (h D 0:1)
and .�0:05832; 0:56665/ (h D 0:05); the actual value is
.�0:05832; 0:56665/.

12. We solved x0 D y, y0 D �x C sin t , x.0/ D y.0/ D 0. With
h D 0:1 and also with h D 0:05 we obtain the actual value
x.1:0/ � 0:15058.
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13. Runge-Kutta, h D 0:1: about 1050 ft in about 7:7 s
14. Runge-Kutta, h D 0:1: about 1044 ft in about 7:8 s
15. Runge-Kutta, h D 1:0: about 83:83 mi in about 168 s
16. At 40ı: 5:0 s, 352:9 ft; at 45ı: 5:4 s, 347:2 ft; at 50ı: 5:8 s,

334:2 ft (all values approximate)
17. At 39:0ı the range is about 352:7 ft. At 39:5ı it is 352:8; at

40ı, 352:9; at 40:5ı, 352:6; at 41:0ı, 352:1.
18. Just under 57:5ı

19. Approximately 253 ft=s
20. Maximum height: about 1005 ft, attained in about 5:6 s; range:

about 1880 ft; time aloft: about 11:6 s
21. Runge-Kutta with h D 0:1 yields these results:

(a) 21400 ft, 46 s, 518 ft=s; (b) 8970 ft, 17:5 s; (c) 368 ft=s
(at t � 23).

Chapter 5
Section 5.1

1. (a)
�

13 �18
23 17

�
; (b)

�
0 �1
2 19

�
;

(c)
� �9 �11

47 �9

�
; (d)

� �10 �37
14 �8

�
2. .AB/C D A.BC/ D

� �33 �7
�27 103

�
;

A.B C C/ D AB C AC D
� �18 �4

68 �8

�

3. AB D
� �1 8

46 �1

�
; BA D

24 11 �12 14
�14 0 7

0 8 �13

35
4. Ay D

�
2t2 � cos t

3t2 � 4 sin t C 5 cos t

�
, Bx D

24 2t C 3e�t

�14t

6t � 2e�t

35
5. (a)

24 21 2 1
4 44 9

�27 34 45

35; (b)

24 9 21 �13
�5 �8 24

�25 �19 26

35;

(c)

24 0 �6 1
10 31 �15
16 58 �23

35; (d)

24 �10 �8 5
18 12 �10
11 22 6

35;

(e)

24 3 � t 2 �1
0 4 � t 3

�5 2 7 � t

35
7. det.A/ D det.B/ D 0 8. det.AB/ D det.BA/ D 144

9. .AB/0 D
�

1 � 8t C 18t2 1 C 2t � 12t2 C 32t3

3 C 3t2 � 4t3 8t C 3t2 C 4t3

�
11. x D

�
x
y

�
, P.t/ D

�
0 �3
3 0

�
, f.t/ D

�
0
0

�
13. x D

�
x
y

�
, P.t/ D

�
2 4
5 �1

�
, f .t/ D

�
3et

�t2

�

15. x D
24 x

y
´

35, P.t/ D
24 0 1 1

1 0 1
1 1 0

35, f.t/ D
24 0

0
0

35
17. x D

24 x
y
´

35, P.t/ D
24 3 �4 1

1 0 �3
0 6 �7

35, f.t/ D
24 t

t2

t3

35

19. x D

2664
x1

x2

x3

x4

3775, P.t/ D

2664
0 1 0 0
0 0 2 0
0 0 0 3
4 0 0 0

3775, f.t/ D

2664
0
0
0
0

3775
21. W.t/ D e3t ; x.t/ D

�
2c1et C c2e2t

�3c1et � c2e2t

�

22. W.t/ D �5et ; x.t/ D
�

c1e3t C 2c2e�2t

3c1e3t C c2e�2t

�
23. W.t/ � 4; x.t/ D

�
c1e2t C c2e�2t

c1e2t C 5c2e�2t

�
24. W.t/ D �e5t ; x.t/ D

�
c1e3t C c2e2t

�c1e3t � 2c2e2t

�
25. W.t/ D 7e�3t ; x.t/ D

�
3c1e2t C c2e�5t

2c1e2t C 3c2e�5t

�

26. W.t/ D 16e9t ; x.t/ D
24 2c1et � 2c2e3t C 2c3e5t

2c1et � 2c3e5t

c1et C c2e3t C c3e5t

35
27. W.t/ � 3; x.t/ D

24 c1e2t C c2e�t

c1e2t C c3e�t

c1e2t � .c2 C c3/e�t

35
28. W.t/ D �84e�t ; x.t/ D

24 c1 C 2c2e3t � c3e�4t

6c1 C 3c2e3t C 2c3e�4t

�13c1 � 2c2e3t C c3e�4t

35
29. W.t/ D e2t ; x.t/ D

24 3c1e�2t C c2et C c3e3t

�2c1e�2t � c2et � c3e3t

2c1e�2t C c2et

35

30. W.t/ D 1; x.t/ D

2664
c1e�t C c4et

c3et

c2e�t C 3c4et

c1e�t � 2c3et

3775
31. x D 2x1 � x2

32. x D 7x1 � 2x2

33. x D 15x1 � 4x2

34. x D 8
7

.3x1 � 2x2/

35. x D x1 C 2x2 C x3

36. x D 7x1 C 3x2 C 5x3

37. x D 3x1 � 3x2 � 5x3

38. x D �2x1 C 15x2 � 4x3

39. x D 3x1 C 7x2 C x3 � 2x4

40. x D 13x1 C 41x2 C 3x3 � 12x4

41. (a) x2 D tx1, so neither is a constant multiple of the other.
(b) W.x1; x2/ � 0, whereas Theorem 2 would imply that
W ¤ 0 if x1 and x2 were independent solutions of a system of
the indicated form.

Section 5.2

1. x1.t/ D c1e�t C c2e3t , x2.t/ D �c1e�t C c2e3t

0 1 2 3 4 5

0
1
2
3
4
5

–1
–2
–3
–4
–5

–1–2–3–4–5
x1

x 2

2. x1.t/ D c1e�t C 3c2e4t , x2.t/ D �c1e�t C 2c2e4t

3. General solution x1.t/ D c1e�t C 4c2e6t ,
x2.t/ D �c1e�t C 3c2e6t

Particular solution x1.t/ D 1
7

.�e�t C 8e6t /,
x2.t/ D 1

7
.e�t C 6e6t /.
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4. x1.t/ D c1e�2t C c2e5t , x2.t/ D �6c1e�2t C c2e5t

0 1 2 3 4 5

0
1
2
3
4
5

–1
–2
–3
–4
–5

–1–2–3–4–5
x1

x 2

5. x1.t/ D c1e�t C 7c2e5t , x2.t/ D c1e�t C c2e5t

0 1 2 3 4 5

0
1
2
3
4
5

–1
–2
–3
–4
–5

–1–2–3–4–5
x1

x 2

6. General solution x1.t/ D 5c1e3t C c2e4t ,
x2.t/ D �6c1e3t � c2e4t

Particular solution x1.t/ D �5e3t C 6e4t ,
x2.t/ D 6e3t � 6e4t .

0 1 2 3 4 5

0
1

2
3
4
5

–1
–2
–3
–4
–5

–1–2–3–4–5
x1

x 2

7. x1.t/ D c1et C 2c2e�9t , x2.t/ D c1et � 3c2e�9t
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8. x1.t/ D 5c1 cos 2t C 5c2 sin 2t ,
x2.t/ D .c1 � 2c2/ cos 2t C .2c1 C c2/ sin 2t
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9. General solution x1.t/ D 5c1 cos 4t C 5c2 sin 4t ,
x2.t/ D c1.2 cos 4t C 4 sin 4t/ C c2.2 sin 4t � 4 cos 4t/.
Particular solution x1.t/ D 2 cos 4t � 11

4
sin 4t ,

x2.t/ D 3 cos 4t C 1
2

sin 4t

10. x1.t/ D �2c1 cos 3t � 2c2 sin 3t ,
x2.t/ D .3c1 C 3c2/ cos 3t C .3c2 � 3c1/ sin 3t

11. General solution x1.t/ D et .c1 cos 2t � c2 sin 2t/,
x2.t/ D et .c1 sin 2t C c2 cos 2t/
Particular solution x1.t/ D �4et sin 2t , x2.t/ D 4et cos 2t
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12. x1.t/ D e2t .�5c1 cos 2t � 5c2 sin 2t/,
x2.t/ D e2t Œ.c1 C 2c2/ cos 2t C .�2c1 C c2/ sin 2t�

13. x1.t/ D 3e2t .c1 cos 3t � c2 sin 3t/,
x2.t/ D e2t Œ.c1 C c2/ cos 3t C .c1 � c2/ sin 3t�

14. x1.t/ D e3t .c1 cos 4t C c2 sin 4t/,
x2.t/ D e3t .c1 sin 4t � c2 cos 4t/
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15. x1.t/ D 5e5t .c1 cos 4t � c2 sin 4t/,
x2.t/ D e5t Œ.2c1 C 4c2/ cos 4t C .4c1 � 2c2/ sin 4t�

16. x1.t/ D c1e�10t C 2c2e�100t ,
x2.t/ D 2c1e�10t � 5c2e�100t
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17. x1.t/ D c1e9t C c2e6t C c3,
x2.t/ D c1e9t � 2c2e6t ,
x3.t/ D c1e9t C c2e6t � c3

18. x1.t/ D c1e9t C 4c3,
x2.t/ D 2c1e9t C c2e6t � c3,
x3.t/ D 2c1e9t � c2e6t � c3

19. x1.t/ D c1e6t C c2e3t C c3e3t ,
x2.t/ D c1e6t � 2c2e3t ,
x3.t/ D c1e6t C c2e3t � c3e3t

20. x1.t/ D c1e9t C c2e6t C c3e2t ,
x2.t/ D c1e9t � 2c2e6t ,
x3.t/ D c1e9t C c2e6t � c3e2t

21. x1.t/ D 6c1 C 3c2et C 2c3e�t ,
x2.t/ D 2c1 C c2et C c3e�t ,
x3.t/ D 5c1 C 2c2et C 2c3e�t

22. x1.t/ D c2et C c3e3t ,
x2.t/ D c1e�2t � c2et � c3e3t ,
x3.t/ D �c1e�2t C c3e3t

23. x1.t/ D c1e2t C c3e3t ,
x2.t/ D �c1e2t C c2e�2t � c3e3t ,
x3.t/ D �c2e�2t C c3e3t

24. x1.t/ D c1et C c2.2 cos 2t � sin 2t/ C c3.cos 2t C 2 sin 2t/
x2.t/ D �c1et � c2.3 cos 2t C sin 2t/ C c3.cos 2t � 3 sin 2t/
x3.t/ D c2.3 cos 2t C sin 2t/ C c3.3 sin 2t � cos 2t/

25. x1.t/ D c1 C e2t Œ.c2 C c3/ cos 3t C .�c2 C c3/ sin 3t�,
x2.t/ D �c1 C 2e2t .�c2 cos 3t � c3 sin 3t/,
x3.t/ D 2e2t .c2 cos 3t C c3 sin 3t/

26. x1.t/ D 4e3t � e�t .4 cos t � sin t/,
x2.t/ D 9e3t � e�t .9 cos t C 2 sin t/,
x3.t/ D 17e�t cos t

27. x1.t/ D 15e�0:2t , x2.t/ D 15.e�0:2t � e�0:4t /.
The maximum amount ever in tank 2 is x2.5 ln 2/ D 3:75 lb.
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28. x1.t/ D 15e�0:4t , x2.t/ D 40.�e�0:4t C e�0:25t /.
The maximum amount ever in tank 2 is about 6.85 lb.
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29. x1.t/ D 10 C 5e�0:6t , x2.t/ D 5 � 5e�0:6t
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30. x1.t/ D 5c1 C c2e�0:65t , x2.t/ D 8c1 � c2e�0:65t .
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31. x1.t/ D 27e�t ,
x2.t/ D 27e�t � 27e�2t ,
x3.t/ D 27e�t � 54e�2t C 27e�3t .
The maximum amount of salt ever in tank 3 is x3.ln 3/ D 4
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pounds.
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32. x1.t/ D 45e�3t ,
x2.t/ D �135e�3t C 135e�2t ,
x3.t/ D 135e�3t � 270e�2t C 135e�t .
The maximum amount of salt ever in tank 3 is x3.ln 3/ D 20
pounds.

0 5
0
5

10

15

20

25

30

35

40

45

t

x

x1

x2 x3

33. x1.t/ D 45e�4t ,
x2.t/ D 90e�4t � 90e�6t ,
x3.t/ D �270e�4t C 135e�6t C 135e�2t .
The maximum amount of salt ever in tank 3 is x3

�
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ln 3
	 D 20
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34. x1.t/ D 40e�3t ,
x2.t/ D 60e�3t � 60e�5t ,
x3.t/ D �150e�3t C 75e�5t C 75e�t .
The maximum amount of salt ever in tank 3 is

x3. 1
2

ln 5/ � 21:4663 pounds.
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35. x1.t/ D 10 � 1
7

�
55e�18t � 216e�11t

	
,

x2.t/ D 3 � 1
7

�
165e�18t � 144e�11t

	
,

x3.t/ D 20 C 1
7

�
220e�18t � 360e�11t

	
.

The limiting amounts of salt in tanks 1, 2, and 3 are 10 lb, 3 lb,
and 20 lb.
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36. x1.t/ D 4 C e�3t=5Œ14 cos.3t=10/ � 2 sin.3t=10/�,
x2.t/ D 10 � e�3t=5Œ10 cos.3t=10/ � 10 sin.3t=10/�,
x3.t/ D 4 � e�3t=5Œ4 cos.3t=10/ C 8 sin.3t=10/�.
The limiting amounts of salt in tanks 1, 2, and 3 are 4 lb, 10 lb,
and 4 lb.
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37. x1.t/ D 30 C e�3t Œ25 cos.t
p

2/ C 10
p

2 sin.t
p

2/�,
x2.t/ D 10 � e�3t Œ10 cos.t

p
2 / � 25

2

p
2 sin.t

p
2/�,

x3.t/ D 15 � e�3t Œ15 cos.t
p

2 / C 45
2

p
2 sin.t

p
2/�.

The limiting amounts of salt in tanks 1, 2, and 3 are 30 lb, 10 lb,
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and 15 lb.
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38. x1.t/ D c1et ,
x2.t/ D �2c1et C c2e2t ,
x3.t/ D 3c1et � 3c2e2t C c3e3t ,
x4.t/ D �4c1et C 6c2e2t � 4c3e3t C c4e4t

39. x1.t/ D 3c1et C c4e�2t ,
x2.t/ D �2c1et C c3e2t � c4e�2t ,
x3.t/ D 4c1et C c2e�t ,
x4.t/ D c1et

40. x1.t/ D c1e2t ,
x2.t/ D �3c1e2t C 3c2e�2t � c4e�5t ,
x3.t/ D c3e5t ,
x4.t/ D �c2e�2t � 3c3e5t

41. x1.t/ D 2e10t C e15t D x4.t/,
x2.t/ D �e10t C 2e15t D x3.t/

42. x.t/ D c1

24 3
�1

2

35C c2

24 1
1
1

35 e2t C c3

24 2
�3

1

35 e5t

43. x.t/ D c1

24 3
�1

5

35 e�2t C c2

24 1
1
1

35 e4t C c3

24 1
�1

3

35 e8t

44. x.t/ D c1

24 3
�2

2

35 e�3t C c2

24 7
1
5

35 e6t C c3

24 5
�3

3

35 e12t

45. x.t/ D

c1

2664
1
1
1

�1

3775 e�3t C c2

2664
1
2

�1
1

3775C c3

2664
2
1
1
1

3775 e3t C c4

2664
1

�1
2

�1

3775 e6t

46. x.t/ D c1

2664
3
2

�1
1

3775 e�4t C c2

2664
1
2
2

�1

3775 e2t C c3

2664
1
1

�1
1

3775 e4t C

c4

2664
3

�2
3

�3

3775 e8t

47. x.t/ D c1

2664
2
2
1

�1

3775 e�3t C c2

2664
1
2

�1
1

3775 e3t C c3

2664
2
1
1
1

3775 e6t C

c4

2664
1

�1
2

�1

3775 e9t

48. x.t/ D c1

2664
1
2

�1
2

3775 e16t C c2

2664
2
5
1

�1

3775 e32t C

c3

2664
3

�1
1
2

3775 e48t C c4

2664
1
1
2

�3

3775 e64t

49. x.t/ D c1

26664
1
0
3
1
1

37775 e�3t C c2

26664
0
3
0

�1
1

37775C c3

26664
1
7
1
1
1

37775 e3t C

c4

26664
0
1
0
1
1

37775 e6t C c5

26664
2
0
5
2
1

37775 e9t

50. x.t/ D c1

2666664
0
1
1
1
0
1

3777775 e�7t C c2

2666664
1
0
0
0
1
1

3777775 e�4t C c3

2666664
0
1
0
1
0
1

3777775 e3t C

c4

2666664
0
0
1
0
1
0

3777775 e5t C c5

2666664
1
1
0
0
0
1

3777775 e9t C c6

2666664
0
0
1

�1
�1

0

3777775 e11t

Section 5.3

Note that phase portraits for Problems 1–16 are found in the answers
for Section 5.2.

1. Saddle point (real eigenvalues of opposite sign)
2. Saddle point (real eigenvalues of opposite sign)
3. Saddle point (real eigenvalues of opposite sign)
4. Saddle point (real eigenvalues of opposite sign)
5. Saddle point (real eigenvalues of opposite sign)
6. Improper nodal source (distinct positive real eigenvalues)
7. Saddle point (real eigenvalues of opposite sign)
8. Center (pure imaginary eigenvalues)
9. Center (pure imaginary eigenvalues)

10. Center (pure imaginary eigenvalues)
11. Spiral source (complex conjugate eigenvalues with positive real

part)
12. Spiral source (complex conjugate eigenvalues with positive real

part)
13. Spiral source (complex conjugate eigenvalues with positive real

part)
14. Spiral source (complex conjugate eigenvalues with positive real

part)
15. Spiral source (complex conjugate eigenvalues with positive real

part)
16. Improper nodal sink (distinct negative real eigenvalues)
17. Center; pure imaginary eigenvalues
18. Improper nodal source; distinct positive real eigenvalues;

v1 D 

0 1

�T
, v2 D 
 �1 1

�T
19. Saddle point; real eigenvalues of opposite sign; v1 D 


0 1
�T

corresponds to the negative eigenvalue and v2 D 
 �1 1
�T

to
the positive one.

20. Spiral source; complex conjugate eigenvalues with positive real
part

21. Proper nodal source; repeated positive real eigenvalue with
linearly independent eigenvectors

22. Parallel lines; one zero and one negative real eigenvalue
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23. Spiral sink; complex conjugate eigenvalues with negative real
part

24. Improper nodal sink; distinct negative real eigenvalues;

v1 D 

1 1

�T
, v2 D 
 �1 4

�T
25. Saddle point; real eigenvalues of opposite sign; v1 D 


1 1
�T

corresponds to the positive eigenvalue and v2 D 

4 �1

�T
to

the negative one.
26. Center; pure imaginary eigenvalues
27. Improper nodal source; distinct positive real eigenvalues;

v1 D 

2 3

�T
, v2 D 


2 �1
�T

.
28. Spiral sink; complex conjugate eigenvalues with negative real

part

Section 5.4

1. The natural frequencies are !0 D 0 and !1 D 2. In the
degenerate natural mode with “frequency” !0 D 0 the two
masses move linearly with x1.t/ D x2.t/ D a0 C b0t . At
frequency !1 D 2 they oscillate in opposite directions with
equal amplitudes.

2. The natural frequencies are !1 D 1 and !2 D 3. In the natural
mode with frequency !1, the two masses m1 and m2 move in
the same direction with equal amplitudes of oscillation. At
frequency !2 they move in opposite directions with equal
amplitudes.

3. The natural frequencies are !1 D 1 and !2 D 2. In the natural
mode with frequency !1, the two masses m1 and m2 move in
the same direction with equal amplitudes of oscillation. In the
natural mode with frequency !2 they move in opposite directions
with the amplitude of oscillation of m1 twice that of m2.

4. The natural frequencies are !1 D 1 and !2 D p
5. In the natural

mode with frequency !1, the two masses m1 and m2 move in
the same direction with equal amplitudes of oscillation. At
frequency !2 they move in opposite directions with equal
amplitudes.

5. The natural frequencies are !1 D p
2 and !2 D 2. In the natural

mode with frequency !1, the two masses m1 and m2 move in
the same direction with equal amplitudes of oscillation. At
frequency !2 they move in opposite directions with equal
amplitudes.

6. The natural frequencies are !1 D p
2 and !2 D p

8. In the
natural mode with frequency !1, the two masses m1 and m2

move in the same direction with equal amplitudes of oscillation.
In the natural mode with frequency !2 they move in opposite
directions with the amplitude of oscillation of m1 twice that of
m2.

7. The natural frequencies are !1 D 2 and !2 D 4. In the natural
mode with frequency !1, the two masses m1 and m2 move in
the same direction with equal amplitudes of oscillation. At
frequency !2 they move in opposite directions with equal
amplitudes.

8. x1.t/ D 2 cos t C 3 cos 3t � 5 cos 5t ,
x2.t/ D 2 cos t � 3 cos 3t C cos 5t .
We have a superposition of three oscillations, in which the two
masses move (1) in the same direction with frequency !1 D 1
and equal amplitudes; (2) in opposite directions with frequency
!2 D 3 and equal amplitudes; (3) in opposite directions with
frequency !3 D 5 and with the amplitude of motion of m1 being
5 times that of m2.

9. x1.t/ D 5 cos t � 8 cos 2t C 3 cos 3t ,
x2.t/ D 5 cos t C 4 cos 2t � 9 cos 3t .
We have a superposition of three oscillations, in which the two
masses move (1) in the same direction with frequency !1 D 1
and equal amplitudes; (2) in opposite directions with frequency

!2 D 2 and with the amplitude of motion of m1 being twice that
of m2; (3) in opposite directions with frequency !3 D 3 and
with the amplitude of motion of m2 being 3 times that of m1.

10. x1.t/ D �15 cos 2t C cos 4t C 14 cos t ,
x2.t/ D �15 cos 2t � cos 4t C 16 cos t .
We have a superposition of three oscillations, in which the two
masses move (1) in the same direction with frequency !1 D 1
and with the amplitude of motion of m2 being 8=7 times that of
m1; (2) in the same direction with frequency !2 D 2 and equal
amplitudes; (3) in opposite directions with frequency !3 D 4
and equal amplitudes.

11. (a) The natural frequencies are !1 D 6 and !2 D 8. In mode 1
the two masses oscillate in the same direction with frequency
!1 D 6 and with the amplitude of motion of m1 being twice that
of m2. In mode 2 the two masses oscillate in opposite directions
with frequency !2 D 8 and with the amplitude of motion of m2

being 3 times that of m1.
(b) x.t/ D 2 sin 6t C 19 cos 7t , y.t/ D sin 6t C 3 cos 7t
We have a superposition of (only two) oscillations, in which the
two masses move (1) in the same direction with frequency
!1 D 6 and with the amplitude of motion of m1 being twice that
of m2; (2) in the same direction with frequency !3 D 7 and with
the amplitude of motion of m1 being 19=3 times that of m2.

12. The system’s three natural modes of oscillation have (1) natural
frequency !1 D p

2 with amplitude ratios 1: 0: �1; (2) natural

frequency !2 D
q

2 C p
2 with amplitude ratios 1: �p

2 : 1;

(3) natural frequency !3 D
q

2 � p
2 with amplitude ratios

1:
p

2 : 1.

13. The system’s three natural modes of oscillation have (1) natural
frequency !1 D 2 with amplitude ratios 1: 0: �1; (2) natural

frequency !2 D
q

4 C 2
p

2 with amplitude ratios 1: �p
2 : 1;

(3) natural frequency !3 D
q

4 � 2
p

2 with amplitude ratios 1:p
2: 1.

15. x1.t/ D 2
3

cos 5t � 2 cos 5
p

3 t C 4
3

cos 10t ,
x2.t/ D 4

3
cos 5t C 4 cos 5

p
3 t C 16

3
cos 10t .

We have a superposition of two oscillations with the natural
frequencies !1 D 5 and !2 D 5

p
3 and a forced oscillation

with frequency ! D 10. In each of the two natural oscillations
the amplitude of motion of m2 is twice that of m1, while in the
forced oscillation the amplitude of motion of m2 is four times
that of m1.

20. x0

1
.t/ D �v0, x0

2
.t/ D 0, x0

1
.t/ D v0 for t > �=2

21. x0

1
.t/ D �v0, x0

2
.t/ D 0, x0

1
.t/ D 2v0 for t > �=2

22. x0

1
.t/ D �2v0, x0

2
.t/ D v0, x0

1
.t/ D v0 for t > �=2

23. x0

1
.t/ D 2v0, x0

2
.t/ D 2v0, x0

1
.t/ D 3v0 for t > �=2

24. (a) !1 � 1:0293 Hz; !2 � 1:7971 Hz.
(b) v1 � 28 mi=h; v2 � 49 mi=h

27. !1 D 2
p

10, v1 � 40:26 (ft=s (about 27 mi=h),
!2 D 5

p
5, v2 � 71:18 ft=s (about 49 mi=h)

28. !1 � 6:1311, v1 � 39:03 ft/s (about 27 mi/h)
!2 � 10:3155, v2 � 65:67 ft/s (about 45 mi/h)

29. !1 � 5:0424, v1 � 32:10 ft=s (about 22 mi=h),
!2 � 9:9158, v2 � 63:13 ft=s (about 43 mi=h)

Section 5.5

1. Repeated eigenvalue � D �3, eigenvector v D 

1 �1

�T
;

x1.t/ D .c1 C c2 C c2t/e�3t , x2.t/ D .�c1 � c2t/e�3t
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2. Repeated eigenvalue � D 2, single eigenvector v D 

1 1

�T
;

x1.t/ D .c1 C c2 C c2t/e2t , x2.t/ D .c1 C c2t/e2t
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x1
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–1–2–3–4–5

3. Repeated eigenvalue � D 3, eigenvector v D 
 �2 2
�T

;
x1.t/ D .�2c1 C c2 � 2c2t/e3t , x2.t/ D .2c1 C 2c2t/e3t

4. Repeated eigenvalue � D 4, single eigenvector

v D 
 �1 1
�T

; x1.t/ D .�c1 C c2 � c2t/e4t ,
x2.t/ D .c1 C c2t/e4t

5. Repeated eigenvalue � D 5, eigenvector v D 

2 �4

�T
;

x1.t/ D .2c1 C c2 C 2c2t/e5t , x2.t/ D .�4c1 � 4c2t/e5t

0 1 2 3 4 5

0
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5

–1
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x1

x 2

–1–2–3–4–5

6. Repeated eigenvalue � D 5, single eigenvector

v D 
 �4 4
�T

; x1.t/ D .�4c1 C c2 � 4c2t/e5t ,
x2.t/ D .4c1 C 4c2t/e5t

0 1 2 3 4 5

0
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2
3
4
5

–1
–2
–3
–4
–5

x1

x 2

–1–2–3–4–5

7. Eigenvalues � D 2, 2, 9 with three linearly independent
eigenvectors; x1.t/ D c1e2t C c2e2t , x2.t/ D c1e2t C c3e9t ,
x3.t/ D c2e2t

8. Eigenvalues � D 7, 13, 13 with three linearly independent
eigenvectors; x1.t/ D 2c1e7t � c3e13t ,
x2.t/ D �3c1e7t C c3e13t , x3.t/ D c1e7t C c2e13t

9. Eigenvalues � D 5, 5, 9 with three linearly independent
eigenvectors; x1.t/ D c1e5t C 7c2e5t C 3c3e9t ,
x2.t/ D 2c1e5t , x3.t/ D 2c2e5t C c3e9t

10. Eigenvalues � D 3, 3, 7 with three linearly independent
eigenvectors; x1.t/ D 5c1e3t � 3c2e3t C 2c3e7t ,
x2.t/ D 2c1e3t C c3e7t , x3.t/ D c2e3t

11. Triple eigenvalue � D �1 of defect 2;
x1.t/ D .�2c2 C c3 � 2c3t/e�t ,
x2.t/ D .c1 � c2 C c2t � c3t C 1

2
c3t2/e�t ,

x3.t/ D .c2 C c3t/e�t

12. Triple eigenvalue � D �1 of defect 2;
x1.t/ D e�t .c1 C c3 C c2t C 1

2
c3t2/

x2.t/ D e�t .c1 C c2t C 1
2

c3t2/,
x3.t/ D e�t .c2 C c3t/

13. Triple eigenvalue � D �1 of defect 2;
x1.t/ D .c1 C c2t C 1

2
c3t2/e�t ,

x2.t/ D .2c2 C c3 C 2c3t/e�t ,
x3.t/ D .c2 C c2t/e�t

14. Triple eigenvalue � D �1 of defect 2;
x1.t/ D e�t .5c1 C c2 C c3 C 5c2t C c3t C 5

2
c3t2/,

x2.t/ D e�t .�25c1 � 5c2 � 25c2t � 5c3t � 25
2

c3t2/,
x3.t/ D e�t .�5c1 C 4c2 � 5c2t C 4c3t � 5

2
c3t2/

15. Triple eigenvalue � D 1 of defect 1;
x1.t/ D .3c1 C c3 � 3c3t/et ,
x2.t/ D .�c1 C c3t/et , x3.t/ D .c2 C c3t/et

16. Triple eigenvalue � D 1 of defect 1;
x1.t/ D et .3c1 C 3c2 C c3/
x2.t/ D et .�2c1 � 2c3t/,
x3.t/ D et .�2c2 C 2c3t/

17. Triple eigenvalue � D 1 of defect 1;
x1.t/ D .2c1 C c2/et , x2.t/ D .�3c2 C c3 C 6c3t/et ,
x3.t/ D �9.c1 C c3t/et

18. Triple eigenvalue � D 1 of defect 1;
x1.t/ D et .�c1 � 2c2 C c3/,
x2.t/ D et .c2 C c3t/,
x3.t/ D et .c1 � 2c3t/

19. Double eigenvalues � D �1 and � D 1, each with defect 1;
x1.t/ D c1e�t C c4et ,
x2.t/ D c3et ,
x3.t/ D c2e�t C 3c4et ,
x4.t/ D c1e�t � 2c3et
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20. Eigenvalue � D 2 with multiplicity 4 and defect 3;
x1.t/ D .c1 C c3 C c2t C c4t C 1

2
c3t2 C 1

6
c4t3/e2t ,

x2.t/ D .c2 C c3t C 1
2

c4t2/e2t ,
x3.t/ D .c3 C c4t/e2t , x4.t/ D c4e2t

21. Eigenvalue � D 1 with multiplicity 4 and defect 2;
x1.t/ D .�2c2 C c3 � 2c3t/et , x2.t/ D .c2 C c3t/et ,
x3.t/ D .c2 C c4 C c3t/et , x4.t/ D .c1 C c2t C 1

2
c3t2/et

22. Eigenvalue � D 1 with multiplicity 4 and defect 2;
x1.t/ D .c1 C 3c2 C c4 C c2t C 3c3t C 1

2
c3t2/et ,

x2.t/ D �.2c2 � c3 C 2c3t/et , x3.t/ D .c2 C c3t/et ,
x4.t/ D �.2c1 C 6c2 C 2c2t C 6c3t C c3t2/et

23. x.t/ D c1v1e�t C .c2v2 C c3v3/e3t with
v1 D 


1 �1 2
�T

, v2 D 

4 0 9

�T
,

v3 D 

0 2 1

�T
24. x.t/ D c1v1e�t C .c2v2 C c3v3/e3t with

v1 D 

5 3 �3

�T
, v2 D 


4 0 �1
�T

,

v3 D 

2 �1 0

�T
25. x.t/ D 


c1v1 C c2.v1t C v2/ C c3

�
1
2

v1t2 C v2t C v3

	�
e2t

with v1 D 
 �1 0 �1
�T

, v2 D 
 �4 �1 0
�T

, and

v3 D 

1 0 0

�T
26. x.t/ D 


c1v1 C c2.v1t C v2/ C c3

�
1
2

v1t2 C v2t C v3

	�
e3t

with v1 D 

0 2 2

�T
, v3 D 


2 1 �3
�T

, and

v3 D 

1 0 0

�T
27. x.t/ D Œc1v1 C c2.v1t C v2/ C c3v3�e2t with

v1 D 
 �5 3 8
�T

, v2 D 

1 0 0

�T
,

v3 D 

1 1 0

�T
28. x.t/ D 


c1v1 C c2.v1t C v2/ C c3

�
1
2

v1t2 C v2t C v3

	�
e2t

with v1 D 

119 �289 0

�T
, v2 D 
 �17 34 17

�T
,

and v3 D 

1 0 0

�T
29. x.t/ D Œc1v1 C c2.v1t C v2/�e�t C Œc3v3 C c4.v3t C v4/�e2t

with v1 D 

1 �3 �1 �2

�T
, v2 D 


0 1 0 0
�T

,

v3 D 

0 �1 1 0

�T
, v4 D 


0 0 2 1
�T

30. x.t/ D Œc1v1 C c2.v1t C v2/�e�t C Œc3v3 C c4.v3t C v4/�e2t ,

with v1 D 

0 1 �1 �3

�T
, v2 D 


0 0 1 2
�T

,

v3 D 
 �1 0 0 0
�T

, v4 D 

0 0 3 5

�T
31. x.t/ D Œc1v1 C c2.v1t C v2/

C c3

�
1
2

v1t2 C v2t C v3

	C c4v4

�
et with

v1 D 

42 7 �21 �42

�T
,

v2 D 

34 22 �10 �27

�T
, v3 D 
 �1 0 0 0

�T
,

v4 D 

0 1 3 0

�T
32. x.t/ D .c1v1 C c2v2/e2t C .c3v3 C c4v4 C c5v5/e3t with

v1 D 

8 0 �3 1 0

�T
, v2 D 


1 0 0 0 3
�T

,

v3 D 

3 �2 �1 0 0

�T
,

v4 D 

2 �2 0 �3 0

�T
,

v5 D 

1 �1 0 0 3

�T
33. x1.t/ D 


cos 4t sin 4t 0 0
�T

e3t ,

x2.t/ D 
 � sin 4t cos 4t 0 0
�T

e3t ,

x3.t/ D 

t cos 4t t sin 4t cos 4t sin 4t

�T
e3t ,

x4.t/ D 
 �t sin 4t t cos 4t � sin 4t cos 4t
�T

e3t

34. x1.t/ D

2664
sin 3t

3 cos 3t � 3 sin 3t
0

sin 3t

3775 e2t ,

x2.t/ D

2664
� cos 3t

3 sin 3t C 3 cos 3t
0

� cos 3t

3775 e2t ,

x3.t/ D

2664
3 cos 3t C t sin 3t

.3t � 10/ cos 3t � .3t C 9/ sin 3t
sin 3t

t sin 3t

3775 e2t ,

x4.t/ D

2664
�t cos 3t C 3 sin 3t

.3t C 9/ cos 3t C .3t � 10/ sin 3t
� cos 3t
�t cos 3t

3775 e2t

35. x1.t/ D x2.t/ D v0.1 � e�t /;
lim

t!1

x1.t/ D lim
t!1

x2.t/ D v0

36. x1.t/ D v0.2 � 2e�t � te�t /,
x2.t/ D v0.2 � 2e�t � te�t � 1

2
t2e�t /;

lim
t!1

x1.t/ D lim
t!1

x2.t/ D 2v0

Section 5.6

1. ˆ.t/ D
�

et e3t

�et e3t

�
, x.t/ D 1

2

�
5et C e3t

�5et C e3t

�
2. ˆ.t/ D

�
1 e4t

2 �2e4t

�
, x.t/ D 1

4

�
3 C 5e4t

6 � 10e4t

�
3. ˆ.t/ D

�
5 cos 4t �5 sin 4t

2 cos 4t C 4 sin 4t 4 cos 4t � 2 sin 4t

�
,

x.t/ D 1
4

� �5 sin 4t
4 cos 4t � 2 sin 4t

�
4. ˆ.t/ D e2t

�
1 1 C t
1 t

�
, x.t/ D e2t

�
1 C t

t

�
5. ˆ.t/ D

�
2 cos 3t �2 sin 3t

�3 cos 3t C 3 sin 3t 3 cos 3t C 3 sin 3t

�
,

x.t/ D 1
3

�
3 cos 3t � sin 3t

�3 cos 3t C 6 sin 3t

�
6. ˆ.t/ D e5t

�
cos 4t � 2 sin 4t 2 cos 4t C 2 sin 4t

2 cos 4t 2 sin 4t

�
,

x.t/ D 2e5t

�
cos 4t C sin 4t

sin 4t

�

7. ˆ.t/ D
24 6 3et 2e�t

2 et e�t

5 2et 2e�t

35 ;

x.t/ D
24 �12 C 12et C 2e�t

�4 C 4et C e�t

�10 C 8et C 2e�t

35
8. ˆ.t/ D

24 0 et e3t

e�2t �et �e3t

�e�2t 0 e3t

35, x.t/ D
24 et

�et C e�2t

�e�2t

35
9. eAt D

�
2e3t � et �2e3t C 2et

e3t � et �e3t C 2et

�
10. eAt D

� �2 C 3e2t 3 � 3e2t

�2 C 2e2t 3 � 2e2t

�
11. eAt D

�
3e3t � 2e2t �3e3t C 3e2t

2e3t � 2e2t �2e3t C 3e2t

�
12. eAt D

� �3et C 4e2t 4et � 4e2t

�3et C 3e2t 4et � 3e2t

�
13. eAt D

�
4e3t � 3et �4e3t C 4et

3e3t � 3et �3e3t C 4et

�
14. eAt D

� �8et C 9e2t 6et � 6e2t

�12et C 12e2t 9et � 8e2t

�
15. eAt D

�
5e2t � 4et �10e2t C 10et

2e2t � 2et �4e2t C 5et

�
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16. eAt D
� �9et C 10e2t 15et � 15e2t

�6et C 6e2t 10et � 9e2t

�
17. eAt D 1

2

�
e4t C e2t e4t � e2t

e4t � e2t e4t C e2t

�
18. eAt D 1

2

�
e2t C e6t �e2t C e6t

�e2t C e6t e2t C e6t

�
19. eAt D 1

5

�
4e10t C e5t 2e10t � 2e5t

2e10t � 2e5t e10t C 4e5t

�
20. eAt D 1

5

�
e5t C 4e15t �2e5t C 2e15t

�2e5t C 2e15t 4e5t C e15t

�
21. eAt D

�
1 C t �t

t 1 � t

�
22. eAt D

�
1 C 6t 4t

�9t 1 � 6t

�

23. eAt D
24 1 C t �t �t � t2

t 1 � t t � t2

0 0 1

35
24. eAt D

24 1 C 3t 0 �3t

5t C 18t2 1 7t � 18t2

3t 0 1 � 3t

35
25. eAt D

�
e2t 5te2t

0 e2t

�
, x.t/ D eAt

�
4
7

�
26. eAt D

�
e7t 0

11te7t e7t

�
, x.t/ D eAt

�
5

�10

�

27. eAt D
24 et 2tet .3t C 2t2/et

0 et 2tet

0 0 et

35, x.t/ D eAt

24 4
5
6

35
28. eAt D

24 e5t 0 0

10te5t e5t 0

.20t C 150t2/e5t 30te5t e5t

35,

x.t/ D eAt

24 40
50
60

35

29. eAt D

2664
1 2t 3t C 6t2 4t C 6t2 C 4t3

0 1 6t 3t C 6t2

0 0 1 2t
0 0 0 1

3775 et ,

x.t/ D eAt

2664
1
1
1
1

3775

30. eAt D e3t

2664
1 0 0 0
6t 1 0 0

9t C 18t2 6t 1 0

12t C 54t2 C 36t3 9t C 18t2 6t 1

3775,

x.t/ D eAt

2664
1
1
1
1

3775
33. x.t/ D

�
c1 cosh t C c2 sinh t
c1 sinh t C c2 cosh t

�
35. eAt D

�
e3t 4te3t

0 e3t

�

36. eAt D et

24 1 2t 3t C 4t2

0 1 4t
0 0 1

35
37. eAt D

24 e2t 3e2t � 3et 13e2t � .13 C 9t/et

0 et 3tet

0 0 et

35

38. eAt D
24 e5t 4e10t � 4e5t 16e10t � .16 C 50t/e5t

0 e10t 4e10t � 4e5t

0 0 e5t

35
39. eAt D2664

et 3tet 12e2t � .12 C 9t/et .51 C 18t/et � .51 � 36t/e2t

0 et 3e2t � 3et 6et � .6 � 9t/e2t

0 0 e2t 4e3t � 4e2t

0 0 0 e2t

3775
40. eAt D2664

e2t 4te2t .4t C 8t2/e2t 100e3t � .100 C 96t C 32t2/e2t

0 e2t 4te2t 20e3t � .20 C 16t/e2t

0 0 e2t 4e3t � 4e2t

0 0 0 e3t

3775
Section 5.7

1. x.t/ D 7
3

, y.t/ D � 8
3

2. x.t/ D 1
8

.1 C 12t/, y.t/ D � 1
4

.5 C 4t/

3. x.t/ D 1
756

.864e�t C 4e6t � 868 C 840t � 504t2/,
y.t/ D 1

756
.�864e�t C 3e6t C 861 � 882t C 378t2/

4. x.t/ D 1
84

.99e5t � 8e�2t � 7et /,
y.t/ D 1

84
.99e5t C 48e�2t � 63et /

5. x.t/ D 1
3

.�12 � e�t � 7te�t /, y.t/ D 1
3

.�6 � 7te�t /

6. x.t/ D � 1
256

.91 C 16t/et , y.t/ D 1
32

.25 C 16t/et

7. x.t/ D 1
410

.369et C 166e�9t � 125 cos t � 105 sin t/,
y.t/ D 1

410
.369et � 249e�9t � 120 cos t � 150 sin t/

8. x.t/ D 1
3

.17 cos t C 2 sin t/, y.t/ D 1
3

.3 cos t C 5 sin t/

9. x.t/ D 1
4

.sin 2t C 2t cos 2t C t sin 2t/, y.t/ D 1
4

t sin 2t

10. x.t/ D 1
13

et .4 cos t � 6 sin t/, y.t/ D 1
13

et .3 cos t C 2 sin t/

11. x.t/ D 1
2

.1 � 4t C e4t /, y.t/ D 1
4

.�5 C 4t C e4t /

12. x.t/ D t2, y.t/ D �t2

13. x.t/ D 1
2

.1 C 5t/et , y.t/ D � 5
2

tet

14. x.t/ D 1
8

.�2 C 4t � e4t C 2te4t /, y.t/ D 1
2

t.�2 C e4t /

15. (a) x1.t/ D 200.1 � e�t=10/,
x2.t/ D 400.1 C e�t=10 � 2e�t=20/
(b) x1.t/ ! 200 and x2.t/ ! 400 as t ! C1
(c) Tank 1: about 6 min 56 s; tank 2: about 24 min 34 s

16. (a) x1.t/ D 600.1 � e�t=20/,
x2.t/ D 300.1 C e�t=10 � 2e�t=20/
(b) x1.t/ ! 600 and x2.t/ ! 300 as t ! 1
(c) Tank 1: about 8 min 7 sec; tank 2: about 17 min 13 sec

17. x1.t/ D 102 � 95e�t � 7e5t , x2.t/ D 96 � 95e�t � e5t

18. x1.t/ D 68 � 110t � 75e�t C 7e5t ,
x2.t/ D 74 � 80t � 75e�t C e5t

19. x1.t/ D �70 � 60t C 16e�3t C 54e2t ,
x2.t/ D 5 � 60t � 32e�3t C 27e2t

20. x1.t/ D 3e2t C 60te2t � 3e�3t ,
x2.t/ D �6e2t C 30te2t C 6e�3t

21. x1.t/ D �e�t � 14e2t C 15e3t ,
x2.t/ D �5e�t � 10e2t C 15e3t

22. x1.t/ D �10e�t � 7te�t C 10e3t � 5te3t ,
x2.t/ D �15e�t � 35te�t C 15e3t � 5te3t

23. x1.t/ D 3 C 11t C 8t2, x2.t/ D 5 C 17t C 24t2

24. x1.t/ D 2 C t C ln t , x2.t/ D 5 C 3t � 1

t
C 3 ln t

25. x1.t/ D �1 C 8t C cos t � 8 sin t ,
x2.t/ D �2 C 4t C 2 cos t � 3 sin t

26. x1.t/ D 3 cos t � 32 sin t C 17t cos t C 4t sin t ,
x2.t/ D 5 cos t � 13 sin t C 6t cos t C 5t sin t

27. x1.t/ D 8t3 C 6t4, x2.t/ D 3t2 � 2t3 C 3t4

28. x1.t/ D �7 C 14t � 6t2 C 4t2 ln t ,
x2.t/ D �7 C 9t � 3t2 C ln t � 2t ln t C 2t2 ln t
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29. x1.t/ D t cos t � .ln cos t/.sin t/;
x2.t/ D t sin t C .ln cos t/.cos t/

30. x1.t/ D 1
2

t2 cos 2t , x2.t/ D 1
2

t2 sin 2t

31. x1.t/ D .9t2 C 4t3/et , x2.t/ D 6t2et , x3.t/ D 6tet

32. x1.t/ D .44 C 18t/et C .�44 C 26t/e2t ,
x2.t/ D 6et C .�6 C 6t/e2t , x3.t/ D 2te2t

33. x1.t/ D 15t2 C 60t3 C 95t4 C 12t5,
x2.t/ D 15t2 C 55t3 C 15t4, x3.t/ D 15t2 C 20t3,
x4.t/ D 15t2

34. x1.t/ D 4t3 C .4 C 16t C 8t2/e2t ,
x2.t/ D 3t2 C .2 C 4t/e2t ,
x3.t/ D .2 C 4t C 2t2/e2t , x4.t/ D .1 C t/e2t

Chapter 6

Section 6.1

1. 6.1.14 2. 6.1.16 3. 6.1.19 4. 6.1.13

5. 6.1.12 6. 6.1.18 7. 6.1.15 8. 6.1.17

9. Equilibrium solutions x.t/ � 0, ˙2. The critical point .0; 0/ in
the phase plane looks like a center, whereas the points .˙2; 0/
look like saddle points.

0 5

0

5

x

y

–5

–5

10. Equilibrium solution x.t/ � 0. The critical point .0; 0/ in the
phase plane looks like a spiral sink.

0 3

0

5

x

y

–5

–3

11. Equilibrium solutions x.t/ � : : : ; �2�; ��; 0; �; 2�; : : : . The
phase portrait shown in the solutions manual suggests that the
critical point .n�; 0/ in the phase plane is a spiral sink if n is
even, but is a saddle point if n is odd.

12. Equilibrium solution x.t/ � 0. The critical point .0; 0/ in the
phase plane looks like a spiral source, with the solution curves
emanating from this source spiraling outward toward a closed
curve trajectory.

0 1 2

0

2

4

x

y

–2

–4
–2 –1

13. Solution x.t/ D x0e�2t , y.t/ D y0e�2t . The origin is a stable
proper node similar to the one illustrated in Fig. 6.1.4.

14. Solution x.t/ D x0e2t , y.t/ D y0e�2t . The origin is an
unstable saddle point.

x

y 0

5

–5

0 5–5

15. Solution x.t/ D x0e�2t , y.t/ D y0e�t . The origin is a stable
node.

x

y 0

5

–5

0 5–5
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16. Solution x.t/ D x0et , y.t/ D y0e3t . The origin is an unstable
improper node.

x

y 0

5

–5

0 5–5

17. Solution x.t/ D A cos t C B sin t , y.t/ D B cos t � A sin t .
The origin is a stable center.

x

y 0

5

–5

0 5–5

18. Solution x.t/ D A cos 2t C B sin 2t ,
y.t/ D �2B cos 2t C 2A sin 2t . The origin is a stable center.

19. Solution x.t/ D A cos 2t C B sin 2t ,
y.t/ D B cos 2t � A sin 2t . The origin is a stable center.

20. Solution x.t/ D e�2t .A cos t C B sin t/,
y.t/ D e�2t Œ.�2A C B/ cos t � .A C 2B/ sin t�. The origin is
a stable spiral point.

x

y 0

5

–5

0 5–5

23. The origin and the circles x2 C y2 D C > 0; the origin is a
stable center.

24. The origin and the hyperbolas y2 � x2 D C ; the origin is an

unstable saddle point.

x

y 0

5

–5

0 5–5

25. The origin and the ellipses x2 C 4y2 D C > 0; the origin is a
stable center.

x

y 0

5

–5

0 5–5

26. The origin and the ovals of the form x4 C y4 D C > 0; the
origin is a stable center.

x 

y 0 

4 

–4

0 4 –4
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Section 6.2

1. Asymptotically stable node

x

y 0

5

–5

0 5–5

2. Unstable improper node

3. Unstable saddle point

x

y 0

5

–5

0 5–5

4. Unstable saddle point

5. Asymptotically stable node

x

y 0

5

–5

0 5–5

6. Unstable node

7. Unstable spiral point

x

y 0

5

–5

0 5–5

8. Asymptotically stable spiral point

9. Stable, but not asymptotically stable, center

x

y 0

5

–5

0 5–5

10. Stable, but not asymptotically stable, center

11. Asymptotically stable node: .2; 1/

x

y 0

5

–5

0 5–5

12. Unstable improper node: .2; �3/
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13. Unstable saddle point: .2; 2/

x

y 0

5

–5

0 5–5

14. Unstable saddle point: .3; 4/

15. Asymptotically stable spiral point: .1; 1/

x

y 0

5

–5

0 5–5

16. Unstable spiral point: .3; 2/

17. Stable center:
�

5
2

; � 1
2

	

x

y 0

5

–5

0 5–5

18. Stable, but not asymptotically stable, center: .�2; �1/

19. .0; 0/ is a stable node. Also, there is a saddle point at

.0:67; 0:40/.

x

y 0

2

–2

0 2–2

20. .0; 0/ is an unstable node. Also, there is a saddle point at
.�1; �1/ and a spiral sink at .�2:30; �1:70/.

x

y 0

3

–3

0 3–3

21. .0; 0/ is an unstable saddle point. Also, there is a spiral sink at
.�0:51; �2:12/.

x

y 0

5

–5

0 5–5

22. .0; 0/ is an unstable saddle point. Also, there are nodal sinks at
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.˙0:82; ˙5:06/ and nodal sources at .˙3:65; �0:59/.

0 2 4 6

0

2

4

6

x

y

–6
–6

–4

–2

–2–4

23. .0; 0/ is a spiral sink. Also, there is a saddle point at
.�1:08; �0:68/.

0 1 2 3

0

1

2

3

x

y

–3

–3

–2

–1

–1–2

24. .0; 0/ is an spiral source. No other critical points are visible.

x

y 0

5

–5

0 5–5

25. Theorem 2 implies only that .0; 0/ is a stable sink—either a node
or a spiral point. The phase portrait for �5 � x; y � 5 shows
also a saddle point at .0:74; �3:28/ and spiral sink at
.2:47; �0:46/. The origin looks like nodal sink in a second
phase portrait for �0:2 � x; y � 0:2, which also reveals a
second saddle point at .0:12; 0:07/.

x

y 0

5

–5

0 5–5

x

y 0

0.2

–0.2

0 0.2–0.2

26. Theorem 2 implies only that .0; 0/ is an unstable source. The
phase portrait for �3 � x; y � 3 shows also saddle points at
.0:20; 0:25/ and .�0:23; �1:50/, as well as a nodal sink at
.2:36; 0:58/.

x

y 0

3

–3

0 3–3

27. Theorem 2 implies only that .0; 0/ is a center or a spiral point,
but does not establish its stability. The phase portrait for
�2 � x; y � 2 shows also saddle points at .�0:25; �0:51/ and
.�1:56; 1:64/, plus a nodal sink at .�1:07; �1:20/. The origin
looks like a likely center in a second phase portrait for
�0:6 � x; y � 0:6.
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x

y 0

2

–2

0 2–2

x

y 0

0.6

–0.6

0 0.6–0.6

28. Theorem 2 implies only that .0; 0/ is a center or a spiral point,
but does not establish its stability (though in the phase portrait it
looks like a likely center). The phase portrait for
�0:25 � x � 0:25, �1 � y � 1 also shows saddle points at
.0:13; 0:63/ and .�0:12; �0:47/.

x

y 0

1

–1

0 0.25–0.25

29. There is a saddle point at .0; 0/. The other critical point .1; 1/ is

indeterminate, but looks like a center in the phase portrait.

x

y 0

2

–2

0 2–2

30. There is a saddle point at .1; 1/ and a spiral sink at .�1; 1/.

x
y 0

3

–3

0 3–3

31. There is a saddle point at .1; 1/ and a spiral sink at .�1; �1/.

x

y 0

3

–3

0 3–3

32. There is a saddle point at .2; 1/ and a spiral sink at .�2; �1/.

x

y 0

3

–3

0 3–3

37. Note that the differential equation is homogeneous.
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Section 6.3

1. Linearization at .0; 0/: x0 D 200x, y0 D �150y; phase plane
portrait:

x

y 0

5

–5

0 5–5

3. Linearization at .75; 50/: u0 D �300v, v0 D 100u; phase
plane portrait:

u

v 0

5

–5

0 5–5

5. The characteristic equation is �2 C 45� C 126 D 0.

7. The characteristic equation is .�24 � �/2 � 2 � .18/2 D 0.
Phase plane portrait:

u

v 0

5

–5

0 5–5

Phase plane portrait for the nonlinear system in Problems 4–7:

0 5 10 15 20

0

5

10

15

20

x

y

(0,21) 

(6,12) 

(15,0) 

9. The characteristic equation is �2 C 58� � 120 D 0.

10. The characteristic equation is .� C 36/.� C 18/ � 576 D 0.
Phase plane portrait:

u

v 0

5

–5

0 5–5

Phase plane portrait for the nonlinear system in Problems 8–10:

0 5 10 15 20

0

5

10

15

20

x

y

(0,14) 

(12,6) 
(20,0) 

12. The characteristic equation is �2 C 2� � 15 D 0.

13. The characteristic equation is �2 C 2� C 6 D 0. Phase plane
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portrait:

u

v 0

5

–5

0 5–5

15. The characteristic equation is �2 C 2� � 24 D 0.

17. The characteristic equation is �2 � 4� C 6 D 0. Phase plane
portrait:

u

v 0

5

–5

0 5–5

19. The characteristic equation is �2 C 10 D 0. Phase plane portrait:

u

v 0

5

–5

0 5–5

21. The characteristic equation is �2 � � � 6 D 0.

22. The characteristic equation is �2 � 5� C 10 D 0 . Phase plane

portrait:

u

v 0

5

–5

0 5–5

24. The characteristic equation is �2 C 5� � 14 D 0.

25. The characteristic equation is �2 C 5� C 10 D 0. Phase plane
portrait:

u

v 0

5

–5

0 5–5

26. Naturally growing populations in competition
Critical points: nodal source .0; 0/ and saddle point .3; 2/
Nonzero coexisting populations x.t/ � 3, y.t/ � 2

27. Naturally declining populations in cooperation
Critical points: nodal sink .0; 0/ and saddle point .3; 2/
Nonzero coexisting populations x.t/ � 3, y.t/ � 2

0 5

0

5

x

y

(3,2) 

(0,0) 

28. Naturally declining predator, naturally growing prey population
Critical points: saddle point .0; 0/ and apparent stable center
.4; 8/
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Nonzero coexisting populations x.t/ � 4, y.t/ � 8

0 5 10 15

0

5

10

15

x

y

(4,8) 

(0,0) 

29. Logistic and naturally growing populations in competition
Critical points: nodal source .0; 0/, nodal sink .3; 0/, and saddle
point .2; 2/
Nonzero coexisting populations x.t/ � 2, y.t/ � 2

0 5

0

5

x

y

(0,0) (3,0) 

(2,2) 

30. Logistic and naturally declining populations in cooperation
Critical points: saddle point .0; 0/, nodal sink .3; 0/, and saddle
point .5; 4/
Nonzero coexisting populations x.t/ � 5, y.t/ � 4

31. Logistic prey, naturally declining predator population
Critical points: saddle points .0; 0/ and .3; 0/, spiral sink .2; 4/
Nonzero coexisting populations x.t/ � 2, y.t/ � 4

0 5

0

5

x

y

(0,0) (3,0) 

(2,4) 

32. Logistic populations in cooperation
Critical points: nodal source .0; 0/, saddle points .10; 0/ and
.0; 20/, nodal sink .30; 60/
Nonzero coexisting populations x.t/ � 30, y.t/ � 60

33. Logistic prey and predator populations
Critical points: nodal source .0; 0/, saddle points .30; 0/ and
.0; 20/, nodal sink .4; 22/

Nonzero coexisting populations x.t/ � 4, y.t/ � 22

0 10 20

0

20

40

x

y

(0,0) 

(0,20) 

(15,0) 

(4,22) 

34. Logistic prey and predator populations
Critical points: nodal source .0; 0/, saddle points .15; 0/ and
.0; 5/, spiral sink .10; 10/
Nonzero coexisting populations x.t/ � 10, y.t/ � 10

Section 6.4

1. Eigenvalues: �2, �3; stable node

0 10

0

5

x

y

–5

–10

2. Eigenvalues: 1, 3; unstable node

3. Eigenvalues: �3, 5; unstable saddle point

0 3

0

3

x

y

–3

–3
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4. Eigenvalues: �1 ˙ 2i ; stable spiral point

0 4

0

4

x

y

–4

–4

5. Critical points: .0; n�/ where n is an integer; an unstable saddle
point if n is even, a stable spiral point if n is odd

0 5

0

π

2π

3π

x

y

–π

–2π

–3π

–5

6. Critical points: .n; 0/ where n is an integer; an unstable saddle
point if n is even, a stable spiral point if n is odd

7. Critical points: .n�; n�/ where n is an integer; an unstable
saddle point if n is even, a stable spiral point if n is odd

0

0

π

2π

3π

x

y

–π

–2π

–3π

–π–2π–3π π 2π 3π

8. Critical points: .n�; 0/ where n is an integer; an unstable node if
n is even, an unstable saddle point if n is odd

9. If n is odd then .n�; 0/ is an unstable saddle point.
10. If n is odd then .n�; 0/ is a stable node.
11. .n�; 0/ is a stable spiral point.
12. Unstable saddle points at .2; 0/ and .�2; 0/, a stable center at

.0; 0/

13. Unstable saddle points at .2; 0/ and .�2; 0/, a stable spiral point
at .0; 0/

14. Stable centers at .2; 0/ and .�2; 0/, an unstable saddle point at
.0; 0/

15. A stable center at .0; 0/ and an unstable saddle point at .4; 0/

16. Stable centers at .2; 0/, .0; 0/, and .�2; 0/, unstable saddle
points at .1; 0/ and .�1; 0/

17. .0; 0/ is a spiral sink.

0 5

0

5

10

x

y

–5

–10

–5

18. .0; 0/ is a spiral sink; the points .˙2; 0/ are saddle points.

0 5

0

5

x

y

–5

–5

19. .0; 0/ is a spiral sink.

0 5

0

5

10

x

y

–5

–10

–5

20. .n�; 0/ is a spiral sink if n is even, a saddle point if n is odd.

Chapter 7
Section 7.1

1. 1=s2; s > 0 2. 2=s3; s > 0

3. e=.s � 3/; s > 3 4. s=.s2 C 1/; s > 0

5. 1=.s2 � 1/; s > 1

6. 1
2

Œ1=s � s=.s2 C 4/�, s > 0

7. .1 � e�s/=s; s > 0

8. .e�s � e�2s/=s; s > 0 9. .1 � e�s � se�s/=s2; s > 0

10. .s � 1 C e�s/=s2, s > 0
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11. 1
2

p
�s�3=2 C 3s�2; s > 0

12. .45� � 192s3=2/=.8s7=2/, s > 0

13. s�2 � 2.s � 3/�1; s > 3

14. 3
p

�=.4s5=2/ C 1=.s C 10/, s > 0

15. s�1 C s.s2 � 25/�1; s > 5 16. .s C 2/=.s2 C 4/; s > 0

17. cos2 2t D 1
2

.1 C cos 4t/; 1
2



s�1 C s=.s2 C 16/

�
, s > 0

18. 3=.s2 C 36/; s > 0

19. s�1 C 3s�2 C 6s�3 C 6s�4; s > 0

20. 1=.s � 1/2; s > 1 21. .s2 � 4/=.s2 C 4/2; s > 0

22. 1
2



s=.s2 � 36/ � s�1

�
23. 1

2
t3

24. 2
p

t=� 25. 1 � 8
3

t3=2��1=2

26. e�5t 27. 3e4t

28. 3 cos 2t C 1
2

sin 2t 29. 5
3

sin 3t � 3 cos 3t

30. � cosh 2t � 9
2

sinh 2t 31. 3
5

sinh 5t � 10 cosh 5t

32. 2u.t � 3/

37. f .t/ D 1 � u.t � a/. Your figure should indicate that the graph
of f contains the point .a; 0/, but not the point .a; 1/.

38. f .t/ D u.t � a/ � u.t � b/. Your figure should indicate that
the graph of f contains the points .a; 1/ and .b; 0/, but not the
points .a; 0/ and .b; 1/.

39. Figure 7.2.8 shows the graph of the unit staircase function.

Section 7.2

1. x.t/ D 5 cos 2t 2. x.t/ D 3 cos 3t C 4
3

sin 3t

3. x.t/ D 2
3

.e2t � e�t / 4. x.t/ D 1
2

.7e�3t � 3e�5t /

5. x.t/ D 1
3

.2 sin t � sin 2t/ 6. x.t/ D 1
3

.cos t � cos 2t/

7. x.t/ D 1
8

.9 cos t � cos 3t/ 8. x.t/ D 1
9

.1 � cos 3t/

9. x.t/ D 1
6

.2 � 3e�t C e�3t /

10. x.t/ D 1
4

.2t � 3 C 12e�t � 9e�2t /

11. x.t/ D 1, y.t/ D �2

12. x.t/ D 2
9

.e2t � e�t � 3te�t /, y.t/ D 1
9

.e2t � e�t C 6te�t /

13. x.t/ D �
�
2=

p
3
�

sinh
�
t=

p
3
�

,

y.t/ D cosh
�
t=

p
3
�

C
�
1=

p
3
�

sinh
�
t=

p
3
�

14. x.t/ D 1
4

.2t � 3 sin 2t/, y.t/ D � 1
8

.2t C 3 sin 2t/

15. x.t/ D 1
3

�
2 C e�3t=2 Œcos.rt=2/ C r sin.rt=2/�

	
,

y.t/ D 1
21

�
28 � 9et C 2e�3t=2 Œcos.rt=2/ C 4r sin.rt=2/�

	
where r D p

3

16. x.t/ D cos t C sin t , y.t/ D et � cos t , ´.t/ D �2 sin t

17. f .t/ D 1
3

.e3t � 1/

18. f .t/ D 3
5

.1 � e�5t /

19. f .t/ D 1
4

.1 � cos 2t/ D 1
2

sin2 t

20. f .t/ D 1
9

.6 sin 3t � cos 3t C 1/

21. f .t/ D t � sin t

22. f .t/ D 1
9

.�1 C cosh 3t/

23. f .t/ D �t C sinh t

24. f .t/ D 1
2

.e�2t � 2e�t C 1/

Section 7.3

1. 24=.s � �/5 2. 3
4

p
� .s C 4/�5=2

3. 3�=Œ.s C 2/2 C 9�2� 4.
p

2 .2s C 5/=.4s2 C 4s C 17/

5. 3
2

e2t 6. .t � t2/e�t

7. te�2t 8. e�2t cos t

9. e3t
�
3 cos 4t C 7

2
sin 4t

	
10. 1

36
e2t=3

�
8 cos 4

3
t � 5 sin 4

3
t
	

11. 1
2

sinh 2t 12. 2 C 3e3t

13. 3e�2t � 5e�5t 14. 2 C e2t � 3e�t

15. 1
25

.e5t � 1 � 5t/ 16. 1
125

Œe2t .5t � 2/ C e�3t .5t C
2/ �

17. 1
16

.sinh 2t � sin 2t/ 18. e4t
�
1 C 12t C 24t2 C 32

3
t3
	

19. 1
3

.2 cos 2t C 2 sin 2t � 2 cos t � sin t/

20. 1
32

Œe2t .2t � 1/ C e�2t .2t C 1/ �

21. 1
2

e�t .5 sin t � 3t cos t � 2t sin t/

22. 1
64

et=2Œ.4t C 8/ cos t C .4 � 3t/ sin t�

27. 1
4

e�3t .8 cos 4t C 9 sin 4t/

28. 1
4

.1 � 2e2t C e4t / 29. 1
8

.�6t C 3 sinh 2t/

30. 1
10

Œ2e�t � e�2t .2 cos 2t C sin 2t/�

31. 1
15

.6e2t � 5 � e�3t / 32. 1
2

.cosh t C cos t/

33. x.t/ D r.cosh rt sin rt � sinh rt cos rt/ where r D 1=
p

2

34. 1
2

sin 2t C 1
3

sin 3t 35. 1
16

.sin 2t � 2t cos 2t/

36. 1
50

Œ2e2t C .10t � 2/ cos t � .5t C 14/ sin t�

37. 1
50

Œ.5t � 1/e�t C e�2t .cos 3t C 32 sin 3t/�

38. 1
510

e�3t .489 cos 3t C 307 sin 3t/ C 1
170

.7 cos 2t C 6 sin 2t/

39.

t

–20

20

8π

x = +t

x = –t

Section 7.4

1. 1
2

t2 2. .eat � at � 1/=a2

3. 1
2

.sin t � t cos t/ 4. 2.t � sin t/

5. teat 6. .eat � ebt /=.a � b/

7. 1
3

.e3t � 1/ 8. 1
4

.1 � cos 2t/

9. 1
54

.sin 3t � 3t cos 3t/ 10. .kt � sin kt/=k3

11. 1
4

.sin 2t C 2t cos 2t/ 12. 1
5

Œ1 � e�2t .cos t C
2 sin t/�

13. 1
10

.3e3t � 3 cos t C sin t/ 14. 1
3

.cos t � cos 2t/

15. 6s=.s2 C 9/2, s > 0 16. .2s3 � 24s/=.s2 C 4/3,
s > 0

17. .s2 � 4s � 5/=.s2 � 4s C 13/2, s > 0

18.
2.3s2 C 6s C 7/

.s C 1/2.s2 C 2s C 5/2
, s > 0

19. 1
2

� � arctan s D arctan.1=s/, s > 0

20. 1
2

ln.s2 C 4/ � ln s, s > 0 21. ln s � ln.s � 3/, s > 3

22. ln.s C 1/ � ln.s � 1/, s > 1

23. �.2 sinh 2t/=t 24. 2.cos 2t � cos t/=t

25. e�2t C e3t � 2 cos t/=t 26. .e�2t sin 3t/=t

27. 2.1 � cos t/=t 28. 1
8

.t sin t � t2 cos t/

29. .s C 1/X 0.s/ C 4X.s/ D 0; x.t/ D C t3e�t , C ¤ 0

30. X.s/ D A=.s C 3/3; x.t/ D C t2e�3t , C ¤ 0

31. .s � 2/X 0.s/ C 3X.s/ D 0; x.t/ D C t2e2t , C ¤ 0

32. .s2 C 2s/X 0.s/ C .4s C 4/X.s/ D 0;
x.t/ D C.1 � t � e�2t � te�2t /, C ¤ 0

33. .s2 C 1/X 0.s/ C 4sX.s/ D 0; x.t/ D C.sin t � t cos t/, C ¤ 0

34. x.t/ D Ce�2t .sin 3t � 3t cos 3t/, C ¤ 0



758 Answers to Selected Problems

Section 7.5

1. f .t/ D u.t � 3/ � .t � 3/

3
t

f(t)

2. f .t/ D .t � 1/u.t � 1/ � .t � 3/u.t � 3/

1 3
t

2

f(t)

3. f .t/ D u.t � 1/ � e�2.t�1/

1
t

1

f(t)

4. f .t/ D et�1u.t � 1/ � e2et�2u.t � 2/

1
t

–10

–5

1

2

f(t)

5. f .t/ D u.t � �/ � sin.t � �/ D �u.t � �/ sin t

t

–1

1

π 3π 5π

f(t)

6. f .t/ D u.t � 1/ � cos �.t � 1/ D �u.t � 1/ cos �t

1 2 3 4 5
t

–1

1

f(t)

7. f .t/ D sin t � u.t � 2�/ sin.t � 2�/ D Œ1 � u.t � 2�/� sin t

t

–1

1

π 2π

f(t)

8. f .t/ D cos �t � u.t � 2/ cos �.t � 2/ D Œ1 � u.t � 2/� cos �t

2
t

–1

1

f(t)

9. f .t/ D cos �t C u.t � 3/ cos �.t � 3/ D Œ1 � u.t � 3/� cos �t

t

–1

1

3

f(t)

10. f .t/ D 2u.t � �/ cos 2.t � �/ � 2u.t � 2�/ cos 2.t � 2�/
D 2Œu.t � �/ � u.t � 2�/� cos 2t

π 2π
t

–2

2

f(t)

11. f .t/ D 2Œ1 � u3.t/�; F .s/ D 2.1 � e�3s/=s

12. F .s/ D .e�s � e�4s/=s

13. F .s/ D .1 � e�2�s/=.s2 C 1/

14. F .s/ D s.1 � e�2s/=.s2 C �2/

15. F .s/ D .1 C e�3�s/=.s2 C 1/

16. F .s/ D 2.e��s � e�2�s/=.s2 C 4/
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17. F .s/ D �.e�2s C e�3s/=.s2 C �2/

18. F .s/ D 2�.e�3s C e�5s/=.4s2 C �2/

19. F .s/ D e�s.s�1 C s�2/

20. F .s/ D .1 � e�s/=s2

21. F .s/ D .1 � 2e�s C e�2s/=s2

28. F .s/ D .1 � e�as � ase�as/=Œs2.1 � e�2as/�

31. x.t/ D 1
2

Œ1 � u.t � �/� sin2 t

π
t

1
2

x(t)

32. x.t/ D g.t/ � u.t � 2/g.t � 2/ where
g.t/ D 1

12
.3 � 4e�t C e�4t /.

2 4
t

0.1

0.2

x(t)

33. x.t/ D 1
8

Œ1 � u.t � 2�/�
�
sin t � 1

3
sin 3t

	

π 2π
t

–0.1

0.1

x(t)

34. x.t/ D g.t/ � u.t � 1/Œg.t � 1/ C h.t � 1/� where
g.t/ D t � sin t and h.t/ D 1 � cos t .

1
t

–0.5

0.5

1 + 2π 1 + 4π

x(t)

35. x.t/ D 1
4

˚�1 C t C .t C 1/e�2t C

u.t � 2/


1 � t C .3t � 5/e�2.t�2/

��

2 4
t

1
4

x(t)

36. i.t/ D e�10t � u.t � 1/e�10.t�1/

37. i.t/ D Œ1 � u.t � 2�/� sin 100t

38. i.t/ D 10
99

Œ1 � .u � �/�.cos 10t � cos 100t/

39. i.t/ D 1
50



.1 � e�50t /2 � u.t � 1/.1 C 98e�50.t�1/

� 99e�100.t�1/
�

40. i.t/ D
1

50



.1 � e�50t � 50te�50t / � u.t � 1/.1 � e�50.t�1/

C 2450te�50.t�1//
�

41. x.t/ D 2j sin t j sin t

t

–2

2

2π 4π 6π

x(t)

42. x.t/ D g.t/ C 2

1X
nD1

.�1/nu.t � n�/g.t � n�/ where

g.t/ D 1 � 1
3

e�t .3 cos 3t C sin 3t/

t

–2

2

2π 4π 6π

x(t)

Section 7.6

1. x.t/ D 1
2

sin 2t

t

–1

1

x

π 2π 3π 4π

1
2

1
2–
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2. x.t/ D 1
2

Œ1 C u.t � �/� sin 2t

t

–1

1

x

π 2π 3π 4π

1
2

1
2–

3. x.t/ D 1
4

Œ1 � e�2t � 2te�2t � C u.t � 2/.t � 2/e�2.t�2/

1 2 3 4
t

0.25

0.5

x

4. x.t/ D �2 C t C 2e�t C 3te�t

1 2 3
t

0.5

1

1.5
x

5. x.t/ D 2u.t � �/e�.t��/ sin.t � �/

π 2π 3π
t

0.5

x

6. x.t/ D 1
6

.t � 2u.t � 3�// sin 3t

t

–2

2

x

3

7. x.t/ D 

2 � e2�u.t � �/ C e4� u.t � 2�/

�
e�2t sin t

π 2π 3π
t

0.3

x

8. x.t/ D .2 C 5t/e�t � u.t � 2/.t � 2/e�.t�2/

2 4 6
t

1

2

3
x

9. x.t/ D
Z t

0

1
2

.sin 2�/f .t � �/ d�

10. x.t/ D
Z t

0

�e�3� f .t � �/ d�

11. x.t/ D
Z t

0

.e�3� sinh �/f .t � �/ d�

12. x.t/ D 1

2

Z t

0

.e�2� sin 2�/f .t � �/ d�

13. (a) mx�.t/ D pŒt2 � u�.t/.t � 	/2�=.2	/;
(b) If t > 	, then mx�.t/ D p.2	t � 	2/=.2	/, and hence
mx�.t/ ! pt as 	 ! 0;
(c) mv D .mx/0 D .pt/0 D 0.

15. The transform of each of the two given initial value problems is
.ms2 C k/X.s/ D mv0 D p0.

17. (b) i.t/ D e�100.t�1/u1.t/ � e�100.t�2/u2.t/.
If t > 2, then i.t/ D �.e100 � 1/e100.1�t/ < 0.

18. i.t/ D Œ1 � u.t � �/� sin 10t

19. i.t/ D
1X

nD0

u.t � n�=10/ sin 10t

20. i.t/ D
1X

nD0

.�1/nu.t � n�=5/ sin 10t

21. i.t/ D
1X

nD0

u.t � n�=10/e3n�e�30t sin t

t

–0.1

0.1

i(t)

π

5
π2π

5
3π

5
4π

5
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22. x.t/ D
1X

nD0

u.t � 2n�/ sin t

t

–5

5

2 π 4 π 6 π 8 π 10π

x(t)

Chapter 8
Section 8.1

1. y.x/ D c0

 
1 C x C x2

2
C x3

3Š
C � � �

!
D c0ex ; � D C1

2. y.x/ D c0

 
1 C 4x

1Š
C 42x2

2Š
C 43x3

3Š
C 44x4

4Š
C � � �

!
D

c0e4x ; � D 1

3. y.x/ D c0

 
1 � 3x

2
C .3x/2

2Š22
� .3x/3

3Š23
C .3x/4

4Š24
� � � �

!
D

c0e�3x=2; � D C1

4. y.x/ D c0

 
1 � x2

1Š
C x4

2Š
� x6

3Š
C � � �

!
D c0e�x2

; � D 1

5. y.x/ D c0

 
1 C x3

3
C x6

2Š32
C x9

3Š33
C � � �

!
D c0 exp

�
1
3

x3
	
;

� D C1

6. y.x/ D c0

 
1 C x

2
C x2

4
C x3

8
C x4

16
C � � �

!
D 2c0

2 � x
;

� D 2

7. y.x/ D c0.1 C 2x C 4x2 C 8x3 C � � � / D c0

1 � 2x
; � D 1

2

8. y.x/ D c0

 
1 C x

2
� x2

8
C x3

16
� 5x4

128
C � � �

!
D c0

p
1 C x;

� D 1

9. y.x/ D c0.1 C 2x C 3x2 C 4x3 C � � � / D c0

.1 � x/2
; � D 1

10. y.x/ D c0

 
1 � 3x

2
C 3x2

8
C x3

16
C 3x4

128
C � � �

!
D

c0.1 � x/3=2; � D 1

11. y.x/ D c0

 
1 C x2

2Š
C x4

4Š
C x6

6Š
C � � �

!
C

c1

 
x C x3

3Š
C x5

5Š
C x7

7Š
C � � �

!
D c0 cosh x C c1 sinh x; � D C1

12. y.x/ D c0

 
1 C .2x/2

2Š
C .2x/4

4Š
C .2x/6

6Š
C � � �

!
C

c1

2

 
.2x/ C .2x/3

3Š
C .2x/5

5Š
C .2x/7

7Š
C � � �

!
D

c0 cosh 2x C c1

2
sinh 2x; � D 1

13. y.x/ D c0

 
1 � .3x/2

2Š
C .3x/4

4Š
� .3x/6

6Š
C � � �

!
C

c1

3

 
3x � .3x/3

3Š
C .3x/5

5Š
� .3x/7

7Š
C � � �

!
D c0 cos 3x C 1

3
c1 sin 3x; � D C1

14. y.x/ D x C c0

 
1 � x2

2Š
C x4

4Š
� x6

6Š
C � � �

!

C .c1 � 1/

 
x � x3

3Š
C x5

5Š
� x7

7Š
C � � �

!
D x C c0 cos x C .c1 � 1/ sin x; � D 1

15. .n C 1/cn D 0 for all n = 0, so cn D 0 for all n = 0.
16. 2ncn D cn for all n = 0, so cn D 0 for all n = 0.
17. c0 D c1 D 0 and cnC1 D �ncn for n = 1, thus cn D 0 for all

n = 0.
18. cn D 0 for all n = 0

19. .n C 1/.n C 2/cnC2 D �4cn; y.x/ D
3

2

"
.2x/ � .2x/3

3Š
C .2x/5

5Š
� .2x/7

7Š
C � � �

#
D 3

2
sin 2x

20. .n C 1/.n C 2/cnC2 D 4cn;

y.x/ D 2

"
1 C .2x/2

2Š
C .2x/4

4Š
C .2x/6

6Š
C � � �

#
D 2 cosh 2x

21. n.n C 1/cnC1 D 2ncn � cn�1;

y.x/ D x C x2 C x3

2Š
C x4

3Š
C x5

4Š
C � � � D xex

22. n.n C 1/cnC1 D �ncn C 2cn�1; y D e�2x

23. As c0 D c1 D 0 and .n2 � n C 1/cn C .n � 1/cn�1 D 0 for
n = 2, cn D 0 for all n = 0

Section 8.2

1. cnC2 D cn;

y.x/ D c0

1X
nD0

x2n C c1

1X
nD0

x2nC1 D c0 C c1x

1 � x2
; � D 1

2. cnC2 D � 1
2

cn; � D 2;

y.x/ D c0

1X
nD0

.�1/nx2n

2n
C c1

1X
nD0

.�1/nx2nC1

2n

3. .n C 2/cnC2 D �cn;

y.x/ D c0

1X
nD0

.�1/nx2n

nŠ2n
C c1

1X
nD0

.�1/nx2nC1

.2n C 1/ŠŠ
; � D C1

4. .n C 2/cnC2 D �.n C 4/cn; � D 1;
y.x/ D
c0

1X
nD0

.�1/n.n C 1/x2n C 1
3

c1

1X
nD0

.�1/n.2n C 3/x2nC1

5. 3.n C 2/cnC2 D ncn; � D p
3;

y.x/ D c0 C c1

1X
nD0

x2nC1

.2n C 1/3n

6. .n C 1/.n C 2/cnC2 D .n � 3/.n � 4/cn; � D 1;
y.x/ D c0.1 C 6x2 C x4/ C c1.x C x3/

7. 3.n C 1/.n C 2/cnC2 D �.n � 4/2cn;

y.x/ D c0

 
1 � 8x2

3
C 8x4

27

!
C

c1

 
x � x3

2
C x5

120
C 9

1X
nD3

.�1/nŒ.2n � 5/ŠŠ�2x2nC1

.2n C 1/Š3n

!
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8. 2.n C 1/.n C 2/cnC2 D .n � 4/.n C 4/cn;
y.x/ D c0.1 � 4x2 C 2x4/ C
c1

 
x � 5x3

4
C 7x5

32
C

1X
nD3

.2n � 5/ŠŠ.2n C 3/ŠŠx2nC1

.2n C 1/Š2n

!
9. .n C 1/.n C 2/cnC2 D .n C 3/.n C 4/cn; � D 1; y.x/ D

c0

1X
nD0

.n C 1/.2n C 1/x2n C c1

3

1X
nD0

.n C 1/.2n C 3/x2nC1

10. 3.n C 1/.n C 2/cnC2 D �.n � 4/cn;

y.x/ D c0

 
1 C 2x2

3
C x4

27

!
C

c1

 
x C x3

6
C x5

360
C 3

1X
nD3

.�1/n.2n � 5/ŠŠx2nC1

.2n C 1/Š3n

!
11. 5.n C 1/.n C 2/cnC2 D 2.n � 5/cn;

y.x/ D c1

 
x � 4x3

15
C 4x5

375

!
C

c0

 
1 � x2 C x4

10
C x6

750
C 15

1X
nD4

.2n � 7/ŠŠ 2nx2n

.2n/Š5n

!
12. c2 D 0; .n C 2/cnC3 D cn;

y.x/ D c0

 
1 C

1X
nD1

x3n

2 � 5 � � � .3n � 1/

!
C c1

1X
nD0

x3nC1

nŠ3n

13. c2 D 0; .n C 3/cnC3 D �cn;

y.x/ D c0

1X
nD0

.�1/nx3n

nŠ3n
C c1

1X
nD0

.�1/nx3nC1

1 � 4 � � � .3n C 1/

14. c2 D 0; .n C 2/.n C 3/cnC3 D �cn;

y.x/ D c0

 
1 C

1X
nD1

.�1/nx3n

3n � nŠ � 2 � 5 � � � .3n � 1/

!
C

c1

1X
nD0

.�1/nx3nC1

3n � nŠ � 1 � 4 � � � .3n C 1/

15. c2 D c3 D 0; .n C 3/.n C 4/cnC4 D �cn;

y.x/ D c0

 
1 C

1X
nD1

.�1/nx4n

4n � nŠ � 3 � 7 � � � .4n � 1/

!
C

c1

1X
nD0

.�1/nx4nC1

4n � nŠ � 5 � 9 � � � .4n C 1/

16. y.x/ D x

17. y.x/ D 1 C x2

18. y.x/ D 2

1X
nD0

.�1/n.x � 1/2n

nŠ 2n
; converges for all x

19. y.x/ D 1
3

1X
nD0

.2n C 3/.x � 1/2nC1; converges if 0 < x < 2

20. y.x/ D 2 � 6.x � 3/2; converges for all x

21. y.x/ D 1 C 4.x C 2/2; converges for all x

22. y.x/ D 2x C 6

23. 2c2 C c0 D 0; .n C 1/.n C 2/cnC2 C cn C cn�1 D 0 for

n = 1; y1.x/ D 1 � x2

2
� x3

6
C � � � ;

y2.x/ D x � x3

6
� x4

12
C � � �

24. y1.x/ D 1 C x3

3
C x5

5
C x6

45
C � � � ;

y2.x/ D x C x3

3
C x4

6
C x5

5
C � � �

25. c2 D c3 D 0, .n C 3/.n C 4/cnC4 C .n C 1/cnC1 C cn D 0

for n = 0; y1.x/ D 1 � x4

12
C x7

126
C � � � ;

y2.x/ D x � x4

12
� x5

20
C � � �

26. y.x/ D
c0

 
1 � x6

30
C x9

72
C � � �

!
C c1

 
x � x7

42
C x10

90
C � � �

!
27. y.x/ D

1�x � x2

2
C x3

3
� x4

24
C x5

30
C 29x6

720
C 13x7

630
� 143x8

40320
C� � � ;

y.0:5/ � 0:4156

28. y.x/ D
c0

 
1 � x2

2
C x3

6
C � � �

!
C c1

 
x � x3

6
C x4

12
C � � �

!

29. y1.x/ D 1 � 1

2
x2 C 1

720
x6 C � � � ;

y2.x/ D x � 1

6
x3 � 1

60
x5 C � � �

30. y.x/ D
c0

 
1 � x2

2
C x3

6
C � � �

!
C c1

 
x � x2

2
C x4

18
C � � �

!
33. The following figure shows the interlaced zeros of the 4th and

5th Hermite polynomials.

–3 3
x

–100

100

y

H4
H5

34. The figure below results when we use n D 40 terms in each
summation. But with n D 50 we get the same picture as
Fig. 8.2.3 in the text.

x

–0.5

1

y

–10 –5

Bi(x)

Ai(x)

Section 8.3

1. Ordinary point 2. Ordinary point

3. Irregular singular point 4. Irregular singular point

5. Regular singular point; r1 D 0, r2 D �1

6. Regular singular point; r1 D 1, r2 D �2

7. Regular singular point; r D �3, �3

8. Regular singular point; r D 1
2

, �3

9. Regular singular point x D 1

10. Regular singular point x D 1

11. Regular singular points x D 1, �1

12. Irregular singular point x D 2



Answers to Selected Problems 763

13. Regular singular points x D 2, �2

14. Irregular singular points x D 3, �3

15. Regular singular point x D 2

16. Irregular singular point x D 0, regular singular point x D 1

17. y1.x/ D cos
p

x, y2.x/ D sin
p

x

18. y1.x/ D
1X

nD0

xn

nŠ.2n C 1/ŠŠ
,

y2.x/ D x�1=2

1X
nD0

xn

nŠ .2n � 1/ŠŠ

19. y1.x/ D x3=2

 
1 C 3

1X
nD1

xn

nŠ .2n C 3/ŠŠ

!
,

y2.x/ D 1 � x �
1X

nD2

xn

nŠ .2n � 3/ŠŠ

20. y1.x/ D x1=3

1X
nD0

.�1/n2nxn

nŠ � 4 � 7 � � � .3n C 1/
,

y2.x/ D
1X

nD0

.�1/n2nxn

nŠ � 2 � 5 � � � .3n � 1/

21. y1.x/ D x

 
1 C

1X
nD1

x2n

nŠ � 7 � 11 � � � .4n C 3/

!
,

y2.x/ D x�1=2

 
1 C

1X
nD1

x2n

nŠ � 1 � 5 � � � .4n � 3/

!

22. y1.x/ D x3=2

 
1 C

1X
nD1

.�1/nx2n

nŠ � 9 � 13 � � � .4n C 5/

!
,

y2.x/ D x�1

 
1 C

1X
nD1

.�1/n�1x2n

nŠ � 3 � 7 � � � .4n � 1/

!

23. y1.x/ D x1=2

 
1 C

1X
nD1

x2n

2n � nŠ � 19 � 31 � � � .12n C 7/

!
,

y2.x/ D x�2=3

 
1 C

1X
nD1

x2n

2n � nŠ � 5 � 17 � � � .12n � 7/

!

24. y1.x/ D x1=3

 
1 C

1X
nD1

.�1/nx2n

2n � nŠ � 7 � 13 � � � .6n C 1/

!
,

y2.x/ D 1 C
1X

nD1

.�1/nx2n

2n � nŠ � 5 � 11 � � � .6n � 1/

25. y1.x/ D x1=2

1X
nD0

.�1/nxn

nŠ � 2n
D x1=2e�x=2,

y2.x/ D 1 C
1X

nD1

.�1/nxn

.2n � 1/ŠŠ

26. y1.x/ D x1=2

1X
nD0

x2n

nŠ � 2n
D x1=2 exp

�
1
2

x2
�

,

y2.x/ D 1 C
1X

nD1

2nx2n

3 � 7 � � � .4n � 1/

27. y1.x/ D 1

x
cos 3x, y2.x/ D 1

x
sin 3x

2π 4π
x

–1

1

y

y1

y2

28. y1.x/ D 1

x
cosh 2x, y2.x/ D 1

x
sinh 2x

1 2
x

2

4

6

8

y

y1

y2

29. y1.x/ D 1

x
cos

x

2
, y2.x/ D 1

x
sin

x

2

4π
x

–0.5

0.5

1

y

y1

y2

2π

30. y1.x/ D cos x2, y2.x/ D sin x2

π
x

–1

1

y

y2

y1

π

2

31. y1.x/ D x1=2 cosh x, y2.x/ D x1=2 sinh x

1
x

1

y

y1

y2
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32. y1.x/ D x C x2

5
,

y2.x/ D x�1=2

 
1 � 5x

2
� 15x2

8
� 5x3

48
C � � �

!

33. y1.x/ D x�1

 
1 C 10x C 5x2 C 10x3

9
C � � �

!
,

y2.x/ D x1=2

 
1 C 11x

20
� 11x2

224
C 671x3

24192
C � � �

!

34. y1.x/ D x

 
1 � x2

42
C x4

1320
C � � �

!
,

y2.x/ D x�1=2

 
1 � 7x2

24
C 19x4

3200
C � � �

!

Section 8.4

1. y1.x/ D 1 C x

x2
, y2.x/ D 1 C 2

1X
nD1

xn

.n C 2/Š

2. y1.x/ D 1

x2

 
1 C x C x2

2
C x3

6

!
,

y2.x/ D 1 C 24

1X
nD1

xn

.n C 4/Š

3. y1.x/ D 1

x4

 
1 � 3x C 9x2

2
� 9x3

2

!
,

y2.x/ D 1 C 24

1X
nD1

.�1/n3nxn

.n C 4/Š

4. y1.x/ D 1

x5

 
1 � 3x

5
C 9x2

50
� 9x3

250
C 27x4

5000

!
,

y2.x/ D 1 C 120

1X
nD1

.�1/n3nxn

.n5/Š � 5n

5. y1.x/ D 1 C 3x

4
C x2

4
C x3

24
,

y2.x/ D x5

 
1 C 120

1X
nD1

.n C 1/xn

.n C 5/Š

!

6. y1.x/ D x4

 
1 C 8

5

1X
nD1

.2n C 5/ŠŠxn

nŠ .n C 4/Š2n

!

7. y1.x/ D 1

x2
.2 � 6x C 9x2/, y2.x/ D

1X
nD1

.�1/n�13nxn

.n C 2/Š

8. y1.x/ D 3 C 2x C x2, y2.x/ D x4

.1 � x/2

9. y1.x/ D 1 C x2

22
C x4

22 � 42
C x6

x2 � 42 � 62
C � � � ,

y2.x/ D y1.x/ �
 

ln x � x2

4
C 5x4

128
� 23x6

3456
C � � �

!

10. y1.x/ D x

 
1 � x2

22
C x4

22 � 42
� x6

22 � 42 � 62
C � � �

!
,

y2.x/ D y1.x/ �
 

ln x C x2

4
C 5x4

128
C 23x6

3456
C � � �

!

11. y1.x/ D x2

 
1 � 2x C 3x2

2
� 2x3

3
C � � �

!
,

y2.x/ D y1.x/ �
 

ln x C 3x C 11x2

4
C 49x3

18
C � � �

!

12. y1.x/ D x2

 
1 � x

2
C 3x2

20
� x3

30
C x4

168
� � � �

!
,

y2.x/ D y1.x/ �
�

� 1

3x3
C 1

20x
C x

700
C � � �

�
13. y1.x/ D x3

 
1 � 2x C 2x2 � 4x3

3
C � � �

!
,

y2.x/ D y1.x/ �
�

2 ln x � 1

2x2
� 2

x
C 4x

3
C � � �

�
14. y1.x/ D x2

 
1 � 2x

5
C x2

10
� 2x3

105
C x4

336
� � � �

!
,

y2.x/ D
y1.x/ �

�
� 1

4x4
C 1

15x3
C 1

100x2
� 13

1750x
C � � �

�
;

y2.x/ contains no logarithmic term.

16. y1.x/ D x3=2

 
1 C

1X
nD1

.�1/nx2n

2n � nŠ � 5 � 7 � � � .2n C 3/

!
,

y2.x/ D x�3=2

 
1 C

1X
nD1

.�1/nx2n

2n � nŠ � .�1/ � 1 � 3 � � � .2n � 3/

!

Section 8.5

2.

20
x

–0.5

0.5

10

J1/2(x)

J–1/2(x)

4.

10
x

–0.5

0.5

20

J3/2(x)

J–3/2(x)

5. J4.x/ D 1

x2
.x2 � 24/J0.x/ C 8

x3
.6 � x2/J1.x/

12. The following figure corroborates the calculated value y.0/ D 3.

x

y

3

13. x2J1.x/ C xJ1.x/ �
Z

J0.x/ dx C C

14. .x3 � 4x/J1.x/ C 2x2J0.x/ C C

15. .x4 � 9x2/J1.x/ C .3x3 � 9x/J0.x/ C 9

Z
J0.x/ dx C C

16. �xJ1.x/ C
Z

J0.x/ dx C C

17. 2xJ1.x/ � x2J0.x/ C C

18. 3x2J1.x/ C .3x � x3/J0.x/ � 3

Z
J0.x/ dx C C

19. .4x3 � 16x/J1.x/ C .8x2 � x4/J0.x/ C C

20. �2J1.x/ C
Z

J0.x/ dx C C

21. J0.x/ � 4

x
J1.x/ C C
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26.

x

–0.3

0.3

10 20 30 40

J11

J10

Section 8.6

1. y.x/ D x Œc1J0.x/ C c2Y0.x/�

2. y.x/ D 1

x
Œc1J1.x/ C c2Y1.x/�

3. y.x/ D x


c1J1=2.3x2/ C c2J�1=2.3x2/

�
4. y.x/ D x3



c1J2.2x1=2/ C c2Y2.2x1=2/

�
5. y.x/ D x�1=3



c1J1=3

�
1
3

x3=2
	C c2J�1=3

�
1
3

x3=2
	�

6. y.x/ D x�1=4


c1J0.2x3=2/ C c2Y0.2x3=2/

�
7. y.x/ D x�1 Œc1J0.x/ C c2Y0.x/�

8. y.x/ D x2


c1J1.4x1=2/ C c2Y1.4x1=2/

�
9. y.x/ D x1=2



c1J1=2.2x3=2/ C c2J�1=2.2x3=2/

�
10. y.x/ D x�1=4



c1J3=2

�
2
5

x5=2
	C c2J�3=2

�
2
5

x5=2
	�

11. y.x/ D x1=2


c1J1=6

�
1
3

x3
	C c2J�1=6

�
1
3

x3
	�

12. y.x/ D x1=2


c1J1=5

�
4
5

x5=2
	C c2J�1=5

�
4
5

x5=2
	�

Chapter 9
Section 9.1

1. 2
3

�

–
t

1

π π

–1

2. 1

–1 1 2
t

–1

1

3. 4
3

�

–2 2π 4π
t

–1

1

π

4. 6

–6
t

1

6 12

–1

5. �

5

t

–5

3π

2
– π

2
– π

2

3π

2

5π

2

6. 1
2

–1 1 2
t

5

–5

7. Not periodic

–3 3
t

1000

8. Not periodic

–2 2
t

–300

300

9. �

π π 2 π 3 π
t

1

–

10. 1
3

�

π π
t

1

–
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11. a0 D 2; an D bn D 0 for n = 1

2 π 2 π 4 π
t

1

–

12. � 12

�

�
sin t C 1

3
sin 3t C 1

5
sin 5t C � � �

�

–π π 3π 5π
t

–3

3

13.
1

2
C 2

�

�
sin t C 1

3
sin 3t C 1

5
sin 5t C � � �

�

–π π 3π 5π
t

14.
1

2
� 10

�

�
sin t C 1

3
sin 3t C 1

5
sin 5t C � � �

�

–π π 3π 5π
t

–2

3

15. 2

�
sin t � 1

2
sin 2t C 1

3
sin 3t � � � �

�

–π π 3π 5π
t

–π

π

16. � � 2

�
sin t C 1

2
sin 2t C 1

3
sin 3t C � � �

�

–π π 3π 5π
t

2π

17.
�

2
� 4

�

�
cos t C 1

9
cos 3t C 1

25
cos 5t C � � �

�

–π π 3π 5π
t

π

18.
�

2
C 4

�

�
cos t C 1

9
cos 3t C 1

25
cos 5t C � � �

�

–π π 3π 5π
t

π

19. a0 D �

4
; an D 1 � .�1/n

n2�
for n = 1; bn D � 1

n
for n = 1.

–2π 2π 4π
t

π

20.
1

2
C 2

�

�
cos t � 1

3
cos 3t C 1

5
cos 5t � � � �

�

–π π 2π 3π 4π
t

1

21.
1

3
�2 � 4

�
cos t � 1

4
cos 2t C 1

9
cos 3t � � � �

�

2π 6π4π
t

10

22. a0 D 8

3
�2; an D 4

n
for n = 1; bn D � 4�

n
for n = 1.

–π π 3π 5π
t

40
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23. a0 D 1

3
�2; an D 2 � .�1/n

n2
for n = 1;

bn D 2 � .�1/n � 1

�n3
� � � .�1/n

n
for n = 1

2π 4π
t

10

24. bn D 0 for n = 1; an D 0 if n is odd;

an D � 4

�.n2 � 1/
for n D 0, 2, 4, : : : :

π π 3 π
t

1

–

25. a0 D 1, a4 D 1

2
, and all other coefficients are zero.

–π π 3π
t

1

26.
1

2
sin t C 1

�
�

2

�

�
1

1 � 3
cos 2t C 1

3 � 5
cos 4t C 1

5 � 7
cos 6t C � � �

�

–π π 3π 5π
t

Section 9.2

1.
8

�

�
sin

�t

3
C 1

3
sin

3�t

3
C 1

5
sin

5�t

3
C � � �

�

–3 3 6 9 12 15
t

2

–2

2.
1

2
C 2

�

�
sin

�t

5
C 1

3
sin

3�t

5
C 1

5
sin

5�t

5
C � � �

�

–5 5 10 15 20 25
t

3.
1

2
� 6

�

�
sin

t

2
C 1

3
sin

3t

2
C 1

5
sin

5t

2
C � � �

�

–2π 2π 6π 10π
t

–1

1

4.
4

�

�
sin

�t

2
� 1

2
sin

2�t

2
C 1

3
sin

3�t

2
� � � �

�

–2 2 6 10
t

–2

2

5. 4

�
sin

t

2
� 1

2
sin

2t

2
C 1

3
sin

3t

2
� � � �

�

–2π 2π 6π 10π
t

–2π

2π

6.
3

2
� 3

�

�
sin

2�t

3
C 1

2
sin

4�t

3
C 1

3
sin

6�t

3
C � � �

�

–3 3 6 9 12 15
t

3

7.
1

2
� 4

�2

�
cos �t C 1

9
cos 3�t C 1

25
cos 5�t C � � �

�

–1 1 2 3 4 5
t

1
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8.
1

3
�

p
3

�

�
cos

2�t

3
� 1

2
cos

4�t

3

C 1

4
cos

8�t

3
� 1

5
cos

10�t

3
C � � �

�

3 6 9
t

1

9.
1

3
� 4

�2

�
cos �t � 1

4
cos 2�t C 1

9
cos 3�t � � � � 	

–1 1 2 3 4 5
t

1

10.
2

3
� 8

�2

�
cos

�t

2
� 1

4
cos

2�t

2
C 1

9
cos

3�t

2
� � � �

�
C

4

�

�
sin

�t

2
� 1

2
sin

2�t

2
C 1

3
sin

3�t

2
� � � �

�
�

16

�3

�
sin

�t

2
C 1

27
sin

3�t

2
C 1

125
sin

5�t

2
C � � �

�

–2 2 4 6 8 10
t

2

4

11. a0 D 4

�
; an D 4 � .�1/nC1

�.4n2 � 1/
; bn D 0 for all n = 1.

–1 1 2 3 4 5
t

1

12. L D 1

2
; a0 D 4

�
; an D � 4

�.4n2 � 1/
for n = 1;

bn D 0 for all n = 1.

–1 1 2
t

1

13. a0 D 2

�
; a1 D 0; an D � 1 C .�1/n

�.n2 � 1/
for n = 2;

b1 D 1
2

; bn D 0 if n = 2.

–1 1 2 3 4 5
t

1

14.
1

2
sin t C 4

�

�
1

3
cos

t

2
� 1

5
cos

3t

2
� 1

21
cos

5t

2
� � � �

�

–2π 4π 8π
t

–1

1

15.

2π 4π 6π
t

2π2

4π2

16.

1 2 3 4 5
t

1

17.

2 4 6
t

1

2

18.

2π 4π 6π
t

π

2–

π

2

19.

–π π 3π 5π
t

π

2–

π

2

20.

2π 4π 6π
t

π2

6

π2

12–
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21.

–π π 3π 5π
t

π2

6

π2

12

–

24.

2π 4π 6π
t

8π4

16π4

25.

–π π 3π 5π
t

–π3

π3

Section 9.3

1. Cosine series: f .t/ D 1

–π π 2π 3π 4π
t

1

Sine series:

f .t/ D 4

�

�
sin t C 1

3
sin 3t C 1

5
sin 5t C 1

7
sin 7t C � � �

�

–π π 3π 5π
t

1

–1

2. Cosine series: f .t/ D
1

2
C 4

�2

�
cos �t C cos 3�t

32
C cos 5�t

52
C cos 7�t

72
C � � �

�

–1 1 3 5
t

1

Sine series:

f .t/ D 2

�

�
sin �t C sin 2�t

2
C sin 3�t

3
C sin 4�t

4
C � � �

�

1 3 5
t

1

–1

3. Cosine series: f .t/ D
8

�2

�
cos

�t

2
C 1

32
cos

3�t

2
C 1

52
cos

5�t

2
C 1

72
cos

7�t

2
C � � �

�

–2 2 4 6 8
t

–1

1

Sine series:

f .t/ D 4

�

�
sin �t

2
C sin 2�t

4
C sin 3�t

6
C sin 4�t

8
C � � �

�

–2 2 4 6 8
t

–1

1

4. Cosine series: f .t/ D
1 � 16

�2

�
cos �t

22
C cos 3�t

62
C cos 5�t

102
C cos 7�t

142
C � � �

�

–2 2 4 6 8
t

1

Sine series: f .t/ D
8

�2

�
sin

�t

2
� 1

32
sin

3�t

2
C 1

52
sin

5�t

2
� 1

72
sin

7�t

2
C � � �

�

–1 1 3 5 7 9
t

–1

1

5. Cosine series: f .t/ D 1

3
� 2

p
3

�

�
1

2
cos

2�t

3
� 1

4
cos

4�t

3
C

1

8
cos

8�t

3
� 1

10
cos

10�t

3
C � � �

�

–3 3 6 9 12 15
t

1
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Sine series:

f .t/ D 2

�

�
sin

�t

3
� 2

3
sin

3�t

3
C 1

5
sin

5�t

3
C 1

7
sin

7�t

3
�

2

9
sin

9�t

3
C 1

11
sin

11�t

3
C � � �

�

–3 3 6 9 12 15
t

1

–1

6. Cosine series: f .t/ D
�2

3
� 4

�
cos t � 1

22
cos 2t C 1

32
cos 3t C 1

42
cos 4t C � � �

�

–π π 3π 5π
t

π2

Sine series:

f .t/ D 2�

�
sin t � 1

2
sin 2t C 1

3
sin 3t � 1

4
sin 4t C � � �

�
�

8

�

�
sin t C 1

32
sin 3t C 1

53
sin 5t C 1

73
sin 7t C � � �

�

–π π 3π 5π
t

–π2

π2

7. Cosine series:

f .t/ D �2

6
� 4

�
cos 2t

22
C cos 4t

42
C cos 6t

62
C cos 8t

82
C � � �

�

–π π 3π 5π
t

π2

4

Sine series:

f .t/ D 8

�

�
sin t C sin 3t

33
C sin 5t

53
C sin 7t

73
C � � �

�

– 3 5π
t

π π π

π2

4

8. Cosine series: f .t/ D
1

6
� 4

�2

�
cos 2�t

22
C cos 4�t

42
C cos 6�t

62
C cos 8�t

82
C � � �

�

Sine series:

f .t/ D 8

�3

�
sin �t C sin 3�t

33
C sin 5�t

53
C sin 7�t

73
C � � �

�
The graphs of these two series look precisely the same as those in
Problem 7, except with a scale of �1 to 5 (rather than �� to 5�)
on the t-axis, and with arches of height 1/4 (rather than �2=4).

9. Cosine series:

f .t/ D 2

�
� 4

�2

�
cos 2t

3
C cos 4t

15
C cos 6t

35
C cos 8t

63
C � � �

�
Sine series: f .t/ D sin t
The graphs of these two series look essentially the same as those
in Problem 7, except with sine arches rather than quadratic
arches.

10. Cosine series:

f .t/ D 1

�
� 4

�

�
� 1

3
cos

t

2
C 1

5
cos

3t

2
C 2

12
cos

4t

2
C

1

21
cos

5t

2
C 1

45
cos

7t

2
C 2

60
cos

8t

2
C � � �

�

–2π 2π 4π 6π 8π 10π
t

1

Sine series:

f .t/ D 1

2
sin t � 4

�

�
1

3
sin

t

2
C 1

5
sin

3t

2
� 1

21
sin

5t

2
C

1

45
sin

7t

2
� 1

77
sin

9t

2
C � � �

�

–2π 2π 6π 10π
t

1

4π 8π

–1

11. x.t/ D 4

�

X
n odd

sin nt

n.2 � n2/
D

4

�

�
sin t � sin 3t

21
� sin 5t

115
� sin 7t

329
� � � �

�

12. x.t/ D � 4

�

�
sin t

5
C sin 3t

39
C sin 5t

145
C sin 7t

371
C � � �

�

13. x.t/ D 2

�

1X
nD1

.�1/n sin n�t

n.n2�2 � 1/

14. x.t/ D 16

�

1X
nD1

.�1/n sin.n�t=2/

n.n2�2 � 8/

15. x.t/ D �

4
C 4

�

X
n odd

cos nt

n2.n2 � 2/
D

�

4
C 4

�

�
� cos t C cos 3t

63
C cos 5t

575
C cos 7t

2303
C � � �

�
17. Suggestion: Substitute u D �t in the left-hand integral.
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Section 9.4

1. xsp.t/ D 12

�

X
n odd

sin nt

n.5 � n2/
D

12

�

�
sin t

4
� sin 3t

12
� sin 5t

100
� sin 7t

308
� � � �

�
.

π π π
t

–1

1

2 4 6

2. xsp.t/ D 48

�

X
n odd

.�1/.n�1/=2

n.40 � �2n2/
cos

n�t

2
.

10
t

–1

1

20 30

3. xsp.t/ D 4

1X
nD1

.�1/n�1 sin nt

n.3 � n2/
D

4

�
sin t

2
C sin 2t

2
� sin 3t

18
C sin 4t

52
� � � �

�
.

t

–4

4

2π 4π 6π

4. xsp D 1

2
� 64

�2

X
n odd

cos n�t=2

�2n2.16 � �2n2/
.

4 8 12
t

1
2

5. xsp.t/ D 8

�3

X
n odd

sin n�t

n3.10 � n2�2/

t

–2

2

2 4 6

6. xsp D 4

�
� 4

�

X
n even

cos nt

.n2 � 1/.n2 � 2/

D 4

�

�
1 � cos 2t

6
� cos 4t

210
� cos 6t

1190
� � � �

�
.

π 2π 3π
t

4
π

7. The Fourier series F .t/ D 4

�

X
n odd

sin nt

n
contains a sin 3t term,

so resonance does occur.
8. No resonance occurs.

9. The Fourier series F .t/ D 4

�

X
n odd

sin nt

n
contains no sin 2t

term, so no resonance occurs.
10. Resonance does occur.

11. The Fourier series F .t/ D �

2
� 4

�

X
n odd

cos nt

n2
contains no

cos 4t term, so no resonance occurs.
12. Resonance does occur.
13. xsp.t/ � .1:2725/ sin.t � 0:0333/ C .0:2542/ sin.3t �

3:0817/ C .0:0364/ sin.5t � 3:1178/ C � � �
14. xsp.t/ �

.0:2500/ sin.t � 0:0063/ � .0:2000/ sin.2t � 0:0200/ C

.4:444/ sin.3t � 1:5708/ � .0:0714/ sin.4t � 3:1130/ C � � �
15. xsp.t/ � .0:08150/ sin.�t � 1:44692/ C

.0:00004/ sin.3�t � 3:10176/ C � � �
16. xsp.t/ �

0:5000 C 1:0577 cos.�t=2 � 0:0103/ � 0:0099 cos.3�t=2 �
3:1390/ � 0:0011 cos.5�t=2 � 3:1402/ � � �

17. (a) xsp.t/ � .0:5687/ sin.�t � 0:0562/ C .0:4721/ sin.3�t �
0:3891/ C .0:01396/ sin.5�t � 2:7899/ C
.0:0318/ sin.7�t � 2:9874/ C � � �

18. xsp.t/ � 0:0531 sin.t � 0:0004/ � 0:0088 sin.3t � 0:0019/ C
1:0186 sin.5t � 1:5708/ � 0:0011 sin.7t � 3:1387/ C � � �

Section 9.5

1. u.x; t/ D 4e�12t sin 2x

2. u.x; t/ � 7

3. u.x; y/ D 5 exp.�2�2t/ sin �x � 1
5

exp.�18�2t/ sin 3�x

4. u.x; t/ D 2e�4t sin 2x C 2e�36t sin 6x

5. u.x; t/ D
4 exp

 
� 8�2t

9

!
cos

�
2�x

3

�
� 2 exp

 
� 32�2t

9

!
cos

�
4�x

3

�
6. u.x; t/ D exp.�2�2t/ sin 2�x C 1

2
exp.�8�2t/ sin 4�x

7. u.x; t/ D 1

2
C 1

2
exp

 
� 16�2t

3

!
cos 4�x

8. u.x; t/ D 5 exp.�4�2t/ cos 2�x C 5 exp.�16�2t/ cos 4�x

9. u.x; t/ D 100

�

X
n odd

1

n
exp

 
� n2�2t

250

!
sin

n�x

5

10. u.x; t/ D 80

�

1X
nD1

.�1/nC1

n
exp

 
� n2�2t

500

!
sin

n�x

10

11. u.x; t/ D 20 � 160

�2

X
n odd

1

n2
exp

 
� n2�2t

500

!
cos

n�x

10

12. u.x; t/ D 80000

�3

X
n odd

1

n3
exp

 
� n2�2t

10000

!
sin

n�x

100
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13. (a) u.x; t/ D 400

�

X
n odd

1

n
exp

 
� n2�2kt

1600

!
sin

n�x

40
;

(b) with k D 1:15, u.20; 300/ � 15:16ıC;
(c) about 19 h 16 min

14. (b) u.10; 60/ � 25:15ıC; (c) 6 min 54:3 s
16. (b) 15 h

Section 9.6

1. y.x; t/ D 1
10

cos 4t sin 2x

2. y.x; t/ D 1
10

cos �t sin �x � 1
20

cos 3�t sin 3�x

3. y.x; t/ D 1

10

�
cos

t

2
C 2 sin

t

2

�
sin x

4. y.x; y/ D 1
10

cos �t sin 2�x

5. y.x; t/ D 1

4
cos 5�t sin �x C 1

�
sin 10�t sin 2�x

6. y.x; t/ D
X

n odd

8

�n3
cos 10nt sin nx

7. y.x; t/ D
1X

nD1

.�1/nC1

5�2n2
sin 10n�t sin n�x

8. y.x; t/ D cos 2t sin x C 4

�

X
n odd

sin 2nt sin nx

n
.

9. y.x; t/ D 4

�4

X
n odd

sin 2n�t sin n�x

n4
.

10. y.x; t/ D 8

5�

X
n odd

.5n cos 5nt C sin 5nt/

n2.4 � n2/
.

11. Fundamental frequency: 256 Hz; velocity: 1024 ft=s

Section 9.7

1. u.x; y/ D
1X

nD1

cn sinh
n�x

b
sin

n�y

b
where

cn D 2

b sinh.n�a=b/

Z b

0

g.y/ sin
n�y

b
dy

2. u.x; y/ D
1X

nD1

cn sinh
n�.a � x/

b
sin

n�y

b
where

cn D 2

b sinh.n�a=b/

Z b

0

g.y/ sin
n�y

b
dy

3. u.x; y/ D
1X

nD1

cn sin
n�x

a
sinh

n�y

a
where

cn D 2

a sinh.n�b=a/

Z a

0

f .x/ sin
n�x

a
dx

4. u.x; y/ D b0y C
1X

nD1

bn cos
n�x

a
sinh

n�y

a
where

b0 D a0=2b, bn D an=.sinh n�b=a/ and fang1

0
are the

Fourier cosine coefficients of f .x/ on the interval 0 5 x 5 a.

5. u.x; y/ D a0

2a
.a � x/ C

1X
nD1

an

sinh.n�Œa � x�=b/

sinh.n�a=b/
cos

n�y

b
,

where an D 2

b

Z b

0

g.y/ cos
n�y

b
dy

6. u.x; y/ D A0 C
1X

nD1

An cos
n�x

a
cosh

n�y

a
where

A0 D a0=2, An D an=.cosh n�b=a/ and fang1

0
are the

Fourier cosine coefficients of f .x/ on the interval 0 5 x 5 a.

7. u.x; y/ D
1X

nD1

bn exp
�
� n�y

a

�
sin

n�x

a

where bn D 2

a

Z a

0

f .x/ sin
n�x

a
dx

8. u.x; y/ D a0

2
C

1X
nD1

ane�n�y=a cos
n�x

a
where fang1

0
are

the Fourier cosine coefficients of f .x/ on the interval
0 5 x 5 a.

9. u.0; 5/ � 41:53; u.5; 5/ D 50; u.10; 5/ � 58:47

11. u.x; y/ D
X
nodd

cn sinh
n�.a � x/

2b
cos

n�y

2b
where

cn D 2

b sinh.n�a=.2b//

Z b

0

g.y/ cos
n�y

2b
dy

13. cn D 2

�an

Z �

0

f .�/ sin n� d�

14. cn D 2

�an

Z �

0

f .�/ cos n� d�

15. cn D 2

�an=2

Z �

0

f .�/ sin
n�

2
d�

Chapter 10
Section 10.1

7. 1 D 2hL

1X
nD1

1 � cos ˇn

ˇn.hL C cos2 ˇn/
sin

ˇn

L
, 0 < x < L

8. 1 D
1X

nD1

4 sin ˇn

2ˇn C sin 2ˇn

cos
ˇnx

L
, 0 < x < L

9. x D 2h.1 C h/

1X
nD1

sin ˇn sin ˇnx

ˇ2
n.h C cos2 ˇn/

, 0 < x < 1

10. x D
1X

nD1

4.ˇn sin ˇn C cos ˇn � 1/

ˇn.2ˇn C sin 2ˇn/
cos ˇnx, 0 < x < 1

Section 10.2

2. u.x; y/ D
1X

nD1

cn sin
ˇnx

L
sinh

ˇn.L � y/

L
, where fˇng1

1
are

the positive roots of the equation tan x D �x=hL, and

cn D 4ˇn

L.sinh ˇn/.2ˇn � sin 2ˇn/

Z L

0

f .x/ cos
ˇnx

L
dx.

3. u.x; y/ D
1X

nD1

cn sinh
ˇn.L � x/

L
cos

ˇny

L
, where fˇng1

1
are

the positive roots of the equation tan x D x=hL, and

cn D 2h

.sinh ˇn/.hL C sin2 ˇn/

Z L

0

g.y/ cos
ˇny

L
dy.

4. u.x; y/ D
1X

nD1

cn sin
ˇnx

L
exp

�
� ˇny

L

�
, where fˇng1

1
are

the positive roots of the equation tan x D �x=hL, and

cn D 4ˇn

L.2ˇn � sin 2ˇn/

Z L

0

f .x/ cos
ˇnx

L
dx.

5. u.x; t/ D
1X

nD1

cn exp

 
� ˇ2

n kt

L2

!
Xn.x/, where

Xn.x/ D ˇn cos
ˇnx

L
C hL sin

ˇnx

L
, fˇng1

1
are the positive
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roots of the equation tan x D �x=hL, and

cn D
 Z L

0

f .x/Xn.x/ dx

!
=
=
=
Z L

0

Xn.x/2 dx.

6. u.x; t/ D
1X

nD1

cn exp

 
� ˇ2

n kt

L2

!
n

Xn.x/, where

Xn.x/ D ˇn cos
ˇnx

L
C hL sin

ˇnx

L
, fˇng1

1
are the positive

roots of the equation tan x D 2hLx=.x2 � h2L2/, and

cn D
 Z L

0

f .x/Xn.x/ dx

!
=
=
=
Z L

0

Xn.x/2 dx.

7. u.1; 1/ �
30:8755 C 0:4737 C 0:0074 C 0:0002 C 0:0000 C � � �
� 31:4ı

10. (a) a � 5:08 � 105 cm/sec � 11364 mph.
(b) a � 1:50 � 105 cm/sec � 3355 mph.

15.
Z L

0

sin
ˇmx

L
sin

ˇnx

L
dx D � LM cos ˇm cos ˇn

mˇmˇn

6D 0

20. (b) !1 � 1578 rad/sec � 251 cycles/sec. Thus we hear middle
C (approximately).

Section 10.3

In Problems 1–6, !n denotes the nth natural frequency of vibration.

1. !n D n�

L

r
E

ı
2. !n D n�

L

r
E

ı

3. !n D .2n � 1/�

2L

r
E

ı

4. !n D ˇn

L

r
E

ı
, where ˇn is the nth positive root of the equation

tan x D M=m

x
.

5. !n D ˇn

L

r
E

ı
, where ˇn is the nth positive root of the equation

AEˇ tan ˇ D kL.

6. !n D ˇn

L

r
E

ı
, where ˇn is the nth positive root of the equation

.m0m1´2 � M 2/ sin ´ D M.m0 C m1/´ cos ´.
15. 1:03 Hz

Section 10.4

3. (a) u.r; t/ D
1X

nD1

cnJ0

��nr

c

�
sin

�nat

c
where

cn D 2aP0

�c�a2�nJ1.�n/2
� J1.�n	=c/

�n	=c
.

(b) How do you know that J1.x/=x ! 1=2 as x ! 0?

4. (a) u.r; t/ D
1X

nD1

cn exp

 
� �2

nkt

c2

!
J0

��nr

c

�
where

cn D 2q0

s�c2J1.�n/2
� J1.�n	=c/

�n	=c
.

11. u.r; t/ D F0

!2J0.!b=a/

�
J0

�!r

a

�
� J0

�
!b

a

��
sin !t ,

where b is the radius of the circular membrane.

Appendix
1. y0 D 3, y1 D 3 C 3x, y2 D 3 C 3x C 3

2
x2,

y3 D 3 C 3x C 3
2

x2 C 1
2

x3,
y4 D 3 C 3x C 3

2
x2 C 1

2
x3 C 1

8
x4; y.x/ D 3ex

3. y0 D 1, y1 D 1 � x2, y2 D 1 � x2 C 1
2

x4,
y3 D 1 � x2 C 1

2
x4 � 1

6
x6,

y4 D 1 � x2 C 1
2

x4 � 1
6

x6 C 1
24

x8; y.x/ D exp
��x2

	
5. y0 D 0, y1 D 2x, y2 D 2x C 2x2,

y3 D 2x C 2x2 C 4
3

x3,
y4 D 2x C 2x2 C 4

3
x3 C 2

3
x4; y.x/ D e2x � 1

7. y0 D 0, y1 D x2, y2 D x2 C 1
2

x4, y3 D x2 C 1
2

x4 C 1
6

x6,
y4 D x2 C 1

2
x4 C 1

6
x6 C 1

24
x8; y.x/ D exp.x2/ � 1

9. y0 D 1, y1 D .1 C x/ C 1
2

x2, y2 D .1 C x C x2/ C 1
6

x3,
y3 D �

1 C x C x2 C 1
3

x3
	C 1

24
x4;

y.x/ D 2ex � 1 � x D 1 C x C x2 C 1
3

x3 C � � �
11. y0 D 1, y1 D 1 C x, y2 D .1 C x C x2/ C 1

3
x3,

y3 D .1 C x C x2 C x3/ C 2
3

x4 C 1
3

x5 C 1
9

x6 C 1
63

x7;

y.x/ D 1

1 � x
D 1 C x C x2 C x3 C x4 C x5 C � � �

12. y0 D 1, y1 D 1 C 1
2

x, y2 D 1 C 1
2

x C 3
8

x3 C 1
8

x3 C 1
64

x4,
y3 D 1 C 1

2
x C 3

8
x2 C 5

16
x3 C 13

64
x4 C � � � ;

y.x/ D .1 � x/�1=2

13.
�

x0

y0

�
D
�

1
�1

�
,
�

x1

y1

�
D
�

1 C 3t
�1 C 3t

�
,�

x2

y2

�
D
�

1 C 3t C 1
2

t2

�1 C 5t � 1
2

t2

�
,�

x3

y3

�
D
�

1 C 3t C 1
2

t2 C 1
3

t3

�1 C 5t � 1
2

t2 C 5
6

t3

�
14. x.t/ D

�
et C tet

et

�
16. y3.1/ � 0:350185
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Boldface page numbers indicate where terms are defined.

A
Abel’s formula, 147, 160
Acceleration, 11

constant, 12
gravitational, 13

Addition (of matrices), 265
Adriatic Sea, 395
Air resistance, 93

proportional to square of velocity,
96

proportional to velocity, 20, 94
Airy equation, 515, 558
Airy function, 515
Alligator population, 82, 83
Almost linear system, 385, 388

stability, 388
Ampere (unit of current), 209
Amplification factor, 200
Amplitude, 175
Analog computers, 210
Analytic function, 496
Archimedes’ law of buoyancy, 695
Argument (of complex number), 169
Arnold, David, 28
Artin, Emil, 550
Associated homogeneous equation,

137, 150, 158, 184, 187, 272, 300
Asymptotic approximations, 556
Asymptotic stability, 377, 391, 388
Augmented coefficient matrix, 276
Automobile:

two-axle, 332
vibrations, 207

Autonomous differential equation, 87
critical point, 87
equilibrium solution, 87
stable critical point, 88
unstable critical point, 88

Autonomous system, 372
linearized, 385

Auxiliary equation, see Characteristic
equation

Average error, 80

B
Batted baseball, 254, 259
Beam (loaded uniform), 644

natural frequency, 659
Beats, 199
Bernoulli, Daniel (1700–1782), 547,

611
Bernoulli equation, 61
Bessel, Friedrich W. (1784–1846), 547
Bessel’s equation, 160, 470, 494, 526,

543, 547, 556
modified, 562
parametric, 554

Bessel function:
asymptotic approximations, 556
identities, 552
modified, 562
order 1, first kind, 530,
order 1, second kind, 544
order 1

2 , 530
order 3

2 , 545
order n, second kind, 561
order p, first kind, 550
order zero, first kind, 527
order zero, second kind, 543
use in solving other equations, 557

Bifurcation, 90, 392, 431
diagram, 91
Hopf, 393
point, 91

Big bang, 42
Binomial series, 495, 506, 531
Birth rate, 75
Black hole, 101
Boundary value problem, 216, 599
Brachistochrone problem, 43
Brine tanks, 229, 286, 291, 293
Broughton Bridge, 201
Brown, J. W., 601, 670
Buckled rod, 225
Buckling of vertical column, 558
Buoy, 182, 695
Bus orbit (Moon-Earth), 257

C
Cable (hanging), 678
Canal tides, 679
Cantilever, 223, 645, 663, 666
Capacitor, 209
Carbon-14, 36
Carrying capacity, 21, 78
Cart with flywheel, 197
Cascade, 52, 54
Catenary, 44
Cauchy-Schwarz inequality, 714
Cello, 214
Center, 377

of power series, 496
stable, 377

Chain (of eigenvectors), 340, 342
Chaos, 426
and period-doubling, 431
Characteristic equation, 145, 162

of matrix, 283
complex roots, 168
distinct real roots, 145, 163
repeated roots, 146, 166, 169

Characteristic value, see Eigenvalue
Churchill, Ruel V., 445, 472, 474, 601,

670
Circular frequency, 175, 179
Clairaut equation, 70
Clarinet reed, 420
Clarke, Arthur, 17
Clepsydra, 42
Closed trajectory, 378
Coefficient matrix, 271
Column vector, 266
Compartmental analysis, 286
Competing species, 398
Competition and cooperation, 403
Competition, measure of, 399
Competition system, 398
Complementary function, 158, 278
Complex conjugate eigenvalues and

eigenvectors, 308

774
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Complex eigenvalue, 289
with negative real part, 312
with positive real part, 313

Complex-valued function, 167
Complex-valued solution, 289
Compound interest, 35
Conservation of mechanical energy,

174, 201
Constant acceleration, 12
Constant thrust, 103
Constant-coefficient homogeneous

equations, 162
Continuous dependence of solutions,

713
Convergence:

of Fourier series, 576
of power series, 495

Convolution (of functions), 467
Cooperation and competition, 403
Coulomb, 209
Criterion for exactness, 65
Critical buckling force, 226
Critical damping, 178
Critical point (of autonomous

equation), 87
Critical point (of system), 372

asymptotic stability, 377
behavior, 375
center, 377
classification, 389
isolated, 383, 386
node, 375
of predator-prey system, 396
saddle point, 376
spiral point, 378
spiral sink, 378
spiral source, 378
stability, 376

Critical speed (of whirling string), 222
Crossbow, 93, 95, 97, 123, 132, 258
Cumulative error, 109
Cycloid, 246

D
d’Alembert, Jean Le Rond

(1717–1783), 611
d’Alembert solution, 617, 618, 623,

650
Damped forced oscillations, 595
Damped motion, 186

nonlinear, 411
Damped pendulum oscillations, 417
Damping constant, 173
Death rate, 75
Decay constant, 36
Defect (of eigenvalue), 337

Defective eigenvalue, 337
of multiplicity two, 339

Degenerate system, 243
de Laplace, Pierre Simon

(1749–1827), 445
Delta function, 486

inputs, 487
and step functions, 488

Density of force, 222
Deflection of beam, 222

deflection curve, 222
Dependence on parameters, 90
Dependent variable missing, 67
Derivative:

of complex-valued function, 167
of matrix function, 270

Determinant, 269
Differential equation, 1

autonomous, 87
Bernoulli, 61
Clairaut, 70
dependent variable missing, 67
differential form, 64
exact, 64
first-order, 7, 46
general solution, 10, 34, 141, 150
homogeneous, 59, 137
implicit solution, 33
independent variable missing, 68
linear, 46, 136
logistic, 21, 44, 76, 125, 426
normal form, 7
order, 6
order n, 6, 149
ordinary, 7
partial, 7
particular solution, 10
reducible second-order, 67
Riccati, 70
separable, 31
singular solution, 34
solution, 2, 6

Differential equations and
determinism, 184

Differential form, 64
Differential operator, 164, 241
Dirac, P. A. M. (1902–1984), 486
Dirac delta function, 486
Direction field, 18, 232, 374
Direction of flow, 311
Dirichlet problem, 626

for circular disk, 630
Displacement vector, 323
Distinct real eigenvalues, 284, 297
Distinct real roots, 163
Diving board, 664, 666
Doomsday situation, 82

Doomsday versus extinction, 81
Downward motion, 97
Drag coefficient, 95
Drug elimination, 36
Duffing equation, 431
Duhamel’s principle, 491
Duplication, 189
Dynamic damper, 332
Dynamic phase plane graphics, 319

E
Earth-Moon satellite orbits, 256
Earthquake-induced vibrations, 206,

333
Eigenfunction, 218
Eigenfunction expansions, 641, 646
Eigenfunction series, 641

convergence, 642
Eigenvalue, 217

complete, 335
complex, 289, 308
defective, 337
distinct real, 284, 297
for matrix, 283
geometric significance of, 310
multiplicity k, 335
repeated, 297
Sturm-Liouville, 638
zero, 307

Eigenvalue method, 283, 284
Eigenvalue problem, 217
Eigenvector, 283

complex conjugate, 308
rank r generalized, 340

Electrical resonance, 214
Elementary row operations, 276
Elimination, method of, 240
Elimination constant, 36
Elliptic integral, 417
Endpoint conditions, 599
Endpoint problem, 216, 223
Engineering functions, 484
Equidimensional equation, 521
Equilibrium position, 173
Equilibrium solution, 20, 21, 87

of system, 373
Error function, 53
Error:

in the Euler method, 116
in the improved Euler method, 119
in the Runge-Kutta method, 128

Escape velocity, 99
Euler, Leonhard (1707–1783), 105,

547, 611
Euler buckling force, 226
Euler equation, 148, 172
Euler’s formula, 167
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Euler’s method, 106
cumulative error, 109, 116
improved, 118
local error, 109
roundoff error, 110
for systems, 249

Even function, 580
Even period 2L extension, 582
Exact equation, 64
Exactness, criterion for, 65
Existence, uniqueness of solutions, 21,

22, 49, 139, 151, 701, 710, 711
for linear systems, 709
of solutions of systems, 235

Exponential growth, see Natural
growth

Exponential matrix, 353
computation of, 358

Exponential order, 443
Exponential series, 496
Exponents (of a differential equation),

522
External force, 173

vector, 329

F
Famous numbers, 115, 124, 135
Farad (unit of capacitance), 209
Feigenbaum, Mitchell, 431
Feigenbaum constant, 431
Fibonacci number, 506
First-order equation, 7
First-order system, 230, 271
FitzHugh-Nagumo equations, 424
Flagpole, 559
Flight trajectories, 62
Flywheel on cart, 197
Folia of Descartes, 393
Forced Duffing equation, 431
Forced motion, 173
Forced oscillations:

damped, 203
and resonance, 329
undamped, 198

Forced vibrations, 137
and resonance, 658

Formal multiplication of series, 496
Fourier, Joseph, (1768–1830), 547, 566
Fourier coefficients, 568, 574
Fourier series:

convergence, 576
cosine series, 583
double, 683
of period 2L function, 574
of period 2� function, 568
sine series, 583

and solution of differential
equations, 586

termwise differentiation, 585
termwise integration, 588
two-dimensional, 683

Fourier-Bessel coefficients, 672
Fourier-Bessel series, 671
Fourier-Legendre series, 695
Free motion, 173

damped, 177
undamped, 175

Free oscillations, 245, 326
Free space, 104
Free vibrations, 137
Frequency, 176

resonance, 214
Frequency equation, 663, 665
Frobenius, Georg (1848–1919), 521
Frobenius, method of, 521
Frobenius series, 521
Frobenius series solutions, 524
From the Earth to the Moon, 99, 102
Fundamental frequency, 617
Fundamental matrix, 349
Fundamental matrix solutions, 350
Fundamental theorem of algebra, 162,

283
Funnel, 88

G
g (gravitational acceleration), 13
G (gravitational constant), 98
Gallery of phase plane portraits,

315–316
Galvani, Luigi (1737–1798), 423
Gamma function, 439, 549
Gauss’s hypergeometric equation, 531
Geometric significance of eigenvector,

310
General population equation, 76
General solution, 10, 34, 141, 143

of homogeneous equation, 143, 157
of homogeneous system, 274
of nonhomogeneous equation, 158
of nonhomogeneous system, 278

Generalized eigenvector, 340
Generalized functions, 492
Geometric series, 495, 531
Gibbs’ phenomenon, 569, 695
Gleick, James, 436
Global existence of solutions, 706
Graphical solutions, 17
Guitar string example, 619

H
Hailstone, 54

Half-life, 38
Half-period of function, 572
Halley’s comet, 262
Hanging cable, 678
Hard spring, 409

oscillation, 409
Harmonic, 617
Harvesting a logistic population, 89,

125
Heat content, 598
Heat equation:

one-dimensional, 598
two-dimensional, 625, 681

Heat flux, 598
Heated rod, 598

with insulated ends, 607
with zero endpoint temperatures,

604
Heaviside, Oliver (1850–1925), 445
Heaviside function, 591
Henry (unit of inductance), 209
Hermite equation, 515
Hermite polynomial, 515
Hodgkin, A. L. (1914–1988), 423
Hodgkin-Huxley model, 423
Hole-through-Earth problem, 182
Homicide victim, 43
Homogeneous boundary conditions,

600
Homogeneous equation, 59, 137, 150
Hooke’s law, 173, 408
Hopf bifurcation, 393
Huxley, A. F. (1917–2012), 423
Hypergeometric equation, series, 531
Hypocycloid, 247

I
Identity principle, 499
Imaginary eigenvalues, 309
Imaginary part, 167
Impedance, 211
Implicit solution, 33
Improper integral, 438
Improper node, 299, 305
Improved Euler method, 118

error in, 119
for systems, 250

Impulse, 485
Ince, E. L., 243, 563
Independent variable missing, 68
Indicial equation, 522
Inductor, 209
Inhibition, measure of, 399
Initial condition, 3, 7
Initial position, 12

function, 612
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Initial velocity, 12
function, 612

Initial value problem, 7, 139, 701
and elementary row operations, 275
for linear systems, 275
order n, 151

Integrating factor, 46
Integration of transforms, 471
Inverse Laplace transform, 441
Inverse matrix, 268
Irregular singular point, 519
Isolated critical point, 383, 386

J
Jackson, Milt, 654
Jacobian matrix, 385
Jump, 442

K
Kansas City (skywalk collapse), 201
Kepler, Johannes (1571–1630), 237

laws of planetary motion, 237, 261
Kinetic energy, 201
Kirchhoff’s laws, 209, 229
Kutta, Wilhelm (1867–1944), 126

L
Lakes Erie, Huron, and Ontario, 52
Language families, 42
Laplace equation, 626

in polar coordinates, 630
in spherical coordinates, 692

Laplace transform, 438
and convolution, 467, 468
of derivative, 448
derivatives of transforms, 469
differentiation, 469
existence, 443
for s large, 444
general properties, 443
of higher derivatives, 449
and initial value problems, 446
of integral, 454
integrals of transforms, 471
inverse, 441
inverse transform of series, 474
linearity of, 440
and linear systems, 451
notation, 441
of periodic function, 478
products of transforms, 468
translation on the s-axis, 459
translation on the t-axis, 474
uniqueness of inverse, 445

Laplacian, 626
in cylindrical coordinates, 666, 687

in spherical coordinates, 692
in two dimensions, 681

Legendre function, associated, 697
Legendre polynomial, 513, 693
Legendre’s equation, 494, 512, 518,

693
Leibniz’s series, 578
Limit cycle, 393
Limiting population, 21, 78
Limiting solution, 90
Limiting velocity, 20
Linear dependence, independence,

141, 153
of vector-valued functions, 273

Linear differential equation, 46, 136
Linear (polynomial) differential

operator, 241
Linear system, 234

associated homogeneous equation,
272

eigenvalue method, 283
first-order, 271
general solution, 274
homogeneous, 234
nonhomogeneous, 234, 278, 363
solution, 235, 271, 278
upper triangular form, 276

Linearity of Laplace transform, 440
Linearization, 385

near a critical point, 384
Linearized system, 385
Liouville, Joseph (1809–1882), 637
Lipschitz continuous, 705
Local error, 109
Local existence of solutions, 710
Logarithmic decrement, 183
Logistic difference equation, 427
Logistic equation, 21, 44, 76, 125, 426

competition situation, 80
with harvesting, 89, 125
joint proportion situation, 80
limited environment situation, 85

Logistic modeling, 85
Logistic populations, interaction of,

403
Longitudinal vibrations of bars, 649
Lorenz, E. N., 435
Lorenz strange attractor, system, 435
Lunar lander, 12, 98, 252

M
Maclaurin series, 496
Manchester (England) bridge collapse,

201
Mass matrix, 323
Mass-spring-dashpot system, 137
Mathematical model, 4

Mathematical modeling, 4
Matrix, 264

addition, 265
augmented, 276
coefficient, 271
columns, 264
determinant, 269
elements, 264
elementary row operations, 276
equality, 265
exotic, 349
exponential, 353
fundamental, 349
identity, 268, 275
inverse, 268
multiplication, 266
nilpotent, 355
nonsingular, 268
order, 268
principal diagonal, 268
rows, 264
singular, 268
subtraction, 265
transpose, 265
zero, 265

Matrix differential equation, 349
Matrix exponential solutions, 356
Matrix exponentials, general, 355
Matrix-valued function, 270

continuous, 270
differentiable, 270

Mechanical-electrical analogy, 210
Mechanical vibrations, 244
Membrane vibrations, 676, 684, 689
Method of elimination, 240
Method of Frobenius, 521

logarithmic case, 538
nonlogarithmic case, 533
the exceptional cases, 541

Method of successive approximations,
701

Method of undetermined coefficients,
184

for nonhomogeneous systems, 363
Mexico City earthquake, 201
Mixture problems, 51
Modern Jazz Quartet, 654
Modulus (of complex number), 169
Multiplicity of eigenvalue, 335
Multistory building, 333

N
Natural frequency, 198, 245, 326

of beam, 659
Natural growth and decay, 35
Natural growth equation, 37
Natural mode of oscillation, 245, 326
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Near resonance, 594
Neuron, 423
Newton, Sir Isaac (1642–1727), 94,

237
Newton’s law of cooling, 2, 38, 56, 87,

636
Newton’s law of gravitation, 98, 237,

256
Newton’s method, 162, 220
Newton’s second law of motion, 11,

13, 93, 102, 173, 197, 201, 221,
228, 256, 323, 612

Nilpotent matrix, 355
Nodal sink, 306
Nodal source, 300, 305
Node, 375

improper, 375
proper, 299, 304, 375

Nonelementary function, 104
Nonhomogeneous boundary condition,

600
Nonhomogeneous equation, 137, 157
Nonhomogeneous system, 234, 278
Nonlinear pendulum, 413

period of oscillation, 417, 419
Nonlinear spring, 408, 409
Nonsingular matrix, 268
Noonburg, Anne, 563
Norm, 705

O
Octave, 617
Odd function, 580
Odd half-multiple cosine series, 590
Odd half-multiple sine series, 589
Odd period 2L extension, 582
Ohm (unit of resistance), 209
One-parameter family, 5
Operational determinant, 242
Operator, polynomial (linear)

differential, 164, 241
Order of differential equation, 6
Ordinary differential equation, 7
Ordinary point, 507
Orthogonal functions, 582

with respect to weight function, 640
Orthogonality of eigenfunctions, 640
Oscillating populations, 397
Overdamping, 178
Overtone, 617

P
Painlevé transcendant, 563
Parachute, 26, 95, 100, 113, 130, 132,

135
Parameter, 5

Parameters, variation of, 192, 194
Parametric Bessel equation, 554, 636,

668, 672, 678, 690
Partial differential equation, 7, 597

boundary conditions, 599
Partial fraction decomposition, 459
Particular solution, 10
Peaceful coexistence of two species,

401
Pendulum, 174, 181, 206, 561

nonlinear, 413
variable length, 561

Period, 176, 565
Period of undamped oscillation, 416
Period doubling, 429

in mechanical systems, 436
Periodic function, 478, 565
Periodic harvesting and restocking,

125
Phase angle, 175
Phase diagram, 87
Phase plane picture, 374

position-velocity, 408
Phase plane portrait, 232, 373, 374
Physical units, 13
Picard, Emile (1856–1941), 701
Pickup truck, 619, 655, 686
Piecewise continuous function, 441

jump, 442
Piecewise smooth function, 448, 576
Pit and the Pendulum, The, 561
Pitchfork diagram, 430
Plucked string, 616
Poe, Edgar Allan (1809–1849), 561
Polar coordinate applications, 687
Polking, John, 28, 382, 394
Polynomial differential operator, 164,

241
Population equation, 76
Population explosion, 76, 82
Population growth, 35

and period doubling, 426
Position function, 11
Position-velocity phase plane, 408
Potential energy, 201
Potential equation, 626
Power series, 494
Power series method, 497
Power series representation, 495
Practical resonance, 204
Predation, 403
Predator, 395
Predator-prey situation, 395
Predator-prey system, 396
Predictor-corrector methods, 118
Prey, 395

Principle of superposition, 138, 150
for nonhomogeneous equations, 190
for partial differential equations,

601
for systems, 272

Principia Mathematica, 94, 237
Product of matrices, 266
Proper node, 304, 306
Pseudofrequency, 179
Pseudoperiod, 179
Pure resonance, 200, 594

R
Radio frequencies, 214
Radioactive decay, 36
Radius of convergence, 501
Railway cars, 326, 332, 343
Rank r generalized eigenvector, 340
Rayleigh, Lord (John William Strutt,

1842–1919), 420
Rayleigh’s equation, 420
Reactance, 212
Real part, 167
Rectangular membrane vibrations, 684
Recurrence relation, 511

many-term, 511
two-term, 511

Reducible second-order equation, 73
Reduction of order, 160, 537

formula, 538
Regular singular point, 519
Repeated quadratic factors, 463
Repeated roots, 165, 169
Repeated eigenvalue, 297

negative, 306
positive, 303
zero, 307

Resistance:
proportional to velocity, 94
proportional to square of velocity,

96
Resistance matrix, 344
Resistor, 209
Resonance, 200, 330

electrical, 214
near, 594
practical, 204
pure, 200, 594
and repeated quadratic factors, 463

Riccati equation, 70, 561
RLC circuit, 209, 477, 489

initial value problems, 212
integrodifferential equation, 477

Rocket propulsion, 102
Rodrigues’ formula, 514
Rössler band, 436
Roundoff error, 110



Index 779

Row vector, 266
Runge, Carl (1856–1927), 126
Runge-Kutta method, 127

error in, 128
for systems, 251, 253
variable step size methods, 255

S
Saddle point, 298, 376
Saltzman, Barry, 435
Sawtooth function, 457, 484, 586
Schwartz, Laurent, 492
Second law of motion, 11, 13, 93, 173,

197, 201, 221, 228, 323, 612
Second-order system, 324, 325
Separable equation, 31
Separation of variables:

in ordinary differential equations, 30
in partial differential equations, 601,

613
Separatrix, 401, 410
Series:

binomial, 495, 506, 531
convergent, 495
exponential, 496
formal multiplication, 496
Fourier, see Fourier series
Fourier-Bessel, 671
Fourier-Legendre, 695
geometric, 495, 531
hypergeometric, 531
identity principle, 499
Leibniz’s, 578
Maclaurin, 496
power, 494
radius of convergence, 501
shift of index, 499
Taylor, 496
termwise addition, 496
termwise differentiation, 498
trigonometric, 504

Shift of index of summation, 499
Simple harmonic motion, 175
Simple pendulum, 174
Sine integral function, 50
Singular matrix, 268
Singular point, 507

irregular, 519
regular, 519

Singular solution, 34
Sink, 299, 306, 375
Skydiver, 130, 132, 135
Skywalk, 201, 661
Slope field, 18, 374
Snells law, 43
Snowplow problem, 43
Sodium pentobarbital, 41

Soft spring, 410
oscillation, 410

Soft touchdown, 12, 17
Solution curve, 18, 232
Solution:

of differential equation, 2, 6
on an interval, 6
linear first-order, 47, 49
existence, uniqueness, 21, 22, 49,

139, 151, 701
general, 10, 34
implicit, 33
of system, 228
one-parameter family, 5
particular, 10
singular, 34
transient, 203, 331

Sound waves, 616
fundamental frequency, 617
harmonic, 617
overtone, 617

Source, 299, 300, 304, 305, 313, 375
Spacecraft landing, 259
Specific heat, 598
Spherical coordinate applications, 692
Spherical harmonic, 697
Spiral point, 378
Spiral sink, 313, 378
Spiral source, 313, 378
Spout, 88
Spring constant, 173
Square wave function, 446, 457, 479,

484, 569, 592
Stability, 376

asymptotic, 377
of almost linear systems, 388
of linear systems, 387

Stable center, 377
Stable critical point, 88, 376
Star, see Proper node
Static displacement, 200
Static equilibrium position, 173
Steady periodic current, 211
Steady periodic solution, 331, 592
Steady state temperature, 608
Step size, 105, 118, 254
Stiffness matrix, 323
Stirling’s approximation, 54
Stokes’ drag law, 184
Stonehenge, 38
Strange attractor, 435
Sturm, Charles (1803–1855), 637
Sturm-Liouville eigenvalues, 638
Sturm-Liouville problem, 637

regular, 638
singular, 638, 668

Substitution methods, 58

Successive approximations, method of,
701

Superposition principle, 138, 150
for nonhomogeneous equations, 190
for partial differential equations,

601
for systems, 272

Survival of a single species, 399
Swimmer’s problem, 14
Systems analysis, 490
Systems of dimension two, 296

T
Tambourine, 686
Taylor series, 496
Telephone equation, 665
Temperature oscillations:

indoor, 55
underground, 661

Terminal speed, 95
Termwise differentiation of series, 498,

585
Termwise integration of Fourier series,

588
Termwise inverse Laplace

transformation, 474
Thermal conductivity, 598
Thermal diffusivity, 7, 599
Threshold population, 81
Threshold solution, 90
Tidal wave, 697
Timbre, 617
Time lag, 176, 212
Time reversal in linear systems, 300
Time-varying amplitude, 179
Tolstov, G. P., 592
Torricelli’s law, 2, 39
Trace-determinant plane, 393
Trajectory, 232, 372

closed, 378
Transfer function, 490
Transient current, 211
Transient solution, 203, 331
Translated series solutions, 510
Transient temperature, 609
Transverse vibrations of bars, 652
Trapezoidal wave function, 580, 591,

624
Triangular wave function, 457, 479,

580, 586, 592, 624
Trigonometric series, 504
Two independent eigenvectors, 303
Two-dimensional systems, 232
Two-story building, 206

U
Undamped forced oscillations, 198



780 Index

Undamped motion, 173
Underdamping, 178
Underground temperature oscillations,

661
Undetermined coefficients, 184, 187,

190, 363
Unicycle model of car, 202
Uniform convergence, 706
Uniqueness of solutions, see Existence
Unit impulse response, 491
Unit on-off function, 457
Unit square wave function, 446, 457
Unit staircase function, 446, 456
Unit step function, 442, 474
Unit step response, 491
Unstable critical point, 88, 376
Unstable spiral point, 378
Upward motion, 96
U. S. population, 78, 84, 85

V
V-2 rocket, 103
van der Pol, Balthasar (1889–1959),

421
van der Pol’s equation, 421
Vandermonde determinant, 160
Variable gravitational acceleration, 98

Variation of parameters, 192, 194
for nonhomogeneous systems, 365

Variable step size, 254
Vector, 266

scalar product, 266
Velocity, 11

of sound, 654
limiting, 20

Verhulst, Pierre-François (1804–1849),
78, 84

Verne, Jules (1828–1905), 99, 102
Vertical motion with gravitational

acceleration, 13
with air resistance, 93

Vibrations, earthquake-induced, 333
Vibrations of bars:

longitudinal, 649
transverse, 653

Vibrations of membranes, 676, 684,
689

Viscosity, 184
Voltage drop, 209
Volterra, Vito (1860–1940), 395

W
Water clock, 42
Watson, G. N. (1886–1965), 547
Wave equation:

d’Alembert solution, 617
one-dimensional, 612
two-dimensional, 626, 684

Weight, 13
Weight function, 490, 640
Well-posed problems and

mathematical models, 712
Whirling string, 220
Without two independent eigenvectors,

303
World population, 37, 86
Wronski, J. M. H. (1778–1853), 154
Wronskian, 142, 154, 156

of vector-valued functions, 2732

X
Xylophone, 652

Y
Yorke, James, 430
Young’s modulus, 222, 225, 558, 652,

655, 663

Z
�.2/, 577
�.3/, 579
�.4/, 579, 589





Table of Laplace Transforms
This table summarizes the general properties of Laplace transforms and the Laplace transforms of particular functions
derived in Chapter 7.

Function Transform Function Transform

f .t/ F.s/

af .t/C bg.t/ aF.s/C bG.s/

f 0.t/ sF.s/ � f .0/

f 00.t/ s2F.s/ � sf .0/ � f 0.0/

f .n/.t/ snF.s/ � sn�1f .0/ � � � � � f .n�1/.0/

Z t

0
f .�/ d�

F.s/

s

eat f .t/ F.s � a/

u.t � a/f .t � a/ e�asF.s/

Z t

0
f .�/g.t � �/ d� F.s/G.s/

tf .t/ �F 0.s/

tnf .t/ .�1/nF .n/.s/

f .t/

t

Z 1

s
F.�/ d�

f .t/, period p
1

1 � e�ps

Z p

0
e�st f .t/ dt

1
1

s

t
1

s2

tn nŠ

snC1

1p
�t

1p
s

ta �.aC 1/

saC1

eat 1

s � a

tneat nŠ

.s � a/nC1

cos kt
s

s2 C k2

sin kt
k

s2 C k2

cosh kt
s

s2 � k2

sinh kt
k

s2 � k2

eat cos kt
s � a

.s � a/2 C k2

eat sin kt
k

.s � a/2 C k2

1

2k3
.sin kt � kt cos kt/

1

.s2 C k2/2

t

2k
sin kt

s

.s2 C k2/2

1

2k
.sin kt C kt cos kt/

s2

.s2 C k2/2

u.t � a/
e�as

s

ı.t � a/ e�as

.�1/ŒŒt=a�� (square wave)
1

s
tanh

as

2

��
t

a

��
(staircase)

e�as

s.1 � e�as/



Table of Integrals
ELEMENTARY FORMS

1.
Z

u dv D uv �
Z

v du

2.
Z

un du D 1

nC 1
unC1 C C if n 6D �1

3.
Z

du

u
D ln juj C C

4.
Z

eu du D eu C C

5.
Z

au du D au

ln a
C C

6.
Z

sin u du D � cos uC C

7.
Z

cos u du D sin uC C

8.
Z

sec2 u du D tan uC C

9.
Z

csc2 u du D � cot uC C

10.
Z

sec u tan u du D sec uC C

11.
Z

csc u cot u du D � csc uC C

12.
Z

tan u du D ln j sec uj C C

13.
Z

cot u du D ln j sin uj C C

14.
Z

sec u du D ln j sec uC tan uj C C

15.
Z

csc u du D ln j csc u � cot uj C C

16.
Z

dup
a2 � u2

D sin�1 u

a
C C

17.
Z

du

a2 C u2
D 1

a
tan�1 u

a
C C

18.
Z

du

a2 � u2
D 1

2a
ln

ˇ̌
ˇ̌uC a

u � a

ˇ̌
ˇ̌C C

TRIGONOMETRIC FORMS

19.
Z

sin2 u du D 1

2
u � 1

4
sin 2uC C

20.
Z

cos2 u du D 1

2
uC 1

4
sin 2uC C

21.
Z

tan2 u du D tan u � uC C

22.
Z

cot2 u du D � cot u � uC C

23.
Z

sin3 u du D �1

3
.2C sin2 u/ cos uC C

24.
Z

cos3 u du D 1

3
.2C cos2 u/ sin uC C

25.
Z

tan3 u du D 1

2
tan2 uC ln j cos uj C C

26.
Z

cot3 u du D �1

2
cot2 u � ln j sin uj C C

27.
Z

sec3 u du D 1

2
sec u tan uC 1

2
ln j sec uC tan uj C C

28.
Z

csc3 u du D �1

2
csc u cot uC 1

2
ln j csc u � cot uj C C

29.
Z

sin au sin bu du D sin.a � b/u

2.a � b/
� sin.aC b/u

2.aC b/
C C if a2 6D b2

(Continued on Rear Endpaper)



Table of Integrals (cont.)

30.
Z

cos au cos bu du D sin.a � b/u

2.a � b/
C sin.aC b/u

2.aC b/
C C if a2 6D b2

31.
Z

sin au cos bu du D �cos.a � b/u

2.a � b/
� cos.aC b/u

2.aC b/
C C if a2 6D b2

32.
Z

sinn u du D �1

n
sinn�1 u cos uC n � 1

n

Z
sinn�2 u du

33.
Z

cosn u du D 1

n
cosn�1 u sin uC n � 1

n

Z
cosn�2 u du

34.
Z

tann u du D 1

n � 1
tann�1 u �

Z
tann�2 u du if n 6D 1

35.
Z

cotn u du D � 1

n � 1
cotn�1 u �

Z
cotn�2 u du if n 6D 1

36.
Z

secn u du D 1

n � 1
secn�2 u tan uC n � 2

n � 1

Z
secn�2 u du if n 6D 1

37.
Z

cscn u du D � 1

n � 1
cscn�2 u cot uC n � 2

n � 1

Z
cscn�2 u du if n 6D 1

38.
Z

u sin u du D sin u � u cos uC C

39.
Z

u cos u du D cos uC u sin uC C

40.
Z

un sin u du D �un cos uC n

Z
un�1 cos u du

41.
Z

un cos u du D un sin u � n

Z
un�1 sin u du

FORMS INVOLVING
p

u2 ˙ a2

42.
Z p

u2 ˙ a2 du D u

2

p
u2 ˙ a2 ˙ a2

2
ln

ˇ̌̌
uC

p
u2 ˙ a2

ˇ̌ˇC C

43.
Z

dup
u2 ˙ a2

D ln
ˇ̌ˇuCpu2 ˙ a2

ˇ̌ˇC C

FORMS INVOLVING
p

a2 � u2

44.
Z p

a2 � u2 du D u

2

p
a2 � u2 C a2

2
sin�1 u

a
C C

45.
Z p

a2 � u2

u
du D

p
a2 � u2 � a ln

ˇ̌ˇ̌ˇ
aCpa2 � u2

u

ˇ̌ˇ̌̌C C



Table of Integrals (cont.)
EXPONENTIAL AND LOGARITHMIC FORMS

46.
Z

ueu du D .u � 1/eu C C

47.
Z

uneu du D uneu � n

Z
un�1eu du

48.
Z

un ln u du D unC1

nC 1
ln u � unC1

.nC 1/2
C C

49.
Z

eau sin bu duD eau

a2 C b2
.a sin bu� b cos bu/CC

50.
Z

eau cos bu duD eau

a2 C b2
.a cos buCb sin bu/CC

INVERSE TRIGONOMETRIC FORMS

51.
Z

sin�1 u du D u sin�1 uC
p

1 � u2 C C 52.
Z

tan�1 u du D u tan�1 u � 1

2
ln.1C u2/C C

53.
Z

sec�1 u du D u sec�1 u � ln
ˇ̌
ˇuCpu2 � 1

ˇ̌
ˇC C

54.
Z

u sin�1 u du D 1

4
.2u2 � 1/ sin�1 uC u

4

p
1 � u2 C C

55.
Z

u tan�1 u du D 1

2
.u2 C 1/ tan�1 u � u

2
C C

56.
Z

u sec�1 u du D u2

2
sec�1 u � 1

2

p
u2 � 1C C

57.
Z

un sin�1 u du D unC1

nC 1
sin�1 u � 1

nC 1

Z
unC1

p
1 � u2

du if n 6D �1

58.
Z

un tan�1 u du D unC1

nC 1
tan�1 u � 1

nC 1

Z
unC1

1C u2
du if n 6D �1

59.
Z

un sec�1 u du D unC1

nC 1
sec�1 u � 1

nC 1

Z
unC1

p
u2 � 1

du if n 6D �1

OTHER USEFUL FORMULAS

60.
Z 1

0

une�u du D �.nC 1/ D nŠ (n = 0) 61.
Z 1

0

e�au2

du D 1

2

r
�

a
(a > 0)

62.
Z �=2

0

sinn u du D
Z �=2

0

cosn u du D

8̂̂
<
ˆ̂:

1 � 3 � 5 � � � .n � 1/

2 � 4 � 6 � � �n � �

2
if n is an even integer and n = 2

2 � 4 � 6 � � � .n � 1/

3 � 5 � 7 � � �n if n is an odd integer and n = 3
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